首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death'' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death'' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.Defining life and death is more problematic than one would guess. In 1838, the work of several scientists including Matthias Jakob Schleiden, Theodor Schwann and Rudolf Carl Virchow culminated in the so-called ‘cell theory'', postulating that: (1) all living organisms are composed of one or more cells; (2) the cell is the basic unit of life; and (3) all cells arise from pre-existing, living cells.1 Only a few decades later (in 1885), Walter Flemming described for the first time some of the morphologic features that have been largely (but often inappropriately) used to define apoptosis throughout the past four decades.2, 3, 4A corollary of the cell theory is that viruses do not constitute bona fide living organisms.5 However, the discovery that the giant Acanthamoeba polyphaga mimivirus can itself be infected by other viral species has casted doubts on this point.6, 7, 8 Thus, the features that underlie the distinction between a living and an inert entity remain a matter of debate. Along similar lines, defining the transition between an organism''s life and death is complex, even when the organism under consideration is the basic unit of life, a cell. From a conceptual standpoint, cell death can obviously be defined as the permanent degeneration of vital cellular functions. Pragmatically speaking, however, the precise boundary between a reversible alteration in homeostasis and an irreversible loss of cellular activities appears to be virtually impossible to identify. To circumvent this issue, the Nomenclature Committee on Cell Death (NCCD) previously proposed three criteria for the identification of dead cells: (1) the permanent loss of the barrier function of the plasma membrane; (2) the breakdown of cells into discrete fragments, which are commonly referred to as apoptotic bodies; or (3) the engulfment of cells by professional phagocytes or other cells endowed with phagocytic activity.9, 10, 11However, the fact that a cell is engulfed by another via phagocytosis does not imply that the cell-containing phagosome fuses with a lysosome and that the phagosomal cargo is degraded by lysosomal hydrolases.12, 13, 14 Indeed, it has been reported that engulfed cells can be released from phagosomes as they preserve their viability, at least under some circumstances.15 Thus, the NCCD recommends here to consider as dead only cells that either exhibit irreversible plasma membrane permeabilization or have undergone complete fragmentation. A compendium of techniques that can be used to quantify these two markers of end-stage cell death in vitro and in vivo goes beyond the scope of this review and can be found in several recent articles.16, 17, 18, 19, 20, 21, 22, 23, 24, 25Importantly, cell death instances can be operationally classified into two broad, mutually exclusive categories: ‘accidental'' and ‘regulated''. Accidental cell death (ACD) is caused by severe insults, including physical (e.g., elevated temperatures or high pressures), chemical (e.g., potent detergents or extreme variations in pH) and mechanical (e.g., shearing) stimuli, is virtually immediate and is insensitive to pharmacologic or genetic interventions of any kind. The NCCD thinks that this reflects the structural disassembly of cells exposed to very harsh physicochemical conditions, which does not involve a specific molecular machinery. Although ACD can occur in vivo, for instance as a result of burns or traumatic injuries, it cannot be prevented or modulated and hence does not constitute a direct target for therapeutic interventions.23, 26, 27, 28 Nonetheless, cells exposed to extreme physicochemical or mechanical insults die while releasing elevated amounts of damage-associated molecular patterns (DAMPs), that is, endogenous molecules with immunomodulatory (and sometimes cytotoxic) activity. Some DAMPs can indeed propagate an unwarranted cytotoxic response (directly or upon the involvement of innate immune effectors) that promotes the demise of local cells surviving the primary insult.16, 19, 29, 30, 31 Intercepting DAMPs or blocking DAMP-ignited signaling pathways may mediate beneficial effects in a wide array of diseases involving accidental (as well as regulated) instances of cell death.19, 32At odds with its accidental counterpart, regulated cell death (RCD) involves a genetically encoded molecular machinery.9, 33 Thus, the course of RCD can be altered by means of pharmacologic and/or genetic interventions targeting the key components of such a machinery. Moreover, RCD often occurs in a relatively delayed manner and is initiated in the context of adaptive responses that (unsuccessfully) attempt to restore cellular homeostasis.34, 35, 36, 37, 38 Depending on the initiating stimulus, such responses can preferentially involve an organelle, such as the reticular unfolded protein response, or operate at a cell-wide level, such as macroautophagy (hereafter referred to as autophagy).39, 40, 41, 42, 43, 44 Thus, while ACD is completely unpreventable, RCD can be modulated (at least to some extent, see below) not only by inhibiting the transduction of lethal signals but also by improving the capacity of cells to mount adaptive responses to stress.45, 46, 47, 48, 49, 50 Importantly, RCD occurs not only as a consequence of microenvironmental perturbations but also in the context of (post-)embryonic development, tissue homeostasis and immune responses.51, 52, 53, 54 Such completely physiologic instances of RCD are generally referred to as ‘programmed cell death'' (PCD) (Figure 1).9, 33Open in a separate windowFigure 1Types of cell death. Cells exposed to extreme physical, chemical or mechanical stimuli succumb in a completely uncontrollable manner, reflecting the immediate loss of structural integrity. We refer to such instances of cellular demise with the term ‘accidental cell death'' (ACD). Alternatively, cell death can be initiated by a genetically encoded machinery. The course of such ‘regulated cell death'' (RCD) variants can be influenced, at least to some extent, by specific pharmacologic or genetic interventions. The term ‘programmed cell death'' (PCD) is used to indicate RCD instances that occur as part of a developmental program or to preserve physiologic adult tissue homeostasisFor the purpose of this discussion, it is useful to keep in mind the distinction that is currently made between the initiation of RCD and its execution. The term execution is generally used to indicate the ensemble of biochemical processes that truly cause the cellular demise. Conversely, initiation is commonly used to refer to the signal transduction events that activate executioner mechanisms. Thus, the activation of caspase-8 (CASP8) in the course of FAS ligand (FASL)-triggered apoptosis is widely considered as an initiator mechanism, whereas the consequent activation of caspase-3 (CASP3) is categorized as an executioner mechanism (see below).51, 55, 56, 57Here, the NCCD formulates a set of recommendations to discriminate between essential and accessory aspects of RCD, that is, between those that etiologically mediate its occurrence and those that change its kinetics or morphologic and biochemical manifestations.  相似文献   

5.
6.
The selective degradation of target proteins with small molecules is a novel approach to the treatment of various diseases, including cancer. We have developed a protein knockdown system with a series of hybrid small compounds that induce the selective degradation of target proteins via the ubiquitin–proteasome pathway. In this study, we designed and synthesized novel small molecules called SNIPER(TACC3)s, which target the spindle regulatory protein transforming acidic coiled-coil-3 (TACC3). SNIPER(TACC3)s induce poly-ubiquitylation and proteasomal degradation of TACC3 and reduce the TACC3 protein level in cells. Mechanistic analysis indicated that the ubiquitin ligase APC/CCDH1 mediates the SNIPER(TACC3)-induced degradation of TACC3. Intriguingly, SNIPER(TACC3) selectively induced cell death in cancer cells expressing a larger amount of TACC3 protein than normal cells. These results suggest that protein knockdown of TACC3 by SNIPER(TACC3) is a potential strategy for treating cancers overexpressing the TACC3 protein.Inhibitors of microtubule polymerization or depolymerization such as Vinca alkaloids and taxanes, respectively, are widely used as anti-cancer drugs. They arrest cancer cells, inducing mitotic catastrophe and cancer cell death. However, these drugs also affect microtubule function in non-dividing cells and have serious side effects, such as peripheral neuropathy, which limit their utility.1 Recently, inhibitors of spindle-regulatory proteins, such as mitotic kinases (Aurora kinases and Polo-like kinases) and a motor protein (Eg5/Ksp) have attracted considerable attention, but they have not been developed clinical use yet.2, 3Transforming acidic coiled-coil-3 (TACC3) is another spindle-regulatory protein.4, 5 During mitosis, TACC3 localizes to the mitotic spindle and has a critical role in spindle assembly, chromosomal function and mitotic progression.6, 7, 8, 9, 10, 11 Studies using microarray and immunohistochemical analysis showed that TACC3 is overexpressed in many human cancers, including ovarian cancer, breast cancer, squamous cell carcinoma and lymphoma.12, 13, 14 Depletion of TACC3 results in chromosome alignment defects, multi-polar spindle formation, mitotic cell death and/or a postmitotic cell cycle arrest.15, 16, 17, 18, 19, 20 Additionally, conditional disruption of TACC3 has been shown to regress thymic lymphomas in p53-deficient mice without inducing any overt abnormalities in normal tissues.21 These findings suggest that TACC3 is a molecular target for anti-cancer drug discovery.The development of a strategy for the selective degradation may be a useful approach to the discovery of novel drugs. Based on the ubiquitin–proteasome system (UPS), we have devised a protein knockdown system for inducing the selective degradation of target proteins by using specifically designed hybrid small compounds.22, 23, 24, 25, 26, 27, 28, 29 These compounds, which we have termed SNIPER (Specific and Non-genetic IAP-dependent Protein ERaser), are composed of two different ligands connected by a linker; one is a ligand for cellular inhibitor of apoptosis protein 1 (cIAP1) and the other a ligand for the target protein. Accordingly, SNIPER is expected to crosslink the ubiquitin–ligase cIAP1 and the target protein in the cells, thereby inducing ubiquitylation and, ultimately, proteasomal degradation of the target protein. To date, we have constructed SNIPERs that target cellular retinoic acid binding protein-II (CRABP-II) and nuclear receptors such as estrogen receptor α (ERα) for degradation.22, 23, 24, 25, 26, 27, 28 In this study, we designed and synthesized novel SNIPERs targeting TACC3, that is, SNIPER(TACC3)s, that induce proteasomal degradation of the TACC3 protein. We also show that cancer cells expressing a large amount of the TACC3 protein readily undergo cell death as the result of SNIPER(TACC3) treatment.  相似文献   

