首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite only limited Pleistocene glacial activity in the southern hemisphere, temperate forest species experienced complex distributional changes resulting from the combined effects of glaciation, sea level change and increased aridity. The effects of these historical processes on population genetic structure are now overlain by the effects of contemporary habitat modification. In this study, 10 microsatellites and 629 bp of the mitochondrial control region were used to assess the effects of historical forest fragmentation and recent anthropogenic habitat change on the broad-scale population genetic structuring of a southern temperate marsupial, the Tasmanian pademelon. A total of 200 individuals were sampled from seven sites across Tasmania and two islands in Bass Strait. High mitochondrial and nuclear genetic diversity indicated the maintenance of large historical population sizes. There was weak phylogeographical structuring of haplotypes, although all King Island haplotypes and three Tasmanian haplotypes formed a divergent clade implying the mid-Pleistocene isolation of a far northwestern population. Both the mitochondrial and nuclear data indicated a division of Tasmanian populations into eastern and western regions. This was consistent with a historical barrier resulting from increased aridity in the lowland 'midlands' region during glacial periods, and with a contemporary barrier resulting from recent habitat modification in that region. In Tasmania, gene flow appears to have been relatively unrestricted during glacial maxima in the west, while in the east there was evidence for historical expansion from at least one large glacial refuge and recolonization of Flinders Island.  相似文献   

2.
Aim To investigate the impact of climatic oscillations and recognized biogeographic barriers on the evolutionary history of the garden skink (Lampropholis guichenoti), a common and widespread vertebrate in south‐eastern Australia. Location South‐eastern Australia. Methods Sequence data were obtained from the ND4 mitochondrial gene for 123 individuals from 64 populations across the entire distribution of the garden skink. A range of phylogenetic (maximum likelihood, Bayesian) and phylogeographic analyses (genetic diversity, Tajima’s D, ΦST, mismatch distribution) were conducted to examine the evolutionary history and diversification of the garden skink. Results A deep phylogeographic break (c. 14%), estimated to have occurred in the mid–late Miocene, was found between ‘northern’ and ‘southern’ populations across the Hunter Valley in northern New South Wales. Divergences among the geographically structured clades within the ‘northern’ (five clades) and ‘southern’ (seven clades) lineages occurred during the Pliocene, with the location of the major breaks corresponding to the recognized biogeographic barriers in south‐eastern Australia. Main conclusions Climatic fluctuations and the presence of several elevational and habitat barriers in south‐eastern Australia appear to be responsible for the diversification of the garden skink over the last 10 Myr. Further molecular and morphological work will be required to determine whether the two genetic lineages represent distinct species.  相似文献   

3.
Knowledge of threatened species’ distributions is essential for effective conservation decision‐making. Species distribution models (SDMs) are widely used to map species’ geographic ranges, identify new areas of suitable habitat and guide field surveys. In New South Wales (NSW), Australia, there are grave doubts about whether populations of the critically endangered long‐footed potoroo (Potorous longipes) remain extant, and identification of occupied sites is a high priority for its conservation. We used an SDM (Maxent) to identify regions in NSW that may have suitable habitat for the potoroo. The SDM was built with seven climate layers and had strong predictive performance (cross‐validated AUC = 0.94). We then combined this information on habitat suitability with vegetation and topography, to identify 58 survey sites across NSW. From April 2016 to May 2017, we undertook six field trips deploying six to eight cameras at each site for 52–63 days, resulting in 25 120 camera trap nights. A total of 215 759 images captured 43 native and feral animal species, but no long‐footed potoroos. Following the survey, newly available, independent presence and absence data were used to validate our model. A Kruskal–Wallis H test indicated that habitat suitability values were significantly higher at presence locations than absence locations (H = 58.66, d.f. = 1, P < 0.001). Finally, we refitted the Maxent model with the new data and identified additional regions that future surveys could explore. We conclude, however, that if the long‐footed potoroo remains extant in NSW, it is extremely rare.  相似文献   

