共查询到20条相似文献,搜索用时 0 毫秒
1.
Breanne Sparta Michael Pargett Marta Minguet Kevin Distor George Bell John G. Albeck 《The Journal of biological chemistry》2015,290(41):24784-24792
In both physiological and cell culture systems, EGF-stimulated ERK activity occurs in discrete pulses within individual cells. Many feedback loops are present in the EGF receptor (EGFR)-ERK network, but the mechanisms driving pulsatile ERK kinetics are unknown. Here, we find that in cells that respond to EGF with frequency-modulated pulsatile ERK activity, stimulation through a heterologous TrkA receptor system results in non-pulsatile, amplitude-modulated activation of ERK. We further dissect the kinetics of pulse activity using a combination of FRET- and translocation-based reporters and find that EGFR activity is required to maintain ERK activity throughout the 10–20-minute lifetime of pulses. Together, these data indicate that feedbacks operating within the core Ras-Raf-MEK-ERK cascade are insufficient to drive discrete pulses of ERK activity and instead implicate mechanisms acting at the level of EGFR. 相似文献
2.
Theonie Anastassiadis Krisna C. Duong-Ly Sean W. Deacon Alec Lafontant Haiching Ma Karthik Devarajan Roland L. Dunbrack Jr. Jinhua Wu Jeffrey R. Peterson 《The Journal of biological chemistry》2013,288(39):28068-28077
Dual inhibitors of the closely related receptor tyrosine kinases insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR) are promising therapeutic agents in cancer. Here, we report an unusually selective class of dual inhibitors of IGF-1R and IR identified in a parallel screen of known kinase inhibitors against a panel of 300 human protein kinases. Biochemical and structural studies indicate that this class achieves its high selectivity by binding to the ATP-binding pocket of inactive, unphosphorylated IGF-1R/IR and stabilizing the activation loop in a native-like inactive conformation. One member of this compound family was originally reported as an inhibitor of the serine/threonine kinase ERK, a kinase that is distinct in the structure of its unphosphorylated/inactive form from IR/IGF-1R. Remarkably, this compound binds to the ATP-binding pocket of ERK in an entirely different conformation to that of IGF-1R/IR, explaining the potency against these two structurally distinct kinase families. These findings suggest a novel approach to polypharmacology in which two or more unrelated kinases are inhibited by a single compound that targets different conformations of each target kinase. 相似文献
3.
4.
Hong-Feng Gou Xiang Li Meng Qiu Ke Cheng Long-Hao Li Hang Dong Ye Chen Yuan Tang Feng Gao Feng Zhao Hai-Tao Men Jun Ge Jing-Mei Su Feng Xu Feng Bi Jian-Jun Gao Ji-Yan Liu 《PloS one》2013,8(4)
Penile Squamous Cell Carcinoma (SCC) is a rare cancer with poor prognosis and limited response to conventional chemotherapy. The genetic and epigenetic alterations of Epidermal Growth Factor Receptor (EGFR)-RAS-RAF signaling in penile SCC are unclear. This study aims to investigate four key members of this pathway in penile SCC. We examined the expression of EGFR and RAS-association domain family 1 A (RASSF1A) as well as the mutation status of K-RAS and BRAF in 150 cases of penile SCC. EGFR and RASSF1A expression was evaluated by immunohistochemistry. KRAS mutations at codons 12 and 13, and the BRAF mutation at codon 600 were analyzed on DNA isolated from formalin fixed paraffin embedded tissues by direct genomic sequencing. EGFR expression was positive in all specimens, and its over-expression rate was 92%. RASSF1A expression rate was only 3.42%. Significant correlation was not found between the expression of EGFR or RASSF1A and tumor grade, pT stage or lymph node metastases. The detection of KRAS and BRAF mutations analysis was performed in 94 and 83 tumor tissues, respectively. We found KRAS mutation in only one sample and found no BRAF V600E point mutation. In summary, we found over-expression of EGFR in the majority cases of penile SCC, but only rare expression of RASSF1A, rare KRAS mutation, and no BRAF mutation in penile SCC. These data suggest that anti-EGFR agents may be potentially considered as therapeutic options in penile SCC. 相似文献
5.
