首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The association of ERAP1 with ankylosing spondylitis (AS)1 among HLA-B27-positive individuals suggests that ERAP1 polymorphism may affect pathogenesis by altering peptide-dependent features of the HLA-B27 molecule. Comparisons of HLA-B*27:04-bound peptidomes from cells expressing different natural variants of ERAP1 revealed significant differences in the size, length, and amount of many ligands, as well as in HLA-B27 stability. Peptide analyses suggested that the mechanism of ERAP1/HLA-B27 interaction is a variant-dependent alteration in the balance between epitope generation and destruction determined by the susceptibility of N-terminal flanking and P1 residues to trimming. ERAP1 polymorphism associated with AS susceptibility ensured efficient peptide trimming and high HLA-B27 stability. Protective polymorphism resulted in diminished ERAP1 activity, less efficient trimming, suboptimal HLA-B27 peptidomes, and decreased molecular stability. This study demonstrates that natural ERAP1 polymorphism affects HLA-B27 antigen presentation and stability in vivo and proposes a mechanism for the interaction between these molecules in AS.The mechanism underlying the strong association of HLA-B27 with ankylosing spondylitis (AS) remains unknown. Three main possibilities, each one based on a different molecular feature of HLA-B27, are currently being investigated. The arthritogenic peptide hypothesis (1), based on the canonic antigen-presenting properties of Major Histocompatibility Complex class I (MHC-I) molecules, assumes that a peptide epitope of external origin would activate HLA-B27-restricted T-cells, whose cross-reactivity with a self-derived HLA-B27 ligand would result in autoimmune damage. The misfolding hypothesis (2) is based on the slow folding and tendency to misfold of HLA-B27 (3, 4). An accumulation of misfolded heavy chains (HCs) in the endoplasmic reticulum (ER) would elicit an unfolded protein response and activate pro-inflammatory pathways. The surface homodimer hypothesis (5, 6) is based on the expression of HLA-B27 HC homodimers at the cell surface and their recognition by leukocyte receptors (7), which leads to immunomodulation of inflammatory responses. Because the constitutive binding of endogenous peptides by MHC-I molecules determines not only their antigen-presenting specificity, but also their folding and stability, it was proposed that the HLA-B27 peptidome, through its global influence on the biological behavior of the molecule, is critical to its pathogenetic role (8). This idea found strong support with the discovery of the association of ER aminopeptidase (ERAP) 1 with AS (9) in HLA-B27-positive, but not B27-negative, disease (10). With an estimated population attributable risk of 26%, ERAP1 is the non-MHC gene most strongly associated with AS. Given that ERAP1 is involved in the N-terminal trimming of peptides to their optimal size for MHC-I binding (1113), its association with AS suggests a pathogenetic mechanism of functional interaction with HLA-B27 that influences peptide binding and antigen presentation. ERAP1 trimming is limited by peptide size, becoming highly inefficient for 8-mers and shorter peptides (13, 14). This is a seemingly unique feature of ERAP1 that is not even shared by its analog ERAP2 (14, 15). The only putative exception, which has not been entirely ruled out, might be insulin-regulated amino peptidase (IRAP), an endosomal analog of ERAP1 involved in cross-presentation, but probably not in processing of constitutive MHC-I ligands (16, 17). IRAP degrades peptides to smaller products than ERAP1 in vitro (18). The three-dimensional structure of ERAP1 reveals a substrate binding cavity close to the catalytic site, as well as four domains; the conformational rearrangement between an open and a closed conformation, presumably induced upon substrate binding, regulates its enzymatic activity (19, 20). The polymorphic residues found among natural ERAP1 variants (21), and often co-occurring in complex allotypes, are located in various topological regions, including some in close proximity to the catalytic site, the substrate binding cavity, or domain junctions. Therefore, they might alter ERAP1 activity by directly affecting catalysis, altering substrate binding, or modulating domain rearrangements. The association of ERAP1 with AS does not by itself reveal the specific feature(s) determining the pathogenetic role of HLA-B27. Indeed, ERAP1 might influence the generation of specific pathogenetic epitopes; have a general effect on the HLA-B27 peptidome, altering the stability or other features of the molecule; or both. This study investigated general effects of ERAP1 polymorphism on the HLA-B27 peptidome by comparing the size distribution, molecular features, and N-terminal flanking sequences of peptides from human cells expressing the AS-associated B*27:04 subtype and different natural variants of ERAP1.  相似文献   