4.
Aim To relate genetic diversity to topographic features and to investigate genetic interactions between Eucalyptus species in a local centre of endemism and diversity in south‐eastern Australia. Location Grampian Ranges, Victoria, Australia. Methods We documented chloroplast DNA (cpDNA) variation for a group of endemic Eucalyptus species (E. serraensis, E. verrucata and E. victoriana) that dominate rocky, high‐elevation ridgelines of the Grampian Ranges and for one closely‐related, widespread species (E. baxteri) occupying flanking slopes and valleys. We documented genetic patterns across the landscape using cpDNA microsatellites, and related them to topographic features (exposed west‐facing versus protected east‐facing slopes and valleys). We also determined the extent of local haplotype sharing between populations of endemic species and neighbouring E. baxteri downslope with cpDNA microsatellites, and haplotype sharing between the endemic group and more distantly related species (E. obliqua, E. pauciflora and E. willisii) with sequences of the JLA+ chloroplast region. Results We detected 26 cpDNA microsatellite haplotypes in a relatively small area of c. 20 km × 50 km. Populations of E. baxteri on east‐facing slopes and valleys had greater cpDNA microsatellite diversity than E. baxteri and endemic species on exposed west‐facing slopes. Endemic species frequently shared chloroplast haplotypes with E. baxteri downslope. Sharing of JLA+ haplotypes with species outside the endemic group was mostly restricted to E. victoriana, which had cpDNA more similar to the species from other sections of Eucalyptus (E. obliqua, E. willisii and E. pauciflora). Main conclusions Intensive sampling of related species on small isolated mountain ranges allowed us to relate genetic diversity to fine‐scale habitats and to document extensive local haplotype sharing between species. This study contributes to a general understanding of the environmental conditions that enable plant population persistence by linking concentrations of genetic diversity to particular habitats.  相似文献   

5.
Population structure and lineage diversification within a small, non‐dispersive hammerhead shark species, the bonnethead shark Sphyrna tiburo, was assessed. Sphyrna tiburo is currently described as one continuously distributed species along the Atlantic continental margins of North, Central and South America, but recent genetic analysis of an insular population (Trinidad) suggests the possibility of cryptic speciation. To address this issue S. tiburo were sampled at six sites along c. 6200 km of continuous, continental coastline and from one island location (Grand Bahama) across a discontinuity in their distribution (the Straits of Florida), in order to test if they constitute a single lineage over this distribution. A total of 1030 bp of the mitochondrial control region (CR) was obtained for 239 S. tiburo, revealing 73 distinct haplotypes, high nucleotide diversity (0·01089) and a pair of highly divergent lineages estimated to have separated 3·61–5·62 million years ago. Mitochondrial cytochrome oxidase I and nuclear internal transcribed spacer loci show the same pattern. Divergence is similar within S. tiburo to that observed between established elasmobranch sister species, providing further evidence of cryptic speciation. A global AMOVA based on CR confirms that genetic diversity is primarily partitioned among populations (ΦST = 0·828, P < 0·001) because the divergent lineages are almost perfectly segregated between Belize and North America–The Bahamas. An AMOVA consisting solely of the North American and Bahamian samples is also significantly different from zero (ΦST = 0·088, P < 0·001) and pairwise FST is significantly different between all sites. These findings suggest that S. tiburo comprises a species complex and supports previous research indicating fine population structure, which has implications for fisheries management and biodiversity conservation.  相似文献   

6.
Under different environmental conditions, hybridization between the same species might result in different patterns of genetic admixture. Particularly, species pairs with large distribution ranges and long evolutionary history may have experienced several independent hybridization events over time in different zones of overlap. In birds, the diverse hybrid populations of the house sparrow (Passer domesticus) and the Spanish sparrow (Passer hispaniolensis) provide a striking example. Throughout their range of sympatry, these two species do not regularly interbreed; however, a stabilized hybrid form (Passer italiae) exists on the Italian Peninsula and on several Mediterranean islands. The spatial distribution pattern on the Eurasian continent strongly contrasts the situation in North Africa, where house sparrows and Spanish sparrows occur in close vicinity of phenotypically intermediate populations across a broad mosaic hybrid zone. In this study, we investigate patterns of divergence and admixture among the two parental species, stabilized and nonstabilized hybrid populations in Italy and Algeria based on a mitochondrial marker, a sex chromosomal marker, and 12 microsatellite loci. In Algeria, despite strong spatial and temporal separation of urban early‐breeding house sparrows and hybrids and rural late‐breeding Spanish sparrows, we found strong genetic admixture of mitochondrial and nuclear markers across all study populations and phenotypes. That pattern of admixture in the North African hybrid zone is strikingly different from i) the Iberian area of sympatry where we observed only weak asymmetrical introgression of Spanish sparrow nuclear alleles into local house sparrow populations and ii) the very homogenous Italian sparrow population where the mitogenome of one parent (P. domesticus) and the Z‐chromosomal marker of the other parent (P. hispaniolensis) are fixed. The North African sparrow hybrids provide a further example of enhanced hybridization along with recent urbanization and anthropogenic land‐use changes in a mosaic landscape.  相似文献   