7.
Microtubules are cytoskeletal filaments that are dynamically assembled from α/β-tubulin heterodimers. The primary sequence and structure of the tubulin proteins and, consequently, the properties and architecture of microtubules are highly conserved in eukaryotes. Despite this conservation, tubulin is subject to heterogeneity that is generated in two ways: by the expression of different tubulin isotypes and by posttranslational modifications (PTMs). Identifying the mechanisms that generate and control tubulin heterogeneity and how this heterogeneity affects microtubule function are long-standing goals in the field. Recent work on tubulin PTMs has shed light on how these modifications could contribute to a “tubulin code” that coordinates the complex functions of microtubules in cells.

Introduction

Microtubules are key elements of the eukaryotic cytoskeleton that dynamically assemble from heterodimers of α- and β-tubulin. The structure of microtubules, as well as the protein sequences of α- and β-tubulin, is highly conserved in evolution, and consequently, microtubules look alike in almost all species. Despite the high level of conservation, microtubules adapt to a large variety of cellular functions. This adaptation can be mediated by a large panel of microtubule-associated proteins (MAPs), including molecular motors, as well as by mechanisms that directly modify the microtubules, thus either changing their biophysical properties or attracting subsets of MAPs that convey specific functions to the modified microtubules. Two different mechanism can generate microtubule diversity: the expression of different α- and β-tubulin genes, referred to as tubulin isotypes, and the generation of posttranslational modifications (PTMs) on α- and β-tubulin (Figs. 1 and and2).2). Although known for several decades, deciphering how tubulin heterogeneity controls microtubule functions is still largely unchartered. This review summarizes the current advances in the field and discusses new concepts arising.Open in a separate windowFigure 1.Tubulin heterogeneity generated by PTMs. (A) Schematic representation of the distribution of different PTMs of tubulin on the α/β-tubulin dimer with respect to their position in the microtubule lattice. Acetylation (Ac), phosphorylation (P), and polyamination (Am) are found within the tubulin bodies that assemble into the microtubule lattice, whereas polyglutamylation, polyglycylation, detyrosination, and C-terminal deglutamylation take place within the C-terminal tubulin tails that project away from the lattice surface. The tubulin dimer represents TubA1A and TubB2B (Fig. 2), and modification sites for polyglutamylation and polyglycylation have been randomly chosen. (B) Chemical structure of the branched peptide formed by polyglutamylation and polyglycylation, using the γ-carboxyl groups of the modified glutamate residues as acceptor sites for the isopeptide bonds. Note that in the case of polyglutamylation, the elongation of the side chains generates classical peptide bonds (Redeker et al., 1991).Open in a separate windowFigure 2.Heterogeneity of C-terminal tails of tubulin isotypes and their PTMs. The amino acid sequences of all tubulin genes found in the human genome are indicated, starting at the last amino acid of the folded tubulin bodies. Amino acids are represented in single-letter codes and color coded according to their biochemical properties. Known sites for polyglutamylation are indicated (Eddé et al., 1990; Alexander et al., 1991; Rüdiger et al., 1992). Potential modification sites (all glutamate residues) are indicated. Known C-terminal truncation reactions of α/β-tubulin (tub) are indicated. The C-terminal tails of the yeast Saccharomyces cerevisiae are shown to illustrate the phylogenetic diversity of these domains.

Tubulin isotypes

The cloning of the first tubulin genes in the late 1970’s (Cleveland et al., 1978) revealed the existence of multiple genes coding for α- or β-tubulin (Ludueña and Banerjee, 2008) that generate subtle differences in their amino acid sequences, particularly in the C-terminal tails (Fig. 2). It was assumed that tubulin isotypes, as they were named, assemble into discrete microtubule species that carry out unique functions. This conclusion was reinforced by the observation that some isotypes are specifically expressed in specialized cells and tissues and that isotype expression changes during development (Lewis et al., 1985; Denoulet et al., 1986). These high expectations were mitigated by a subsequent study showing that all tubulin isotypes freely copolymerize into heterogeneous microtubules (Lewis et al., 1987). To date, only highly specialized microtubules, such as ciliary axonemes (Renthal et al., 1993; Raff et al., 2008), neuronal microtubules (Denoulet et al., 1986; Joshi and Cleveland, 1989), and microtubules of the marginal band of platelets (Wang et al., 1986; Schwer et al., 2001) are known to depend on some specific (β) tubulin isotypes, whereas the function of most other microtubules appears to be independent of their isotype composition.More recently, a large number of mutations in single tubulin isotypes have been linked to deleterious neurodevelopmental disorders (Keays et al., 2007; Fallet-Bianco et al., 2008; Tischfield et al., 2010; Cederquist et al., 2012; Niwa et al., 2013). Mutations of a single tubulin isotype could lead to an imbalance in the levels of tubulins as a result of a lack of incorporation of mutant isoforms into the microtubule lattice or to incorporation that perturbs the architecture or dynamics of the microtubules. The analysis of tubulin disease mutations is starting to reveal how subtle alterations of the microtubule cytoskeleton can lead to functional aberrations in cells and organisms and might provide novel insights into the roles of tubulin isotypes that have so far been considered redundant.

Tubulin PTMs

Tubulin is subject to a large range of PTMs (Fig. 1), from well-known ones, such as acetylation or phosphorylation, to others that have so far mostly been found on tubulin. Detyrosination/tyrosination, polyglutamylation, and polyglycylation, for instance, might have evolved to specifically regulate tubulin and microtubule functions, in particular in cilia and flagella, as their evolution is closely linked to these organelles. The strong link between those modifications and tubulin evolution has led to the perception that they are tubulin PTMs; however, apart from detyrosination/tyrosination, most of them have other substrates (Regnard et al., 2000; Xie et al., 2007; van Dijk et al., 2008; Rogowski et al., 2009).

Tubulin acetylation.