2.
HLA-B27 is strongly associated with ankylosing spondylitis (AS). We analyzed the relationship between structure, peptide specificity, folding, and stability of the seven major HLA-B27 subtypes to determine the role of their constitutive peptidomes in the pathogenicity of this molecule. Identification of large numbers of ligands allowed us to define the differences among subtype-bound peptidomes and to elucidate the peptide features associated with AS and molecular stability. The peptides identified only in AS-associated or high thermostability subtypes with identical A and B pockets were longer and had bulkier and more diverse C-terminal residues than those found only among non-AS-associated/lower-thermostability subtypes. Peptides sequenced from all AS-associated subtypes and not from non-AS-associated ones, thus strictly correlating with disease, were very rare. Residue 116 was critical in determining peptide binding, thermodynamic properties, and folding, thus emerging as a key feature that unified HLA-B27 biology. HLA-B27 ligands were better suited to TAP transport than their N-terminal precursors, and AS-associated subtype ligands were better than those from non-AS-associated subtypes, suggesting a particular capacity of AS-associated subtypes to bind epitopes directly produced in the cytosol. Peptides identified only from AS-associated/high-thermostability subtypes showed a higher frequency of ERAP1-resistant N-terminal residues than ligands found only in non-AS-associated/low-thermostability subtypes, reflecting a more pronounced effect of ERAP1 on the former group. Our results reveal the basis for the relationship between peptide specificity and other features of HLA-B27, provide a unified view of HLA-B27 biology and pathogenicity, and suggest a larger influence of ERAP1 polymorphism on AS-associated than non-AS-associated subtypes.The current ideas concerning the pathogenetic role of HLA-B27 in ankylosing spondylitis (AS) emphasize specific antigen presentation (1), misfolding (2), or immunomodulation mediated by heavy chain homodimers (3) expressed at the cell surface upon endosomal recycling (4). Recent research provided evidence that both misfolded HLA-B27 heavy chains and surface expressed B27 homodimers may activate the IL-23/IL-17 axis, a key inflammatory pathway in spondyloarthropathies, through distinct mechanisms, namely the unfolded protein response (5) and the stimulation of IL-17-producing T cells (6). In contrast, the fact that CD8+ T cells are not required for the HLA-B27-associated disease in transgenic rats (7, 8), and the failure to identify specific arthritogenic peptides, point out to a pathogenetic role of HLA-B27 based on its folding and/or non-canonical forms, rather than to an autoimmune mechanism based on molecular mimicry between foreign and self-derived peptides. Yet, on the basis of genetic and immunological studies (9, 10), an involvement of CD8+T cells in the human disease cannot be ruled out.Beyond the pathogenetic relevance of specific peptides, the constitutive HLA-B27-bound peptidome is related to the folding and stability of HLA-B27, because both features are peptide-dependent (11). This is strongly supported by the association of ERAP1, an aminopeptidase that trims peptides to their optimal size for MHC-I binding (12, 13), with ankylosing spondylitis (AS)1 among HLA-B27-positive individuals (14), and by the demonstration that AS-associated ERAP1 polymorphism has a substantial effect on the HLA-B27 peptidome in live cells (15).Any pathogenetic mechanism must account for the differential association of HLA-B27 subtypes with AS. Whereas B*27:02, B*27:04 and B*27:05 are clearly associated with this disease, B*27:06 and B*27:09 are not (16, 17). B*27:07, a subtype present in multiple populations, is generally associated with AS, with one reported exception (18, 19). All these subtypes have the same structure in the A and B pockets of their peptide binding site, which accommodate the two N-terminal residues of their peptide ligands, but they differ in one or more positions in the F pocket, which binds the C-terminal peptide residue, as well as in other positions of the peptide binding site. In contrast, B*27:03, a subtype prevalent only in populations of Sub-Saharan African ancestry, differs from the B*27:05 prototype by a single Y59H change in the A pocket (20, 21), a difference that also sets it apart from all other subtypes (supplemental Table S1) and affects the binding preferences for N-terminal peptide residues (2224). The nature of B*27:03 as a putative susceptibility factor for AS is unclear (19). In African populations in which this subtype is prevalent, neither this subtype nor B*27:05 are associated with this disease (25), presumably because of concurrent protective factor(s).In this study we carried out an extensive sequence analysis of HLA-B27 subtype-bound peptidomes to define their differential features as well as the extent and nature of peptide sharing among subtypes. The results revealed the basis for the intimate relationship between peptide specificity, folding, and stability of HLA-B27, provided a unified explanation on how subtype polymorphism alters the molecular biology of HLA-B27 and its association with AS, and demonstrated a differential influence of TAP and ERAP1 on AS-associated and non-AS-associated subtypes.  相似文献   