7.
Although migratory pelagic fishes generally exhibit little geographic differentiation across oceans, as expected from their life history (broadcast spawning, pelagic larval life, swimming ability of adults) and the assumed homogeneity of the pelagic habitat, exceptions to the rule deserve scrutiny. One such exception is the narrow‐barred Spanish mackerel (Scomberomorus commerson Lacepède, 1800), where strong genetic heterogeneity at the regional scale has been previously reported. We investigated the genetic composition of S. commerson across the Indo‐West Pacific range using control‐region sequences (including previously published data sets), cytochrome b gene partial sequences, and eight microsatellite loci, to further explore its phylogeographic structure. All haplotypes sampled from the Indo‐Malay‐Papua archipelago (IMPA) and the south‐western Pacific coalesced into a clade (clade II) that was deeply separated (14.5% nucleotide divergence) from a clade grouping all haplotypes from the Persian Gulf and Oman Sea (clade I). Such a high level of genetic divergence suggested the occurrence of two sister species. Further phylogeographic partition was evident between the western IMPA and the regions sampled east and south of it, i.e. northern Australia, West Papua, and the Coral Sea. Strong allele‐frequency differences were found between local populations in the south‐western Pacific, both at the mitochondrial locus (Φst = 0.282–0.609) and at microsatellite loci ( = 0.202–0.313). Clade II consisted of four deeply divergent subclades (9.0–11.8% nucleotide divergence for the control region; 0.3–2.5% divergence at the cytochrome b locus). Mitochondrial subclades within clade II generally had narrow geographic distribution, demonstrating further genetic isolation. However, one particular haplogroup within clade II was present throughout the central Indo‐West Pacific: this haplogroup was found to be the sister group to a haplogroup restricted to West Papua and the Coral Sea, yielding evidence of recent secondary westward colonization. Such a complex structure is in sharp contrast with the generally weak phylogeographic patterns uncovered to date in other widely distributed, large pelagic fishes with pelagic eggs and larvae. We hypothesize that in S. commerson and possibly other Scomberomorus species, philopatric migration may play a role in maintaining the geographic isolation of populations by annihilating the potential consequences of passive dispersal. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 886–902.  相似文献   

8.
ABSTRACT

Sigaloeista Shea & Griffiths, 2010 is a genus of small, litter-dwelling helicarionid snails that occurs in the rainforest and wet sclerophyll forest of northeastern New South Wales and southern Queensland. This group currently comprises three species known only from their shell morphology. We revise the taxonomy of this group using a comparison of key morphological features and mitochondrial genes COI and 16S, and describe four new species: Sigaloeista gracilis n. sp.; S. cavanbah n. sp.; S. dorrigo n. sp.; and S. ramula n. sp. Sigaloeista is unified by shared morphological characters including a small, glossy, discoidal shell of about 4.5 whorls, a body with a pronounced caudal horn and large, leaf-shaped shell lappets, and a reproductive system with a short vagina, absent epiphallic caecum, flagellum with internal cryptae and spermatophore with accessory spines.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:5D5D7603-06B2-4662-91BB-343E3BB5C4E8  相似文献   

9.
Pleistocene sea-level fluctuations profoundly changed landmass configurations around northern Australia. The cyclic emergence of the Torres Strait land bridge and concomitant shifts in the distribution of shallow-water marine habitats repeatedly sundered east and west coast populations. These biogeographical perturbations invoke three possible scenarios regarding the directions of interglacial range expansion: west to east, east to west, or bidirectional. We evaluated these scenarios for the olive sea snake, Aipysurus laevis, by exploring its genetic structure around northern Australia based on 354 individuals from 14 locations in three regions (Western Australia, WA; Gulf of Carpentaria, GoC; Great Barrier Reef, GBR). A 726-bp fragment of the mitochondrial DNA ND4 region revealed 41 variable sites and 38 haplotypes, with no shared haplotypes among the three regions. Population genetic structure was strong overall, phiST=0.78, P<0.001, and coalescent analyses revealed no migration between regions. Genetic diversity was low in the GBR and GoC and the genetic signatures of these regions indicated range or population expansions consistent with their recent marine transgressions around 7000 years ago. By contrast, genetic diversity on most WA reefs was higher and there were no signals of recent expansion events on these reefs. Phylogenetic analyses indicated that GBR and GoC haplotypes were derived from WA haplotypes; however, statistical parsimony suggested that recent range expansion in the GBR-GoC probably occurred from east coast populations, possibly in the Coral Sea. Levels of contemporary female-mediated gene flow varied within regions and reflected potential connectivity among populations afforded by the different regional habitat types.  相似文献   