Tubulin acetylation was discovered on lysine 40 (K40; Fig. 1 A) of flagellar α-tubulin in Chlamydomonas reinhardtii (L’Hernault and Rosenbaum, 1985) and is generally enriched on stable microtubules in cells. Considering that K40 acetylation per se has no effect on the ultrastructure of microtubules (Howes et al., 2014), it is rather unlikely that it directly stabilizes microtubules. As a result of its localization at the inner face of microtubules (Soppina et al., 2012), K40 acetylation might rather affect the binding of microtubule inner proteins, a poorly characterized family of proteins (Nicastro et al., 2011; Linck et al., 2014). Functional experiments in cells have further suggested that K40 acetylation regulates intracellular transport by regulating the traffic of kinesin motors (Reed et al., 2006; Dompierre et al., 2007). These observations could so far not be confirmed by biophysical measurements in vitro (Walter et al., 2012; Kaul et al., 2014), suggesting that in cells, K40 acetylation might affect intracellular traffic by indirect mechanisms.Enzymes involved in K40 acetylation are HDAC6 (histone deacetylase family member 6; Hubbert et al., 2002) and Sirt2 (sirtuin type 2; North et al., 2003). Initial functional studies used overexpression, depletion, or chemical inhibition of these enzymes. These studies should be discussed with care, as both HDAC6 and Sirt2 deacetylate other substrates and have deacetylase-independent functions and chemical inhibition of HDAC6 is not entirely selective for this enzyme (Valenzuela-Fernández et al., 2008). In contrast, acetyl transferase α-Tat1 (or Mec-17; Akella et al., 2010; Shida et al., 2010) specifically acetylates α-tubulin K40 (Fig. 3), thus providing a more specific tool to investigate the functions of K40 acetylation. Knockout mice of α-Tat1 are completely void of K40-acetylated tubulin; however, they show only slight phenotypic aberrations, for instance, in their sperm flagellum (Kalebic et al., 2013). A more detailed analysis of α-Tat1 knockout mice demonstrated that absence of K40 acetylation leads to reduced contact inhibition in proliferating cells (Aguilar et al., 2014). In migrating cells, α-Tat1 is targeted to microtubules at the leading edge by clathrin-coated pits, resulting in locally restricted acetylation of those microtubules (Montagnac et al., 2013). A recent structural study of α-Tat1 demonstrated that the low catalytic rate of this enzyme, together with its localization inside the microtubules, caused acetylation to accumulate selectively in stable, long-lived microtubules (Szyk et al., 2014), thus explaining the link between this PTM and stable microtubules in cells. However, the direct cellular function of K40 acetylation on microtubules is still unclear.Open in a separate windowFigure 3.Enzymes involved in PTM of tubulin. Schematic representation of known enzymes (mammalian enzymes are shown) involved in the generation and removal of PTMs shown in Fig. 1. Note that some enzymes still remain unknown, and some modifications are irreversible. (*CCP5 preferentially removes branching points [Rogowski et al., 2010]; however, the enzyme can also hydrolyze linear glutamate chains [Berezniuk et al., 2013]).Recent discoveries have brought up the possibility that tubulin could be subject to multiple acetylation events. A whole-acetylome study identified >10 novel sites on α- and β-tubulin (Choudhary et al., 2009); however, none of these sites have been confirmed. Another acetylation event has been described at lysine 252 (K252) of β-tubulin. This modification is catalyzed by the acetyltransferase San (Fig. 3) and might regulate the assembly efficiency of microtubules as a result of its localization at the polymerization interface (Chu et al., 2011).

Tubulin detyrosination.

Most α-tubulin genes in different species encode a C-terminal tyrosine residue (Fig. 2; Valenzuela et al., 1981). This tyrosine can be enzymatically removed (Hallak et al., 1977) and religated (Fig. 3; Arce et al., 1975). Mapping of tyrosinated and detyrosinated microtubules in cells using specific antibodies (Gundersen et al., 1984; Geuens et al., 1986; Cambray-Deakin and Burgoyne, 1987a) revealed that subsets of interphase and mitotic spindle microtubules are detyrosinated (Gundersen and Bulinski, 1986). As detyrosination was mostly found on stable and long-lived microtubules, especially in neurons (Cambray-Deakin and Burgoyne, 1987b; Robson and Burgoyne, 1989; Brown et al., 1993), it was assumed that this modification promotes microtubule stability (Gundersen et al., 1987; Sherwin et al., 1987). Although a direct stabilization of the microtubule lattice was considered unlikely (Khawaja et al., 1988), it was found more recently that detyrosination protects cellular microtubules from the depolymerizing activity of kinesin-13–type motor proteins, such as KIF2 or MCAK, thus increasing their longevity (Peris et al., 2009; Sirajuddin et al., 2014).Besides kinesin-13 motors, plus end–tracking proteins with cytoskeleton-associated protein glycine-rich (CAP-Gly) domains, such as CLIP170 or p150/glued, specifically interact with tyrosinated microtubules (Peris et al., 2006; Bieling et al., 2008) via this domain (Honnappa et al., 2006). In contrast, kinesin-1 moves preferentially on detyrosinated microtubules tracks in cells (Liao and Gundersen, 1998; Kreitzer et al., 1999; Konishi and Setou, 2009). The effect of detyrosination on kinesin-1 motor behavior was recently measured in vitro, and a small but significant increase in the landing rate and processivity of the motor has been found (Kaul et al., 2014). Such subtle changes in the motor behavior could, in conjunction with other factors, such as regulatory MAPs associated with cargo transport complexes (Barlan et al., 2013), lead to a preferential use of detyrosinated microtubules by kinesin-1 in cells.Despite the early biochemical characterization of a detyrosinating activity, the carboxypeptidase catalyzing detyrosination of α-tubulin has yet to be identified (Hallak et al., 1977; Argaraña et al., 1978, 1980). In contrast, the reverse enzyme, tubulin tyrosine ligase (TTL; Fig. 3; Raybin and Flavin, 1975; Deanin and Gordon, 1976; Argaraña et al., 1980), has been purified (Schröder et al., 1985) and cloned (Ersfeld et al., 1993). TTL modifies nonpolymerized tubulin dimers exclusively. This selectivity is determined by the binding interface between the TTL and tubulin dimers (Szyk et al., 2011, 2013; Prota et al., 2013). In contrast, the so far unidentified detyrosinase acts preferentially on polymerized microtubules (Kumar and Flavin, 1981; Arce and Barra, 1983), thus modifying a select population of microtubules within cells (Gundersen et al., 1987).In most organisms, only one unique gene for TTL exists. Consequently, TTL knockout mice show a huge accumulation of detyrosinated and particularly Δ2-tubulin (see next section). TTL knockout mice die before birth (Erck et al., 2005) with major developmental defects in the nervous system that might be related to aberrant neuronal differentiation (Marcos et al., 2009). TTL is strictly tubulin specific (Prota et al., 2013), indicating that all observed defects in TTL knockout mice are directly related to the deregulation of the microtubule cytoskeleton.

Δ2-tubulin and further C-terminal modification.

A biochemical study of brain tubulin revealed that ∼35% of α-tubulin cannot be retyrosinated (Paturle et al., 1989) because of the lack of the penultimate C-terminal glutamate residue of the primary protein sequence (Fig. 2; Paturle-Lafanechère et al., 1991). This so-called Δ2-tubulin (for two C-terminal amino acids missing) cannot undergo retyrosination as a result of structural constraints within TTL (Prota et al., 2013) and thus is considered an irreversible PTM.Δ2-tubulin accumulates in long-lived microtubules of differentiated neurons, axonemes of cilia and flagella, and also in cellular microtubules that have been artificially stabilized, for instance, with taxol (Paturle-Lafanechère et al., 1994). The generation of Δ2-tubulin requires previous detyrosination of α-tubulin; thus, the levels of this PTM are indirectly regulated by the detyrosination/retyrosination cycle. This mechanistic link is particularly apparent in the TTL knockout mice, which show massive accumulation of Δ2-tubulin in all tested tissues (Erck et al., 2005). Loss of TTL and the subsequent increase of Δ2-tubulin levels were also linked to tumor growth and might contribute to the aggressiveness of the tumors by an as-yet-unknown mechanism (Lafanechère et al., 1998; Mialhe et al., 2001). To date, no specific biochemical role of Δ2-tubulin has been determined; thus, one possibility is that the modification simply locks tubulin in the detyrosinated state.The enzymes responsible for Δ2-tubulin generation are members of a family of cytosolic carboxypeptidases (CCPs; Fig. 3; Kalinina et al., 2007; Rodriguez de la Vega et al., 2007), and most of them also remove polyglutamylation from tubulin (see next section; Rogowski et al., 2010). These enzymes are also able to generate Δ3-tubulin (Fig. 1 A; Berezniuk et al., 2012), indicating that further degradation of the tubulin C-terminal tails are possible; however, the functional significance of this event is unknown.

Polyglutamylation.