3.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

4.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

5.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

6.
7.
8.
Although PTIP is implicated in the DNA damage response, through interactions with 53BP1, the function of PTIP in the DNA damage response remain elusive. Here, we show that RNF8 controls DNA damage-induced nuclear foci formation of PTIP, which in turn regulates 53BP1 localization to the DNA damage sites. In addition, SMC1, a substrate of ATM, could not be phosphorylated at the DNA damage sites in the absence of PTIP. The PTIP-dependent pathway is important for DNA double strand breaks repair and DNA damage-induced intra-S phase checkpoint activation. Taken together, these results suggest that the role of PTIP in the DNA damage response is downstream of RNF8 and upstream of 53BP1. Thus, PTIP regulates 53BP1-dependent signaling pathway following DNA damage.The DNA damage response pathways are signal transduction pathways with DNA damage sensors, mediators, and effectors, which are essential for maintaining genomic stability (13). Following DNA double strand breaks, histone H2AX at the DNA damage sites is rapidly phosphorylated by ATM/ATR/DNAPK (410), a family homologous to phosphoinositide 3-kinases (11, 12). Subsequently, phospho-H2AX (γH2AX) provides the platform for accumulation of a larger group of DNA damage response factors, such as MDC1, BRCA1, 53BP1, and the MRE11·RAD50·NBS1 complex (13, 14), at the DNA damage sites. Translocalization of these proteins to the DNA double strand breaks (DSBs)3 facilitates DNA damage checkpoint activation and enhances the efficiency of DNA damage repair (14, 15).Recently, PTIP (Pax2 transactivation domain-interacting protein, or Paxip) has been identified as a DNA damage response protein and is required for cell survival when exposed to ionizing radiation (IR) (1, 1618). PTIP is a 1069-amino acid nuclear protein and has been originally identified in a yeast two-hybrid screening as a partner of Pax2 (19). Genetic deletion of the PTIP gene in mice leads to early embryonic lethality at embryonic day 8.5, suggesting that PTIP is essential for early embryonic development (20). Structurally, PTIP contains six tandem BRCT (BRCA1 carboxyl-terminal) domains (1618, 21). The BRCT domain is a phospho-group binding domain that mediates protein-protein interactions (17, 22, 23). Interestingly, the BRCT domain has been found in a large number of proteins involved in the cellular response to DNA damages, such as BRCA1, MDC1, and 53BP1 (7, 2429). Like other BRCT domain-containing proteins, upon exposure to IR, PTIP forms nuclear foci at the DSBs, which is dependent on its BRCT domains (1618). By protein affinity purification, PTIP has been found in two large complexes. One includes the histone H3K4 methyltransferase ALR and its associated cofactors, the other contains DNA damage response proteins, including 53BP1 and SMC1 (30, 31). Further experiments have revealed that DNA damage enhances the interaction between PTIP and 53BP1 (18, 31).To elucidate the DNA damage response pathways, we have examined the upstream and downstream partners of PTIP. Here, we report that PTIP is downstream of RNF8 and upstream of 53BP1 in response to DNA damage. Moreover, PTIP and 53BP1 are required for the phospho-ATM association with the chromatin, which phosphorylates SMC1 at the DSBs. This PTIP-dependent pathway is involved in DSBs repair.  相似文献   

9.
10.
11.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

12.
The kinetochore, which consists of centromere DNA and structural proteins, is essential for proper chromosome segregation in eukaryotes. In budding yeast, Sgt1 and Hsp90 are required for the binding of Skp1 to Ctf13 (a component of the core kinetochore complex CBF3) and therefore for the assembly of CBF3. We have previously shown that Sgt1 dimerization is important for this kinetochore assembly mechanism. In this study, we report that protein kinase CK2 phosphorylates Ser361 on Sgt1, and this phosphorylation inhibits Sgt1 dimerization.The kinetochore is a structural protein complex located in the centromeric region of the chromosome coupled to spindle microtubules (1, 2). The kinetochore generates a signal to arrest cells during mitosis when it is not properly attached to microtubules, thereby preventing chromosome missegregation, which can lead to aneuploidy (3, 4). The molecular structure of the kinetochore complex of the budding yeast Saccharomyces cerevisiae has been well characterized; it is composed of more than 70 proteins, many of which are conserved in mammals (2).The centromere DNA in the budding yeast is a 125-bp region that contains three conserved regions, CDEI, CDEII, and CDEIII (5, 6). CDEIII (25 bp) is essential for centromere function (7) and is bound to a key component of the centromere, the CBF3 complex. The CBF3 complex contains four proteins, Ndc10, Cep3, Ctf13 (815), and Skp1 (14, 15), all essential for viability. Mutations in any of the CBF3 proteins abolish the ability of CDEIII to bind to CBF3 (16, 17). All of the kinetochore proteins, except the CDEI-binding Cbf1 (1820), localize to the kinetochores in a CBF3-dependent manner (2). Thus, CBF3 is a fundamental kinetochore complex, and its mechanism of assembly is of great interest.We have previously found that Sgt1 and Skp1 activate Ctf13; thus, they are required for assembly of the CBF3 complex (21). The molecular chaperone Hsp90 is also required to form the active Ctf13-Skp1 complex (22). Sgt1 has two highly conserved motifs that are required for protein-protein interaction: the tetratricopeptide repeat (21) and the CHORD protein and Sgt1-specific motif. We and others have found that both domains are important for the interaction of Sgt1 with Hsp90 (2326), which is required for assembly of the core kinetochore complex. This interaction is an initial step in kinetochore activation (24, 26, 27), which is conserved between yeast and humans (28, 29).We have recently shown that Sgt1 dimerization is important for Sgt1-Skp1 binding and therefore for kinetochore assembly (30). In this study, we have found that protein kinase CK2 phosphorylates Sgt1 at Ser361, and this phosphorylation inhibits Sgt1 dimerization. Therefore, CK2 appears to regulate kinetochore assembly negatively in budding yeast.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号