10.
Dispersal can play an important role in the genetic structuring of natural populations. In this regard, freshwater fishes often exhibit extensive population genetic subdivision and are ideal subjects for investigating current and historical patterns of connection and dissociation between drainages. We set out to generate a comprehensive molecular phylogeny for a widespread freshwater fish from eastern Australia, the Pacific blue-eye Pseudomugil signifer. Although movement via flood events may be important in the southern end of the species' range, genetic structuring revealed the importance of historical drainage connections and dissociations in mediating or disrupting dispersal. A dominant feature of our phylogeny is a split between northern and southern populations, which appears to be congruent with a biogeographical barrier recently implicated as important for the connectivity of freshwater organisms in eastern Australia. The extent of the split also has taxonomic implications consistent with suggestions that the Pacific blue-eye may represent more than a single species.  相似文献   

11.
Belonesox belizanus Kner (Teleostei: Poeciliidae) is a wide‐spread livebearing species that occurs on the Atlantic Slope of Central America from southern Mexico to northern Costa Rica. Previous work has noted morphological variation within the species, and recognized two subspecies: Belonesox belizanus belizanus and Belonesox belizanus maxillosus. We used 1122 bp of cytochrome b and 617 bp of S7‐1 DNA to conduct a phylogeographical study of Belonesox, aiming to examine the genetic distinctiveness of these taxa and other populations of Belonesox throughout the range. Bayesian phylogenetic and haplotype analyses indicated that B. b. maxillosus is not distinctive from other northern populations of Belonesox. However, a distinct phylogeographical break is evident near the Rio Grande in southern Belize. One clade comprises the putative B. b. maxillosus and all populations sampled north of the Rio Grande. The other clade comprises the Rio Grande and all populations south thereof. Fossil‐calibrated divergence time estimates suggest that isolation of the northern and southern lineages of Belonesox occurred approximately 14.1 Mya. The phylogeographical structure recovered in the present study is interesting, considering that relatively few studies have examined molecular variation across this portion of Middle America in a time‐calibrated framework. Furthermore, the present study suggests that more work is needed to adequately understand the factors that have shaped diversity of this region. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 848–860.  相似文献   

12.
13.
Aim Although climatic fluctuations occurred world‐wide during the Pleistocene, the severity of glacial and drought events – and hence their influence on animal and plant biogeography – differed among regions. Many Holarctic species were forced to warmer‐climate refugia during glacial periods, leaving the genetic signature of recent expansion and gene flow among modern‐day populations. Montane south‐eastern Australia experienced less extreme glaciation, but the effects of drier and colder climatic conditions over this period on biotic distributions, and hence on the present‐day genetic structure of animal and plant populations, are poorly known. Location South‐eastern Australia. Methods The endangered Blue Mountains water skink (Eulamprus leuraensis) is a viviparous lizard known from fewer than 40 isolated small swamps at 560–1060 m elevation in south‐eastern Australia. We conducted molecular phylogenetic, dating and population genetics analyses using the mitochondrial NADH dehydrogenase 4 (ND4) of 224 individuals of E. leuraensis sampled across the species’ distribution. Results Ancient divergences in haplotype groups between lizards from the Blue Mountains and the Newnes Plateau, and strong genetic differences, even between swamps separated by only a few kilometres, suggest that the species has persisted as a series of relatively isolated populations within its current distribution for about a million years. Presumably, habitat patches similar to current‐day swamps persisted throughout glacial–interglacial cycles in this region, allowing the development of high levels of genetic structuring within and among present‐day populations. Main conclusions Our results suggest that less extreme glacial conditions occurred in the Southern Hemisphere compared with the Northern Hemisphere, allowing cold‐adapted species (such as E. leuraensis) to persist in montane areas. However, additional studies are needed before we can assemble a comprehensive view of the impact of Pleistocene climatic variation on the phylogeography of Southern Hemisphere taxa.  相似文献   