Polyglutamylation is a PTM that occurs when secondary glutamate side chains are formed on γ-carboxyl groups of glutamate residues in a protein (Fig. 1, A and B). The modification was first discovered on α- and β-tubulin from the brain (Eddé et al., 1990; Alexander et al., 1991; Rüdiger et al., 1992; Mary et al., 1994) as well as on axonemal tubulin from different species (Mary et al., 1996, 1997); however, it is not restricted to tubulin (Regnard et al., 2000; van Dijk et al., 2008). Using a glutamylation-specific antibody, GT335 (Wolff et al., 1992), it was observed that tubulin glutamylation increases during neuronal differentiation (Audebert et al., 1993, 1994) and that axonemes of cilia and flagella (Fouquet et al., 1994), as well as centrioles of mammalian centrosomes (Bobinnec et al., 1998), are extensively glutamylated.Enzymes catalyzing polyglutamylation belong to the TTL-like (TTLL) family (Regnard et al., 2003; Janke et al., 2005). In mammals, nine glutamylases exist, each of them showing intrinsic preferences for modifying either α- or β-tubulin as well as for initiating or elongating glutamate chains (Fig. 3; van Dijk et al., 2007). Two of the six well-characterized TTLL glutamylases also modify nontubulin substrates (van Dijk et al., 2008).Knockout or depletion of glutamylating enzymes in different model organisms revealed an evolutionarily conserved role of glutamylation in cilia and flagella. In motile cilia, glutamylation regulates beating behavior (Janke et al., 2005; Pathak et al., 2007; Ikegami et al., 2010) via the regulation of flagellar dynein motors (Kubo et al., 2010; Suryavanshi et al., 2010). Despite the expression of multiple glutamylases in ciliated cells and tissues, depletion or knockout of single enzymes often lead to ciliary defects, particularly in motile cilia (Ikegami et al., 2010; Vogel et al., 2010; Bosch Grau et al., 2013; Lee et al., 2013), suggesting essential and nonredundant regulatory functions of these enzymes in cilia.Despite the enrichment of polyglutamylation in neuronal microtubules (Audebert et al., 1993, 1994), knockout of TTLL1, the major polyglutamylase in brain (Janke et al., 2005), did not show obvious neuronal defects in mice (Ikegami et al., 2010; Vogel et al., 2010). This suggests a tolerance of neuronal microtubules to variations in polyglutamylation.Deglutamylases, the enzymes that reverse polyglutamylation, were identified within a novel family of CCPs (Kimura et al., 2010; Rogowski et al., 2010). So far, three out of six mammalian CCPs have been shown to cleave C-terminal glutamate residues, thus catalyzing both the reversal of polyglutamylation and the removal of gene-encoded glutamates from the C termini of proteins (Fig. 3). The hydrolysis of gene-encoded glutamate residues is not restricted to tubulin, in which it generates Δ2- and Δ3-tubulin, but has also been reported for other proteins such as myosin light chain kinase (Rusconi et al., 1997; Rogowski et al., 2010). One enzyme of the CCP family, CCP5, preferentially removes branching points generated by glutamylation, thus allowing the complete reversal of the polyglutamylation modification (Kimura et al., 2010; Rogowski et al., 2010). However, CCP5 can also hydrolyze C-terminal glutamate residues from linear peptide chains similar to other members of the CCP family (Berezniuk et al., 2013).CCP1 is mutated in a well-established mouse model for neurodegeneration, the pcd (Purkinje cell degeneration) mouse (Mullen et al., 1976; Greer and Shepherd, 1982; Fernandez-Gonzalez et al., 2002). The absence of a key deglutamylase leads to strong hyperglutamylation in brain regions that undergo degeneration, such as the cerebellum and the olfactory bulb (Rogowski et al., 2010). When glutamylation levels were rebalanced by depletion or knockout of the major brain polyglutamylase TTLL1 (Rogowski et al., 2010; Berezniuk et al., 2012), Purkinje cells survived. Although the molecular mechanisms of hyperglutamylation-induced degeneration remain to be elucidated, perturbation of neuronal transport, as well as changes in the dynamics and stability of microtubules, is expected to be induced by hyperglutamylation. Increased polyglutamylation levels have been shown to affect kinesin-1–mediated transport in cultured neurons (Maas et al., 2009), and the turnover of microtubules can also be regulated by polyglutamylation via the activation of microtubule-severing enzymes such as spastin (Lacroix et al., 2010).Subtle differences in polyglutamylation can be seen on diverse microtubules in different cell types. The functions of these modifications remain to be studied; however, its wide distribution strengthens the idea that it could be involved in fine-tuning a range of microtubule functions.

Polyglycylation.

Tubulin polyglycylation or glycylation, like polyglutamylation, generates side chains of glycine residues within the C-terminal tails of α- and β-tubulin (Fig. 1, A and B). The modification sites of glycylation are considered to be principally the same as for glutamylation, and indeed, both PTMs have been shown to be interdependent in cells (Rogowski et al., 2009; Wloga et al., 2009). Initially discovered on Paramecium tetraurelia tubulin (Redeker et al., 1994), glycylation has been extensively studied using two antibodies, TAP952 and AXO49 (Bressac et al., 1995; Levilliers et al., 1995; Bré et al., 1996). In contrast to polyglutamylation, glycylation is restricted to cilia and flagella in most organisms analyzed so far.Glycylating enzymes are also members of the TTLL family, and homologues of these enzymes have so far been found in all organisms with proven glycylation of ciliary axonemes (Rogowski et al., 2009; Wloga et al., 2009). In mammals, initiating (TTLL3 and TTLL8) and elongating (TTLL10) glycylases work together to generate polyglycylation (Fig. 3). In contrast, the two TTLL3 orthologues from Drosophila melanogaster can both initiate and elongate glycine side chains (Rogowski et al., 2009).In mice, motile ependymal cilia in brain ventricles acquire monoglycylation upon maturation, whereas polyglycylation is observed only after several weeks (Bosch Grau et al., 2013). Sperm flagella, in contrast, acquire long glycine chains much faster, suggesting that the extent of polyglycylation could correlate with the length of the axonemes (Rogowski et al., 2009). Depletion of glycylases in mice (ependymal cilia; Bosch Grau et al., 2013), zebrafish (Wloga et al., 2009; Pathak et al., 2011), Tetrahymena thermophila (Wloga et al., 2009), and D. melanogaster (Rogowski et al., 2009) consistently led to ciliary disassembly or severe ciliary defects. How glycylation regulates microtubule functions remains unknown; however, the observation that glycylation-depleted axonemes disassemble after initial assembly (Rogowski et al., 2009; Bosch Grau et al., 2013) suggests a role of this PTM in stabilizing axonemal microtubules. Strikingly, human TTLL10 is enzymatically inactive; thus, humans have lost the ability to elongate glycine side chains (Rogowski et al., 2009). This suggests that the elongation of the glycine side chains is not an essential aspect of the function of this otherwise critical tubulin PTM.

Other tubulin PTMs.

Several other PTMs have been found on tubulin. Early studies identified tubulin phosphorylation (Eipper, 1974; Gard and Kirschner, 1985; Díaz-Nido et al., 1990); however, no specific functions were found. The perhaps best-studied phosphorylation event on tubulin takes place at serine S172 of β-tubulin (Fig. 1 A), is catalyzed by the Cdk1 (Fig. 3), and might regulate microtubule dynamics during cell division (Fourest-Lieuvin et al., 2006; Caudron et al., 2010). Tubulin can be also modified by the spleen tyrosine kinase Syk (Fig. 3; Peters et al., 1996), which might play a role in immune cells (Faruki et al., 2000; Sulimenko et al., 2006) and cell division (Zyss et al., 2005; Sulimenko et al., 2006).Polyamination has recently been discovered on brain tubulin (Song et al., 2013), after having been overlooked for many years as a result of the low solubility of polyaminated tubulin. Among several glutamine residues of α- and β-tubulin that can be polyaminated, Q15 of β-tubulin is considered the primary modification site (Fig. 1 A). Polyamination is catalyzed by transglutaminases (Fig. 3), which modify free tubulin as well as microtubules in an irreversible manner, and most likely contribute to the stabilization of microtubules (Song et al., 2013).Tubulin was also reported to be palmitoylated (Caron, 1997; Ozols and Caron, 1997; Caron et al., 2001), ubiquitinated (Ren et al., 2003; Huang et al., 2009; Xu et al., 2010), glycosylated (Walgren et al., 2003; Ji et al., 2011), arginylated (Wong et al., 2007), methylated (Xiao et al., 2010), and sumoylated (Rosas-Acosta et al., 2005). These PTMs have mostly been reported without follow-up studies, and some of them are only found in specific cell types or organisms and/or under specific metabolic conditions. Further studies will be necessary to gain insights into their potential roles for the regulation of the microtubule cytoskeleton.