Murat Cirit Chun-Chao Wang Jason M. Haugh 《The Journal of biological chemistry》2010,285(47):36736-36744
Cell responses are actuated by tightly controlled signal transduction pathways. Although the concept of an integrated signaling network replete with interpathway cross-talk and feedback regulation is broadly appreciated, kinetic data of the type needed to characterize such interactions in conjunction with mathematical models are lacking. In mammalian cells, the Ras/ERK pathway controls cell proliferation and other responses stimulated by growth factors, and several cross-talk and feedback mechanisms affecting its activation have been identified. In this work, we take a systematic approach to parse the magnitudes of multiple regulatory mechanisms that attenuate ERK activation through canonical (Ras-dependent) and non-canonical (PI3K-dependent) pathways. In addition to regulation of receptor and ligand levels, we consider three layers of ERK-dependent feedback: desensitization of Ras activation, negative regulation of MEK kinase (e.g. Raf) activities, and up-regulation of dual-specificity ERK phosphatases. Our results establish the second of these as the dominant mode of ERK self-regulation in mouse fibroblasts. We further demonstrate that kinetic models of signaling networks, trained on a sufficient diversity of quantitative data, can be reasonably comprehensive, accurate, and predictive in the dynamical sense. 相似文献
6.
Shih-Hsin Hsiao H. Eugene Liu Hsin-Lun Lee Chii-Lan Lin Wei-Yu Chen Zhung-Han Wu Sey-En Lin Ling-Ling Chiang Chi-Li Chung 《PloS one》2013,8(12)
Introduction
Treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been associated with favorable progression free survival (PFS) in patients with non-small cell lung cancers (NSCLC) harboring EGFR mutations. However, a subset of this population doesn''t respond to EGFR-TKI treatment. Therefore, the present study aimed to elucidate survival outcome in NSCLC EGFR-mutant patients who were treated with EGFR TKIs.Methods
Among the 580 consecutive NSCLC patients who were treated at our facility between 2008 and 2012, a total of 124 treatment-naïve, advanced NSCLC, EGFR-mutant patients treated with EGFR TKIs were identified and grouped into non-responders and responders for analyses.Results
Of 124 patients, 104 (84%) responded to treatment, and 20 (16%) did not; and the overall median PFS was 9.0 months. Notably, the PFS, overall survival (OS) and survival rates were significantly unfavorable in non-responders (1.8 vs. 10.3 months, hazard ratio (HR) = 29.2, 95% confidence interval (CI), 13.48–63.26, P<0.0001; 9.4 vs. 17.3 months, HR = 2.74, 95% CI, 1.52–4.94, P = 0.0008; and 58% vs. 82% in 6, 37% vs. 60% in 12, and 19 vs. 40% at 24 months, respectively). In multivariate analysis, treatment efficacy strongly affected PFS and OS, independent of covariates (HR = 47.22, 95% CI, 17.88–124.73, P<0.001 and HR = 2.74, 95% CI, 1.43–5.24, P = 0.002, respectively). However, none of the covariates except of the presence of EGFR exon 19 deletion in the tumors was significantly associated with better treatment efficacy.Conclusions
A subset of NSCLC EGFR-mutant patients displayed unfavorable survival despite EGFR TKI administration. This observation reinforces the urgent need for biomarkers effectively predicting the non-responders and for drug development overcoming primary resistance to EGFR TKIs. In addition, optimal therapeutic strategies to prolong the survival of non-responders need to be investigated. 相似文献7.
Subhasis Das Gautam Sondarva Navin Viswakarma Rakesh Sathish Nair Clodia Osipo Guri Tzivion Basabi Rana Ajay Rana 《The Journal of biological chemistry》2015,290(35):21705-21712
Human epidermal growth factor receptor 2 (HER2) is amplified in ∼15–20% of human breast cancer and is important for tumor etiology and therapeutic options of breast cancer. Up-regulation of HER2 oncogene initiates cascades of events cumulating to the stimulation of transforming PI3K/AKT signaling, which also plays a dominant role in supporting cell survival and efficacy of HER2-directed therapies. Although investigating the underlying mechanisms by which HER2 promotes cell survival, we noticed a profound reduction in the kinase activity of a pro-apoptotic mixed lineage kinase 3 (MLK3) in HER2-positive (HER2+) but not in HER2-negative (HER2−) breast cancer tissues, whereas both HER2+ and HER2− tumors expressed a comparable level of MLK3 protein. Furthermore, the kinase activity of MLK3 was inversely correlated with HER2+ tumor grades. Moreover, HER2-directed drugs such as trastuzumab and lapatinib as well as depletion of HER2 or HER3 stimulated MLK3 kinase activity in HER2+ breast cancer cell lines. In addition, the noted inhibitory effect of HER2 on MLK3 kinase activity was mediated via its phosphorylation on Ser674 by AKT and that pharmacological inhibitors of PI3K/AKT prevented trastuzumab- and lapatinib-induced stimulation of MLK3 activity. Consistent with the pro-apoptotic function of MLK3, stable knockdown of MLK3 in the HER2+ cell line blunted the pro-apoptotic effects of trastuzumab and lapatinib. These findings suggest that HER2 activation inhibits the pro-apoptotic function of MLK3, which plays a mechanistic role in mediating anti-tumor activities of HER2-directed therapies. In brief, MLK3 represents a newly recognized integral component of HER2 biology in HER2+ breast tumors. 相似文献
8.