14.
The Florida scrub lizard, Sceloporus woodi, is endemic to scrub habitat patches along the central portion of the Florida peninsula and xeric coastal regions. Scrub ecosystems are the patchily distributed remnants of previously widespread habitats formed during the Pleiocene and early Pleistocene. Scrub lizards appear to have limited dispersal capabilities due to high habitat specificity and low mobility. To assess the population structure and phylogeography of S. woodi, 135 samples were collected from 16 patches on five major ridges in Florida, USA. Analysis of 273 bp of mitochondrial DNA (mtDNA) cytochrome b reveals a very strong geographic distribution of genetic diversity. Haplotype frequencies are significantly different in 63 of 66 comparisons between patches. With one exception, samples from the five major ridges are characterized by fixed differences in haplotype distribution and deep evolutionary separations (3-10%). Fixed genetic differences were also observed between northern and southern segments of several ridges. Analysis of molecular variance (AMOVA) shows an estimated 10.4% total genetic variation within patches, 17.5% among patches (within ridges), and 72.1% among ridges. This strong population structure among patches within ridges indicates that the distribution of S. woodi is tightly linked to sandy scrub habitat and that the discontinuous distribution of scrub habitats significantly inhibits dispersal and gene flow. Phylogeographic analyses indicate a pattern of dispersal down the Florida peninsula during the late Pliocene-early Pleistocene, followed by habitat fragmentation and variant isolation events. Therefore, the deep genetic structuring among scrub lizard populations on separate ridges is attributed to ancient isolation events induced by a shift from dry (xeric) to wet (mesic) conditions on the Florida peninsula. These findings indicate that some scrub lizard populations have persisted in isolation for time frames in excess of 1 Myr, providing a case history on the genetic consequences of habitat fragmentation.  相似文献   

15.
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.  相似文献   

16.
Freshwater biodiversity is under ever increasing threat from human activities, and its conservation and management require a sound knowledge of species‐level taxonomy. Cryptic biodiversity is a common feature for aquatic systems, particularly in Australia, where recent genetic assessments suggest that the actual number of freshwater fish species may be considerably higher than currently listed. The freshwater blackfishes (genus Gadopsis) are an iconic group in south‐eastern Australia and, in combination with their broad, naturally divided distribution and biological attributes that might limit dispersal, as well as ongoing taxonomic uncertainty, they comprise an ideal study group for assessing cryptic biodiversity. We used a multigene molecular assessment including both nuclear (51 allozyme loci; two S7 introns) and matrilineal markers (cytb) to assess species boundaries and broad genetic substructure within freshwater blackfishes. Range‐wide examination demonstrates the presence of at least six candidate species across two nominal taxa, Gadopsis marmoratus and Gadopsis bispinosus. Phylogeographical patterns often aligned to purported biogeographical provinces but occasionally reflected more restricted and unexpected relationships. We highlight key issues with taxonomy, conservation, and management for a species group in a highly modified region. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 521–540.  相似文献   

17.
18.
The southern brown bandicoot (Isoodon obesulus) has undergone significant range contractions since European settlement, and it is now considered Endangered throughout south-eastern mainland Australia. This species currently has a highly fragmented distribution inhabiting a mosaic of habitats. This project uses mitochondrial DNA (mtDNA) and microsatellite data to determine levels of genetic diversity, population structure and evolutionary history, which can aid wildlife managers in setting priorities and determining management strategies. Analyses of genetic diversity revealed low levels of mtDNA variability (mean h=50.42%, =0.76%) and divergence (mean dA=0.29%) across all regions investigated, and was among the lowest recorded for marsupials. These data indicate a relatively small female effective population size, which is most likely a consequence of a large-scale population contraction and subsequent expansion occurring in pre-history (mismatch distribution analysis, SSD P-value=0.12). Individuals from the Sydney region experienced significant reductions in microsatellite diversity (A=3.8, HE=0.565), with the Garigal National Park (NP) population exhibiting genetic reduction signatures indicating a recent population bottleneck. Population differentiation analysis revealed significant genetic division amongst I. obesulus individuals from Sydney, East Gippsland and Mt Gambier regions (=0.176–0.271), but could not separate the two Sydney populations (Ku-ring-gai NP and Garigal NP). Based on these data and habitat type, translocations could readily be made between the two Sydney populations, but not between the others. Phylogenetic comparisons between I. obesulus and I. auratus show little support for current Isoodon taxonomy, consistent with the findings of Pope etal. 2001. We therefore recommend the recognition of only three I. obesulus sub-species and suggest that these comprise a single morphologically diverse species that once was widespread across Australia.  相似文献   