Current advances and future perspectives

The molecular heterogeneity of microtubules, generated by the expression of different tubulin isotypes and by the PTM of tubulin has fascinated the scientific community for ∼40 years. Although many important advances have been made in the past decade, the dissection of the molecular mechanisms and a comprehensive understanding of the biological functions of tubulin isotypes and PTMs will be a challenging field of research in the near future.

Direct measurements of the impact of tubulin heterogeneity.

The most direct and reliable type of experiments to determine the impact of tubulin heterogeneity on microtubule behavior are in vitro measurements with purified proteins. However, most biophysical work on microtubules has been performed with tubulin purified from bovine, ovine, or porcine brains, which can be obtained in large quantities and with a high degree of purity and activity (Vallee, 1986; Castoldi and Popov, 2003). Brain tubulin is a mixture of different tubulin isotypes and is heavily posttranslationally modified and thus inept for investigating the functions of tubulin heterogeneity (Denoulet et al., 1986; Cambray-Deakin and Burgoyne, 1987b; Paturle et al., 1989; Eddé et al., 1990). Thus, pure, recombinant tubulin will be essential to dissect the roles of different tubulin isoforms and PTMs.Attempts to produce recombinant, functional α- and β-tubulin in bacteria have failed so far (Yaffe et al., 1988), most likely because of the absence of the extensive tubulin-specific folding machinery (Yaffe et al., 1992; Gao et al., 1993; Tian et al., 1996; Vainberg et al., 1998) in prokaryotes. An alternative source of tubulin with less isotype heterogeneity and with almost no PTMs is endogenous tubulin from cell lines such as HeLa, which in the past has been purified using a range of biochemical procedures (Bulinski and Borisy, 1979; Weatherbee et al., 1980; Farrell, 1982; Newton et al., 2002; Fourest-Lieuvin, 2006). Such tubulin can be further modified with tubulin-modifying enzymes, such as polyglutamylases, either by expressing those enzymes in the cells before tubulin purification (Lacroix and Janke, 2011) or in vitro with purified enzymes (Vemu et al., 2014). Despite some technical limitations of these methods, HeLa tubulin modified in cells has been successfully used in an in vitro study on the role of polyglutamylation in microtubule severing (Lacroix et al., 2010).Naturally occurring variants of tubulin isotypes and PTMs can be purified from different organisms, organs, or cell types, but obviously, only some combinations of tubulin isotypes and PTMs can be obtained by this approach. The recent development of an affinity purification method using the microtubule-binding TOG (tumor overexpressed gene) domain of yeast Stu2p has brought a new twist to this approach, as it allows purifying small amounts of tubulin from any cell type or tissue (Widlund et al., 2012).The absence of tubulin heterogeneity in yeast has made budding and fission yeast potential expression systems for recombinant, PTM-free tubulin (Katsuki et al., 2009; Drummond et al., 2011; Johnson et al., 2011). However, the expression of mammalian tubulin in this system has remained impossible. This problem was then partially circumvented by expressing tubulin chimeras that consist of a yeast tubulin body fused to mammalian C-terminal tubulin tails, thus mimicking different tubulin isotypes (Sirajuddin et al., 2014). Moreover, detyrosination can be generated by deleting the key C-terminal residue from endogenous or chimeric α-tubulin (Badin-Larçon et al., 2004), and polyglutamylation is generated by chemically coupling glutamate side chains to specifically engineered tubulin chimeras (Sirajuddin et al., 2014). These approaches allowed the first direct measurements of the impact of tubulin isotypes and PTMs on the behavior of molecular motors in vitro (Sirajuddin et al., 2014) and the analysis of the effects of tubulin heterogeneity on microtubule behavior and interactions inside the yeast cell (Badin-Larçon et al., 2004; Aiken et al., 2014).Currently, the most promising development has been the successful purification of fully functional recombinant tubulin from the baculovirus expression system (Minoura et al., 2013). Using this system, defined α/β-tubulin dimers can be obtained using two different epitope tags on α- and β-tubulin, respectively. Although these epitope tags are essential for separating recombinant from the endogenous tubulin, they could also affect tubulin assembly or microtubule–MAP interactions. Thus, future developments should focus on eliminating these tags.Current efforts have brought the possibility of producing recombinant tubulin into reach. Further improvement and standardization of these methods will certainly provide a breakthrough in understanding the mechanisms by which tubulin heterogeneity contributes to microtubule functions.

Complexity of tubulin—understanding the regulatory principles.

The diversity of tubulin genes (isotypes) and the complexity of tubulin PTMs have led to the proposal of the term “tubulin code” (Verhey and Gaertig, 2007; Wehenkel and Janke, 2014), in analogy to the previously coined histone code (Jenuwein and Allis, 2001). Tubulin molecules consist of a highly structured and thus evolutionarily conserved tubulin body and the unstructured and less conserved C-terminal tails (Nogales et al., 1998). As PTMs and sequence variations within the tubulin body are expected to affect the conserved tubulin fold and therefore the properties of the microtubule lattice, they are not likely to be involved in generating the tubulin code. In contrast, modulations of the C-terminal tails could encode signals on the microtubule surface without perturbing basic microtubule functions and properties (Figs. 1 A and and4).4). Indeed, the highest degree of gene-encoded diversity (Fig. 2) and the highest density and complexity of PTMs (Fig. 1) are found within these tail domains.Open in a separate windowFigure 4.Molecular components of the tubulin code. Schematic representation of potential coding elements that could generate specific signals for the tubulin code. (A) The length of the C-terminal tails of different tubulin isotypes differ significantly (Fig. 2) and could have an impact on the interactions between microtubules and MAPs. (B) Tubulin C-terminal tails are rich in charged amino acid residues. The distribution of these residues and local densities of charges could influence the electrostatic interactions with the tails and the readers. (C) Although each glutamate residue within the C-terminal tails could be considered a potential modification site, only some sites have been found highly occupied in tubulin purifications from native sources. This indicates selectivity of the modification reactions, which can participate in the generation of specific modification patterns (see D). Modification sites might be distinguished by their neighboring amino acid residues, which could create specific modification epitopes. (D) As a result of the large number of modification sites and the variability of side chains, a large variety of modification patterns could be generated within a single C-terminal tail of tubulin. (E) Modification patterns as shown in D can be distinct between α- and β-tubulin. These modification patterns could be differentially distributed at the surface of the microtubule lattice, thus generating a higher-order patterning. Tub, tubulin. For color coding, see Fig. 2.Considering the number of tubulin isotypes plus all potential combinations of PTMs (e.g., each glutamate residue within the C-terminal tubulin tail could be modified by either polyglutamylation or polyglycylation, each of them generating side chains of different lengths; Fig. 4), the number of distinct signals generated by the potential tubulin code would be huge. However, as many of these potential signals represent chemical structures that are similar and might not be reliably distinguished by readout mechanisms, it is possible that the tubulin code generates probabilistic signals. In this scenario, biochemically similar modifications would have similar functional readouts, and marginal differences between those signals would only bias biological processes but not determine them. This stands in contrast to the concept of the histone code, in which precise patterns of different PTMs on the histone proteins encode distinct biological signals.The concept of probabilistic signaling is already inscribed in the machinery that generates the tubulin code. Polyglutamylases and polyglycylases from the TTLL family have preferential activities for either α- or β-tubulin and for generating different lengths of the branched glutamate or glycine chains. Although under conditions of low enzyme concentrations, as found in most cells and tissues, the enzymes seem to selectively generate their preferential type of PTM, higher enzyme concentrations induce a more promiscuous behavior, leading, for instance, to a loss of selectivity for α- or β-tubulin (van Dijk et al., 2007). Similarly, the modifying enzymes might prefer certain modification sites within the C-terminal tails of tubulin but might be equally able to modify other sites, which could be locally regulated in cells. For example, β-tubulin isotypes isolated from mammalian brain were initially found to be glutamylated on single residues (Alexander et al., 1991; Rüdiger et al., 1992), which in the light of the comparably low sensitivity of mass spectrometry at the time might rather indicate a preferential than a unique modification of these sites. Nevertheless, the neuron-specific polyglutamylase for β-tubulin TTLL7 (Ikegami et al., 2006) can incorporate glutamate onto many more modification sites of β-tubulin in vitro (Mukai et al., 2009), which clearly indicates that not all of the possible modification events take place under physiological conditions.Several examples supporting a probabilistic signaling mode of the tubulin code are found in the recent literature. In T. thermophila, a ciliate without tubulin isotype diversity (Gaertig et al., 1993) but with a huge repertoire of tubulin PTMs and tubulin-modifying enzymes (Janke et al., 2005), tubulin can be easily mutagenized to experimentally eliminate sites for PTMs. Mutagenesis of the most commonly occupied glutamylation/glycylation sites within the β-tubulin tails did not generate a clear decrease of glycylation levels nor did it cause obvious phenotypic alterations. This indicates that the modifying enzymes can deviate toward alternative modification sites and that similar PTMs on different sites can compensate the functions of the mutated site. However, when all of the key modification sites were mutated, glycylation became prominently decreased, which led to severe phenotypes, including lethality (Xia et al., 2000). Most strikingly, these phenotypes could be recovered by replacing the C-terminal tail of α-tubulin with the nonmutated β-tubulin tail. This α–β-tubulin chimera became overglycylated and functionally compensated for the absence of modification sites on β-tubulin. The conclusion of this study is that PTM- and isotype-generated signals can fulfill a biological function within a certain range of tolerance.But how efficient is such compensation? The answer can be found in a variety of already described deletion mutants for tubulin-modifying enzymes in different model organisms. Most single-gene knockouts for TTLL genes (glutamylases or glycylases) did not result in prominent phenotypic alterations in mice, even for enzymes that are ubiquitously expressed. Only some highly specialized microtubule structures show functional aberrations upon the deletion of a single enzyme. These “tips of the iceberg” are usually the motile cilia and sperm flagella, which carry very high levels of polyglutamylation and polyglycylation (Bré et al., 1996; Kann et al., 1998; Rogowski et al., 2009). It thus appears that some microtubules are essentially dependent on the generation of specific PTM patterns, whereas others can tolerate changes and appear to function normally. How “normal” these functions are remains to be investigated in future studies. It is possible that defects are subtle and thus overlooked but could become functionally important under specific conditions.A tubulin code also requires readout mechanisms. The most likely “readers” of the tubulin code are MAPs and molecular motors. Considering the probabilistic signaling hypothesis, the expected effects of the signals would be in most cases rather gradual changes, for instance, to fine-tune molecular motor traffic and/or to bias motors toward defined microtubule tracks but not to obliterate motor activity or MAP binding to microtubules. An in vitro study using recombinant tubulin chimeras purified from yeast confirmed this notion (Sirajuddin et al., 2014). By analyzing which elements of the tubulin code can regulate the velocity and processivity of the molecular motors kinesin and dynein, these researchers found that the C-terminal tails of α- and β-tubulin differentially influence the kinetic parameters of the tested motors; however, the modulation was rather modest. One of their striking observations was that a single lysine residue, present in the C-terminal tails of two β-tubulin isotypes (Figs. 2 and and4),4), significantly affected motor traffic and that this effect can be counterbalanced by polyglutamylation. These observations are the first in vitro evidence for the interdependence of different elements of the tubulin code and provide another indication for its probabilistic mode of signaling.