Hideki Makinoshima Masahiro Takita Shingo Matsumoto Atsushi Yagishita Satoshi Owada Hiroyasu Esumi Katsuya Tsuchihara 《The Journal of biological chemistry》2014,289(30):20813-20823
Genetic mutations in tumor cells cause several unique metabolic phenotypes that are critical for cancer cell proliferation. Mutations in the tyrosine kinase epidermal growth factor receptor (EGFR) induce oncogenic addiction in lung adenocarcinoma (LAD). However, the linkage between oncogenic mutated EGFR and cancer cell metabolism has not yet been clearly elucidated. Here we show that EGFR signaling plays an important role in aerobic glycolysis in EGFR-mutated LAD cells. EGFR-tyrosine kinase inhibitors (TKIs) decreased lactate production, glucose consumption, and the glucose-induced extracellular acidification rate (ECAR), indicating that EGFR signaling maintained aerobic glycolysis in LAD cells. Metabolomic analysis revealed that metabolites in the glycolysis, pentose phosphate pathway (PPP), pyrimidine biosynthesis, and redox metabolism were significantly decreased after treatment of LAD cells with EGFR-TKI. On a molecular basis, the glucose transport carried out by glucose transporter 3 (GLUT3) was downregulated in TKI-sensitive LAD cells. Moreover, EGFR signaling activated carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), which catalyzes the first step in de novo pyrimidine synthesis. We conclude that EGFR signaling regulates the global metabolic pathway in EGFR-mutated LAD cells. Our data provide evidence that may link therapeutic response to the regulation of metabolism, which is an attractive target for the development of more effective targeted therapies to treat patients with EGFR-mutated LAD. 相似文献
9.
Pei-Li Yao LiPing Chen Rex A. Hess Rolf Müller Frank J. Gonzalez Jeffrey M. Peters 《The Journal of biological chemistry》2015,290(38):23416-23431
Ppard−/− mice exhibit smaller litter size compared with Ppard+/+ mice. To determine whether peroxisome proliferator-activated receptor-D (PPARD) could possibly influence this phenotype, the role of PPARD in testicular biology was examined. Atrophic testes and testicular degeneration were observed in Ppard−/− mice compared with Ppard+/+ mice, indicating that PPARD modulates spermatogenesis. Higher expression of p27 and decreased expression of proliferating cellular nuclear antigen in Sertoli cells were observed in Ppard+/+ mice as compared with Ppard−/− mice, and these were associated with decreased Sertoli cell number in Ppard+/+ mice. Cyclin D1 and cyclin D2 expression was lower in Ppard+/+ as compared with Ppard−/− mice. Ligand activation of PPARD inhibited proliferation of a mouse Sertoli cell line, TM4, and an inverse agonist of PPARD (DG172) rescued this effect. Temporal inhibition of extracellular signal-regulated kinase (ERK) activation by PPARD in the testis was observed in Ppard+/+ mice and was associated with decreased serum follicle-stimulating hormone and higher claudin-11 expression along the blood-testis barrier. PPARD-dependent ERK activation also altered expression of claudin-11, p27, cyclin D1, and cyclin D2 in TM4 cells, causing inhibition of cell proliferation, maturation, and formation of tight junctions in Sertoli cells, thus confirming a requirement for PPARD in accurate Sertoli cell function. Combined, these results reveal for the first time that PPARD regulates spermatogenesis by modulating the function of Sertoli cells during early testis development. 相似文献
10.