19.
Aim Phylogeographic analyses have confirmed high dispersal in many marine taxa but have also revealed many cryptic lineages and species, raising the question of how population and regional genetic diversity arise and persist in dynamic oceanographic settings. Here we explore the geographic evolution of Emerita analoga, an inter‐tidal sandy beach crab with an exceptionally long pelagic larval phase and wide latitudinal, amphitropical, distribution. We test the hypothesis that eastern Pacific E. analoga constitute a single panmictic population and examine the location(s), timing and cause(s) of phylogeographic differentiation. Location Principally the eastern Pacific Ocean. Methods We sequenced cytochrome c oxidase subunit I (COI) from 742 E. analoga specimens collected between 1997 and 2000 and downloaded homologous sequences of congeners from GenBank. We reconstructed a phylogeny for Emerita species using maximum likelihood and Bayesian methods and estimated times to most recent common ancestors (TMRCAs), using a COI divergence rate of 1% Myr?1 and timing of closure of the Central American Seaway. We constructed the COI haplotype network of E. analoga using statistical parsimony, calculated population genetic and spatial structure statistics in Arlequin , and estimated the demographic history of E. analoga using Bayesian skyline analysis. Results Population subdivision and allele frequency differences were insignificant among north‐eastern Pacific locations over 2000 km apart (ΦST = 0.00, P = 0.70), yet two distinct phylogroups were recovered from the north‐eastern and south‐eastern Pacific (ΦCT = 0.87, P < 0.001). Amphitropical differentiation of these temperate clades occurred after TMRCA 1.9 ± 0.02 (mean ± SE) Ma and E. analoga has expanded into its present‐day north‐eastern Pacific range since c. 250 ka. Main conclusions Emerita analoga is not panmictic but is very widely dispersed and approaching genetic homogeneity, i.e. ‘eurymixis’, in the north‐eastern Pacific. North‐eastern and south‐eastern Pacific populations of E. analoga probably became isolated c. 1.5 Ma as the tropical eastern Pacific Ocean warmed and expanded, intensifying barriers to gene flow. The fragmentation of a widespread ancestral species previously connected by long‐distance gene flow (‘soft vicariance’) coincident with changing oceanographic conditions may be a common theme in the evolution of Emerita species and in other highly dispersive taxa. Highly dispersive species may differentiate because of, not despite, the dynamic oceanographic setting.  相似文献   

20.
Aim We analysed the population genetics of the brown hare (Lepus europaeus) in order to test the hypothesis that this species migrated into central Europe from a number of late glacial refugia, including some in Asia Minor. Location Thirty‐three localities in Greece, Bulgaria, Italy, Croatia, Serbia, Poland, Switzerland, Austria, France, Germany, the Netherlands, Spain, the United Kingdom, Turkey and Israel. Methods In total, 926 brown hares were analysed for mitochondrial DNA (mtDNA) variation by restriction fragment length polymorphism (RFLP) performed on polymerase chain reaction‐amplified products spanning cytochrome b (cyt b)/control region (CR), cytochrome oxidase I (COI) and 12S–16S rRNA. In addition, sequence analysis of the mtDNA CR‐I region was performed on 69 individuals, and the data were compared with 137 mtDNA CR‐I sequences retrieved from GenBank. Results The 112 haplotypes detected were partitioned into five phylogeographically well‐defined major haplogroups, namely the ‘south‐eastern European type haplogroup’ (SEEh), ‘Anatolian/Middle Eastern type haplogroup’ (AMh), ‘European type haplogroup, subgroup A’ (EUh‐A), ‘European type haplogroup, subgroup B’ (EUh‐B) and ‘Intermediate haplogroup’ (INTERh). Sequence data retrieved from GenBank were consistent with the haplogroups determined in this study. In Bulgaria and north‐eastern Greece numerous haplotypes of all five haplogroups were present, forming a large overlap zone. Main conclusions The mtDNA results allow us to infer post‐glacial colonization of large parts of Europe from a late glacial/early Holocene source population in the central or south‐central Balkans. The presence of Anatolian/Middle Eastern haplotypes in the large overlap zone in Bulgaria and north‐eastern Greece reveals gene flow from Anatolia to Europe across the late Pleistocene Bosporus land‐bridge. Although various restocking operations could be partly responsible for the presence of unexpected haplotypes in certain areas, we nevertheless trace a strong phylogeographic signal throughout all regions under study. Throughout Europe, mtDNA results indicate that brown hares are not separated into discernable phyletic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号