Future directions.

One of the greatest technological challenges to understanding the function of the tubulin code is to detect and interpret subtle and complex regulatory events generated by this code. It will thus be instrumental to further develop tools to better distinguish graded changes in PTM levels on microtubules in cells and tissues (Magiera and Janke, 2013) and to reliably measure subtle modulations of microtubule behavior in reconstituted systems.The current advances in the field and especially the availability of whole-organism models, as well as first insights into the pathological role of tubulin mutations (Tischfield et al., 2011), are about to transform our way of thinking about the regulation of microtubule cytoskeleton. Tubulin heterogeneity generates complex probabilistic signals that cannot be clearly attributed to single biological functions in most cases and that are not essential for most cellular processes. Nevertheless, it has been conserved throughout evolution of eukaryotes and can hardly be dismissed as not important. To understand the functional implications of these processes, we might be forced to reconsider how we define biologically important events and how we measure events that might encode probabilistic signals. The answers to these questions could provide novel insights into how complex systems, such as cells and organisms, are sustained throughout difficult and challenging life cycles, resist to environmental stress and diseases, and have the flexibility needed to succeed in evolution.  相似文献   

8.
The concept that target tissues determine the survival of neurons has inspired much of the thinking on neuronal development in vertebrates, not least because it is supported by decades of research on nerve growth factor (NGF) in the peripheral nervous system (PNS). Recent discoveries now help to understand why only some developing neurons selectively depend on NGF. They also indicate that the survival of most neurons in the central nervous system (CNS) is not simply regulated by single growth factors like in the PNS. Additionally, components of the cell death machinery have begun to be recognized as regulators of selective axonal degeneration and synaptic function, thus playing a critical role in wiring up the nervous system.

Why do so many neurons die during development?

Programmed cell death occurs throughout life, as cell turnover is part of homeostasis and maintenance in most organs and tissues. The situation in the nervous system is principally different, as the vast majority of neurons undergo their last round of cell division early in development. Soon after exiting the cell cycle, neurons start elongating axons to innervate their targets. It is during this period that they are highly susceptible to undergo programmed cell death: a large percentage, as much as 50% in several ganglia in the peripheral nervous system (PNS) as well as in various central nervous system (CNS) areas, is eliminated around the time that connections are being made with other cells. Later in development, the propensity of neurons to initiate apoptosis progressively decreases. The likelihood for a neuron to undergo apoptosis seems to be determined by a tightly regulated apoptotic machinery (summarized in Fig. 1). Therefore, modulation of the expression levels or the activity of components of this apoptotic balance changes the sensitivity to death-promoting cues, allowing temporal restriction of cell death.Open in a separate windowFigure 1.Core components of the apoptotic machinery. The likelihood that a neuron undergoes apoptosis is determined by the interplay of the tightly interlinked apoptotic machinery, many components of which are highly conserved between species. The critical, and often terminal, step in programmed cell death is the proteolytic activation of the executor caspases (such as caspase 3, 6, 7) by the initiator caspases (i.e., caspase 8, 9, and 10; Riedl and Salvesen, 2007). In mammalian cells, initiation of the executor caspases is regulated by two distinct protein cascades: the intrinsic pathway, also known as the mitochondrial pathway, and the extrinsic pathway. The intrinsic pathway integrates a number of intra- and extracellular signal modalities, such as redox state (for example, the reactive oxygen species; Franklin, 2011), DNA damage (Sperka et al., 2012), ER stress (Puthalakath et al., 2007) and growth factor deprivation (Deckwerth et al., 1998; Putcha et al., 2003; Bredesen et al., 2005), or activation of the p75NTR neurotrophin receptor by pro-neurotrophins (Nykjaer et al., 2005). The stressors converge onto pro- and anti-apoptotic members of the Bcl-2 protein family (for example: BCL-2, BCL-Xl, BAX, and tBID; Youle and Strasser, 2008). These proteins regulate the release of cytochrome c from mitochondria, which activates the initiator caspase 9 through Apaf1 (Riedl and Salvesen, 2007). The extrinsic pathway links activation of ligand-bound death receptors (such as Fas/CD95 and TNFR) to the initiator caspase 8 and 10, through formation of the death-inducing signaling complex (DISC; LeBlanc and Ashkenazi, 2003; Peter and Krammer, 2003). Together with additional regulatory elements (including the Inhibitors of apoptosis proteins [IAP]; Vaux and Silke, 2005) and cFLIP (Scaffidi et al., 1999; Wang et al., 2005), the apoptotic machinery forms a balance that determines the propensity of the neuron to undergo apoptosis.Programmed cell death eliminates many neurons during development, even in organisms comprised of only few cells, such as Caenorhabditis elegans. As neurons and their targets are initially separated, it is possible that the initial generation of an overabundance of neurons is simply part of a mechanism to ensure that distal targets are adequately innervated (Oppenheim, 1991; Conradt, 2009; Chen et al., 2013). In various tissues other than the nervous system, programmed cell death is used to eliminate cells that are no longer needed, defective, or harmful to the function of the organism. However, there is strong evidence that the elimination of superfluous neurons in the developing nervous system is not essential. For example, early work in C. elegans revealed that preventing programmed cell death does not result in significant behavioral alterations (Ellis and Horvitz, 1986). In the C57BL/6 mouse strain, deletion of the executor caspases 3 and 7 (Fig. 1) has a remarkably limited neuropathological and morphological impact in the CNS (Leonard et al., 2002; Lakhani et al., 2006) compared with the 129X1/SvJ strain, in which deletion of these caspases causes neurodevelopmental defects (Leonard et al., 2002). Similar conclusions were reached by blocking the Bcl-2–associated X protein (BAX)–dependent pathway in many neuronal populations, including motoneurons (Buss et al., 2006a). A recent study in the developing retina showed that in mice lacking the central apoptotic regulator BAX, the normal mosaic distribution of intrinsically photosensitive retinal ganglion cells (ipRGCs) was perturbed (Chen et al., 2013). Although this abnormal distribution is dispensable for the intrinsic photosensitivity of the ipRGCs, it is required for establishing proper connections to other neurons in the retina, which is necessary for rod/cone photo-entrainment (Chen et al., 2013). Even though this finding highlights a physiological role for programmed cell death in the CNS, the functional consequences remain rather underwhelming in the face of a process that eliminates such large numbers of neurons (Purves and Lichtman, 1984; Oppenheim, 1991; Miller, 1995; Gohlke et al., 2004). It thus appears that apoptotic removal of the surplus neurons generated during development mainly serves the purpose to optimize the size of the nervous system to be minimal, but sufficient.