Guo Li Xiaoyan Deng Chun Wu Qi Zhou Linjie Chen Ying Shi Haishan Huang Naiming Zhou 《The Journal of biological chemistry》2011,286(36):31199-31212
Nicotinic acid (niacin) has been widely used as a lipid-lowering drug for several decades, and recently, orphan G protein-coupled receptor GPR109A has been identified as a receptor for niacin. Mechanistic investigations have shown that, upon niacin activation, GPR109A couples to a Gi protein and inhibits adenylate cyclase activity, leading to inhibition of liberation of free fatty acid. However, the underlying molecular mechanisms for GPR109A signaling remain largely unknown. Using CHO-K1 cells stably expressing GPR109A and A431 cells, which are a human epidermoid cell line with high levels of endogenous expression of functional GPR109A receptors, we found that activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by niacin was rapid, peaking at 5 min, and was significantly blocked by pertussis toxin. Furthermore, time course experiments with different kinase inhibitors demonstrated that GPR109A induced ERK1/2 activation via the matrix metalloproteinase/epidermal growth factor receptor transactivation pathway at both early and later time points (2–5 min); this pathway was distinct from the PKC pathway-mediated ERK1/2 phosphorylation that occurs at early time points (≤2 min) in response to niacin. Overexpression of Gβγ subunit scavengers βARK1-CT and the Gα subunit of transducin led to a significant reduction of ERK1/2 phosphorylation, suggesting a critical role for βγ subunits in GPR109A-activated ERK1/2 phosphorylation. Using arrestin-2/3-specific siRNA and an internalization-deficient GPR109A mutant, we found that arrestin-2 and arrestin-3 were not involved in GPR109A-mediated ERK1/2 activation. In conclusion, our findings demonstrate that upon binding to niacin GPR109A receptors initially activate Gi, leading to dissociation of the Gβγ subunit from activated Gi, and subsequently induce ERK1/2 activation via two distinct pathways, one PKC-dependent pathway occurring at a peak time of ≤2 min and the other matrix metalloproteinase-dependent growth factor receptor transactivation occurring at both early and later time points (2–5 min). 相似文献
11.
Tumor Promoter Arsenite Activates Extracellular Signal-Regulated Kinase through a Signaling Pathway Mediated by Epidermal Growth Factor Receptor and Shc 总被引:9,自引:3,他引:9 下载免费PDF全文
Wei Chen Jennifer L. Martindale Nikki J. Holbrook Yusen Liu 《Molecular and cellular biology》1998,18(9):5178-5188
Although arsenite is an established carcinogen, the mechanisms underlying its tumor-promoting properties are poorly understood. Previously, we reported that arsenite treatment leads to the activation of the extracellular signal-regulated kinase (ERK) in rat PC12 cells through a Ras-dependent pathway. To identify potential mediators of the upstream signaling cascade, we examined the tyrosine phosphorylation profile in cells exposed to arsenite. Arsenite treatment rapidly stimulated tyrosine phosphorylation of several proteins in a Ras-independent manner, with a pattern similar to that seen in response to epidermal growth factor (EGF) treatment. Among these phosphorylated proteins were three isoforms of the proto-oncoprotein Shc as well as the EGF receptor (EGFR). Tyrosine phosphorylation of Shc allowed for enhanced interactions between Shc and Grb2 as identified by coimmunoprecipitation experiments. The arsenite-induced tyrosine phosphorylation of Shc, enhancement of Shc and Grb2 interactions, and activation of ERK were all drastically reduced by treatment of cells with either the general growth factor receptor poison suramin or the EGFR-selective inhibitor tyrphostin AG1478. Down-regulation of EGFR expression through pretreatment of cells with EGF also attenuated ERK activation and Shc tyrosine phosphorylation in response to arsenite treatment. These results demonstrate that the EGFR and Shc are critical mediators in the activation of the Ras/ERK signaling cascade by arsenite and suggest that arsenite acts as a tumor promoter largely by usurping this growth factor signaling pathway. 相似文献
12.
13.
Hideki Makinoshima Masahiro Takita Koichi Saruwatari Shigeki Umemura Yuuki Obata Genichiro Ishii Shingo Matsumoto Eri Sugiyama Atsushi Ochiai Ryo Abe Koichi Goto Hiroyasu Esumi Katsuya Tsuchihara 《The Journal of biological chemistry》2015,290(28):17495-17504
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. 相似文献
14.
Yinchen Shen Jianfei Wang Xiaohong Han Hongying Yang Shuai Wang Dongmei Lin Yuankai Shi 《PloS one》2013,8(12)
Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). Clinicopathological characteristics associations were analyzed together with overall survival (OS) of metastatic colorectal cancer patients (mCRC). We found 35.9% (242/674) tumors harbored a KRAS mutation, 6.96% (47/675) harbored a BRAF mutation, 9.9% (62/625) harbored a PIK3CA mutation and 4.19% (26/621) harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027) while NRAS mutation almost existed in KRAS wild-types (P<0.001). Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients. 相似文献
15.
G. Daniel Grass Lauren B. Tolliver Momka Bratoeva Bryan P. Toole 《The Journal of biological chemistry》2013,288(36):26089-26104
The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. 相似文献
16.
17.
Epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors are useful in treating different advanced human cancers; however, their clinical efficacy varies. This study detected K-ras mutations to predict the efficacy of EGFR-TK inhibitor cetuximab treatment on Chinese patients with metastatic colorectal cancer (mCRC). A total of 87 patients with metastatic colorectal cancer were treated with cetuximab for 2-16 months, in combination with chemotherapy between August 2008 and July 2012, and tissue samples were used to detect K-ras mutations. The data showed that K-ras mutation occurred in 27/87 (31%). The objective response rates and disease control rate in K-ras wild type and mutant patients were 42% (25/60) versus 11% (3/27) (p<0.05) and 60% (36/60) versus 26% (7/27) (p<0.05), respectively. Patients with the wild-type K-ras had significantly higher median survival times and progression-free survival, than patients with mutated K-ras (21 months versus 17 months, p=0.017; 10 months versus 6 months, p=0.6). These findings suggest that a high frequency of K-ras mutations occurs in Chinese mCRC patients and that K-ras mutation is required to select patients for eligibility for cetuximab therapy. Further prospective studies using a large sample size are needed to confirm these preliminary findings. 相似文献
18.
19.
Gina M. Sizemore Steven T. Sizemore Darcie D. Seachrist Ruth A. Keri 《The Journal of biological chemistry》2014,289(35):24102-24113
Breast cancer is a heterogeneous disease comprised of distinct subtypes predictive of patient outcome. Tumors of the basal-like subtype have a poor prognosis due to inherent aggressiveness and the lack of targeted therapeutics. Basal-like tumors typically lack estrogen receptor-α, progesterone receptor and HER2/ERBB2, or in other words they are triple negative (TN). Continued evaluation of basal-like breast cancer (BLBC) biology is essential to identify novel therapeutic targets. Expression of the pi subunit of the GABA(A) receptor (GABRP) is associated with the BLBC/TN subtype, and herein, we reveal its expression also correlates with metastases to the brain and poorer patient outcome. GABRP expression in breast cancer cell lines also demonstrates a significant correlation with the basal-like subtype suggesting that GABRP functions in the initiation and/or progression of basal-like tumors. To address this postulate, we stably silenced GABRP in two BLBC cell lines, HCC1187 and HCC70 cells. Decreased GABRP reduces in vitro tumorigenic potential and migration concurrent with alterations in the cytoskeleton, specifically diminished cellular protrusions and expression of the BLBC-associated cytokeratins, KRT5, KRT6B, KRT14, and KRT17. Silencing GABRP also decreases phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) in both cell lines and selective inhibition of ERK1/2 similarly decreases the basal-like cytokeratins as well as migration. Combined, these data reveal a GABRP-ERK1/2-cytokeratin axis that maintains the migratory phenotype of basal-like breast cancer. GABRP is a component of a cell surface receptor, thus, these findings suggest that targeting this new signaling axis may have therapeutic potential in BLBC. 相似文献
20.
Vahid Bemanian Torill Sauer Joel Touma Bj?rn Arne Lindstedt Ying Chen Hilde Presterud ?deg?rd Katja Marjaana Vetvik Ida Rashida Bukholm Jürgen Geisler 《PloS one》2015,10(8)
The epidermal growth factor receptor (EGFR) is one of the major oncogenes identified in a variety of human malignancies including breast cancer (BC). EGFR-mutations have been studied in lung cancer for some years and are established as important markers in guiding therapy with tyrosine kinase inhibitors (TKIs). In contrast, EGFR-mutations have been reported to be rare if not absent in human BC, although recent evidence has suggested a significant worldwide variation in somatic EGFR-mutations. Therefore, we investigated the presence of EGFR-mutations in 131 norwegian patients diagnosed with early breast cancer using real-time PCR methods. In the present study we identified three patients with an EGFR-T790M-mutation. The PCR-findings were confirmed by direct Sanger sequencing. Two patients had triple-negative BC (TNBC) while the third was classified as luminal-A subtype. The difference in incidence of T790M mutations comparing the TNBC subgroup with the other BC subgroups was statistical significant (P = 0.023). No other EGFR mutations were identified in the entire cohort. Interestingly, none of the patients had received any previous cancer treatment. To our best knowledge, the EGFR-T790M-TKI-resistance mutation has not been previously detected in breast cancer patients. Our findings contrast with the observations made in lung cancer patients where the EGFR-T790M-mutation is classified as a typical „second mutation”causing resistance to TKI-therapy during ongoing anticancer therapy. In conclusion, we have demonstrated for the first time that the EGFR-T790M-mutation occurs in primary human breast cancer patients. In the present study the EGFR-T790M mutation was not accompanied by any simultaneous EGFR-activating mutation. 相似文献