A molecular substrate for the neurotrophic theory

Quantitatively, programmed cell death of neurons in the PNS and CNS is most dramatic when neurons start contacting the cells they innervate. Because experimental manipulations such as target excision typically lead to the death of essentially all innervating neurons (Oppenheim, 1991), the concept emerged that the fate of developing neurons is regulated by their targets. This notion is often referred to as the “neurotrophic theory” (Hamburger et al., 1981; Purves and Lichtman, 1984; Oppenheim, 1991), but it is important to realize that it evolved in the absence of direct mechanistic or molecular support (Purves, 1988). Originally described as a diffusible agent promoting nerve growth, the eponymous NGF later provided a strong and very appealing molecular foundation for this theory (Korsching and Thoenen, 1983; Edwards et al., 1989; Hamburger, 1992). The tyrosine kinase receptor tropomyosin receptor kinase A (TrkA), which was initially identified as an oncogene (Martin-Zanca et al., 1986), was fortuitously discovered to be the critical receptor necessary for the prevention of neuronal cell death by NGF (Klein et al., 1991). Both the remarkable expression pattern of TrkA in NGF-dependent neurons and the onset of its expression during development (Martin-Zanca et al., 1990) provided further additional support for the neurotrophic theory. However, for a surprisingly long time, the question was not asked as to why only specific populations of neurons strictly depend on NGF for survival, while others do not. Indeed, it was only recently shown that TrkA causes cell death of neurons by virtue of its mere expression, and that this death-inducing activity is prevented by addition of NGF (Nikoletopoulou et al., 2010). These findings thus indicate that TrkA acts as a “dependence receptor,” a concept introduced after observations that various cell types die when receptors are expressed in the absence of their cognate ligands (Bredesen et al., 2005; Tauszig-Delamasure et al., 2007). Accordingly, embryonic mouse sympathetic or sensory neurons survive in the absence of NGF when TrkA is deleted (Nikoletopoulou et al., 2010). The closely related neurotrophin receptor TrkC also acts as a dependence receptor (Tauszig-Delamasure et al., 2007; Nikoletopoulou et al., 2010). Here, it is interesting to note a series of older, convergent results indicating that deletion of neurotrophin-3 (NT3), the TrkC ligand, leads to a significantly larger loss of sensory and sympathetic neurons in the PNS than the deletion of TrkC (Tessarollo et al., 1997). This phenotypic discrepancy fits well with the idea that inactivation of the ligand of a dependence receptor is expected to yield a more profound phenotype than inactivation of the receptor itself (Tauszig-Delamasure et al., 2007). How TrkA and TrkC induce apoptosis remains to be fully elucidated. It seems that proteolysis is involved, either of TrkC itself (Tauszig-Delamasure et al., 2007), as was suggested for other dependence receptors (Bredesen et al., 2005), or by the proteolysis of the neurotrophin receptor p75NTR, which associates with both TrkA and TrkC (Fig. 2; Nikoletopoulou et al., 2010). Surprisingly, although TrkA and TrkC cause cell death, the structurally related TrkB receptor does not (Nikoletopoulou et al., 2010), a difference that appears to be accounted for by their differential localization in the cell membrane. TrkA and TrkC colocalize with p75NTR in lipid rafts, whereas TrkB, which also associates with p75NTR (Bibel et al., 1999), is excluded from lipid rafts (Fig. 2; unpublished data). Interestingly, the transmembrane domains of TrkA and TrkC are closely related, and differ clearly from that of TrkB. It turns out that a chimeric protein of TrkB with the transmembrane domain of TrkA causes cell death, which can be prevented by the addition of the TrkB ligand brain-derived neurotrophic factor (BDNF; unpublished data). The suggestion that the lipid raft localization of TrkA and TrkC is important for their death-inducing function is in line with a number of reports indicating that certain apoptotic proteins preferentially localize in lipid rafts in the plasma membrane. After activation of the extrinsic apoptosis pathway, translocation of the activated receptors to lipid rafts in the membrane is required for assembling the death-inducing signaling complex (DISC; Davis et al., 2007; Song et al., 2007). Indeed, regulators of the extrinsic pathway (e.g., cFLIP; Fig. 1) prevent this translocation, explaining how they attenuate cell death induction (Song et al., 2007). Similarly, the localization of the dependence receptor DCC (deleted in colorectal cancer) in lipid rafts is a prerequisite for its pro-apoptotic activity in absence of its ligand, Netrin-1 (Furne et al., 2006).Open in a separate windowFigure 2.TrkA and TrkC as dependence receptors: mode of action and contrast with TrkB. All Trk receptors associate with the pan-neurotrophin receptor p75NTR (Bibel et al., 1999). A critical step in the induction of apoptosis by TrkA is the release of the intracellular death domain of p75NTR by the protease γ-secretase (Nikoletopoulou et al., 2010), which is localized in lipid rafts (Urano et al., 2005). Our membrane fractionation studies indicate that while TrkA and TrkC associate with p75NTR in lipid rafts, TrkB associated with p75NTR is excluded from this membrane domain (unpublished data). The 24–amino acid transmembrane domain of the Trk receptors may be responsible for this differential localization (see text).Despite the fact that TrkB does not act as a dependence receptor, its activation by BDNF is required for the survival of several populations of cranial sensory neurons (Ernfors et al., 1995; Liu et al., 1995). It appears that other death-inducing receptors predispose these neurons to be eliminated, such as p75NTR, which is expressed at high levels in some of these ganglia, or TrkC in vestibular neurons (Stenqvist et al., 2005). This latter case is of special interest, as NT3 is known not to be required for the survival of these neurons (Stenqvist et al., 2005). In addition to inducing apoptosis in the absence of their ligand, TrkA and TrkC have long been recognized to have a pro-survival function similar to TrkB, as can be inferred from the loss of specific populations of peripheral sensory neurons in mutants lacking these receptors (Klein et al., 1994; Smeyne et al., 1994).

Cell death in the CNS

Although TrkA is primarily expressed in peripheral sympathetic and sensory neurons, it is also found in a small population of cholinergic neurons in the basal forebrain (Sobreviela et al., 1994), a proportion of which requires NGF for survival (Hartikka and Hefti, 1988; Crowley et al., 1994; Müller et al., 2012). Selective deletion of TrkA was recently shown not to cause the death of these neurons (Sanchez-Ortiz et al., 2012). This supports the notion that TrkA acts as a dependence receptor for this small population of CNS neurons, like for peripheral sensory and sympathetic neurons. TrkA activation by NGF is essential for the maturation, projections, and function of these neurons (Sanchez-Ortiz et al., 2012), as was previously described for sensory neurons in the PNS as well (Patel et al., 2000).Whether or not receptors other than TrkA act as dependence receptors in the CNS is an important open question, particularly because TrkB, which is expressed highly by most CNS neurons, does not act as a dependence receptor (Nikoletopoulou et al., 2010). In retrospect, the structural similarities between TrkA and TrkB, just like those between NGF and BDNF (Barde, 1989), have substantially misled the field by suggesting that BDNF would act in the CNS like NGF in the PNS. Adding to the confusion were early findings showing that BDNF supports the growth of spinal cord motoneurons in vitro or in vivo after axotomy (Oppenheim et al., 1992; Sendtner et al., 1992; Yan et al., 1992). However, in the absence of lesion, deletion of BDNF does not lead to significant losses of neurons in the developing or adult CNS (Ernfors et al., 1994a; Jones et al., 1994; Rauskolb et al., 2010), unlike the case in some populations of PNS neurons. The poor correlation of the role of BDNF in CNS development and in axotomy and in vitro experiments is surprising, especially because the role of NGF in vivo could in essence be recapitulated by in vitro experiments. Although the reasons for this discrepancy are not fully understood, the strong up-regulation of death-inducing molecules such as p75NTR after axotomy (Ernfors et al., 1989) may be a part of the explanation. At present, most of the growth factors promoting the survival of PNS neurons fail to show significant survival properties for developing neurons in the CNS, as for example was shown for NT3 (Ernfors et al., 1994b; Fariñas et al., 1994), glial cell line–derived neurotrophic factor (GDNF; Henderson et al., 1994), ciliary neurotrophic factor (CNTF; DeChiara et al., 1995), and several others.In the developing CNS, neuronal activity and neurotransmitter input seem to play a more significant role than single growth factors in regulating neuronal survival. In particular, it has been known for a long time that blocking synaptic transmission at the neuromuscular junction has a pro-survival effect on spinal cord motoneurons (Pittman and Oppenheim, 1978; Oppenheim et al., 2008). By contrast, surgical denervation of afferent connections leads to increased apoptosis of postsynaptic neurons (Okado and Oppenheim, 1984), whereas inhibiting glycinergic and GABAergic synaptic transmission has both pro- and anti-apoptotic effects on motoneurons (Banks et al., 2005). Throughout the developing brain, blocking glutamate-mediated synaptic transmission involving NMDA receptors markedly increases normally occurring neuronal death (Ikonomidou et al., 1999; Heck et al., 2008). The mechanism involves a reduction of neuronal expression of anti-apoptotic proteins, such as B-cell lymphoma 2 (BCL-2; Hansen et al., 2004). Conversely, a limited increase in neuronal activity leads to down-regulation of the pro-apoptotic genes BAX and caspase 9 (Léveillé et al., 2010), thereby reducing the propensity of these cells to initiate programmed cell death (Hardingham et al., 2002). In addition to directly modulating the expression of apoptotic proteins, neuronal activity affects the expression of several secreted growth factors, such as BDNF (Hardingham et al., 2002; Hansen et al., 2004) and GDNF (Léveillé et al., 2010). So, even though BDNF is not a major survival factor in the developing CNS, it appears to be critical for activity-dependent neuroprotection (Tremblay et al., 1999). A recent publication revealed that certain populations of neurons in the CNS do not follow the predictions of the neurotrophic theory and showed that apoptosis of cortical inhibitory neurons is independent of cues present in the developing cerebral cortex (Southwell et al., 2012). This study indicates that programmed cell death of a large proportion of interneurons in the CNS is regulated by intrinsic mechanisms that are largely resistant to the presence or absence of extrinsic cues (Dekkers and Barde, 2013).Taken together, even though the extent of naturally occurring cell death in the different regions of the CNS is not nearly as well characterized as in the PNS, let alone quantified, it appears that its regulation may significantly differ. Although single secreted neurotrophic factors seem to be largely dispensable for survival, neuronal activity and other intrinsic mechanisms drive the propensity of the neurons in the CNS to undergo apoptosis. An important open question in this context is a possible involvement of non-neuronal cells, such as glial cells (see Corty and Freeman, in this issue).

The apoptotic machinery as a regulator of connectivity

Activation of the executor caspases has been most studied in cell bodies and typically results in the demise of the entire cell (Williams et al., 2006). However, recent evidence shows that caspases are also activated locally in neuronal processes and branches destined to be eliminated, for example in axons overshooting their targets that are subsequently pruned back to establish the precise adult connectivity (Finn et al., 2000; Raff et al., 2002; Luo and O’Leary, 2005; Buss et al., 2006b). Initially, axonal degeneration and axon pruning were thought to be independent of caspases (Finn et al., 2000; Raff et al., 2002). Later work in Drosophila melanogaster (Kuo et al., 2006; Williams et al., 2006) and in mammalian neurons (Plachta et al., 2007; Nikolaev et al., 2009; Vohra et al., 2010) demonstrated that interfering with the apoptotic balance or the executor caspases can prevent or at least delay axonal degeneration. Simon et al. (2012) have found that a caspase 9 to caspase 3 cascade is crucial for axonal degeneration induced by NGF withdrawal, with caspase 6 activation playing a significant but subsidiary role. Upstream of the caspases, BCL-2 family members such as BAX and BCL-Xl are required (Nikolaev et al., 2009; Vohra et al., 2010). It is conceivable that the failure of ipRGCs in BAX-deficient mice to form appropriate connections to other cells in the retina (Chen et al., 2013) may be in part attributable to defective axonal degeneration. Surprisingly, Apaf1 appears not to be involved in this process (Cusack et al., 2013), suggesting that axon degeneration depends on the concerted activation of the intrinsic initiator complex in a different way from apoptosis.Strikingly, a series of recent studies showed that several caspases and components of the intrinsic pathway also affect normal synaptic physiology in adulthood (Fig. 3, A–D). Here, pro-apoptotic proteins are predominantly involved in weakening the synapses, whereas the anti-apoptotic proteins have been mainly associated with synaptic strengthening (Fig. 3 B). In particular, caspase 3 promotes long-term depression (LTD), a stimulation paradigm that results in a period of decreased synaptic transmission (Li et al., 2010), and also prevents long-term potentiation (LTP), the converse situation leading to strengthened synaptic transmission (Jo et al., 2011). Likewise, the proapoptotic BCL-2 family members BAX and BAD stimulate LTD (Jiao and Li, 2011). By contrast, the anti-apoptotic protein BCL-Xl increases synapse numbers and strength (H. Li et al., 2008), and the inhibitor of apoptosis protein (IAP) family member survivin was reported to be involved in LTP in the hippocampus (Iscru et al., 2013) and in activity-dependent gene regulation (O’Riordan et al., 2008).Open in a separate windowFigure 3.Canonical and noncanonical functions of the apoptotic machinery. (A) The apoptotic machinery is not only involved in eliminating cells destined to die, but is also a central player in refining neuronal connectivity, by regulating synaptic transmission and by generating the adult connectivity through axon pruning (Luo and O’Leary, 2005; Hyman and Yuan, 2012). But how the canonical and noncanonical roles of the apoptotic machinery are interlinked and spatially restricted is not well understood. (B) In the adult nervous system, the pro-apoptotic proteins BAX, caspase 9, and caspase 3 promote weakening of synapses (long-term depression [LTD]; Li et al., 2010; Jiao and Li, 2011; Jo et al., 2011), while the anti-apoptotic proteins Bcl-Xl and the IAP survivin promote synaptic strengthening (long-term potentiation [LTP]; Li et al., 2008a; Iscru et al., 2013). It is unclear how the activation of these pathways is restricted to a single synapse, but a recent review suggested that the proteasomal degradation of activated caspases may prevent their diffusion (Hyman and Yuan, 2012). (C) Caspase activation is now known to be required for axon pruning during development to generate the adult refined connectivity (Luo and O’Leary, 2005; Simon et al., 2012). Different pathways are activated depending on the stimulus leading to degeneration. Growth factor deprivation during development leads to activation the executor caspases 3 and 6 (Simon et al., 2012) through the intrinsic apoptotic pathway, although its core protein Apaf1 does not seem to be required for this process (Cusack et al., 2013). On the other hand, a traumatic injury leads to reduced influx of NMNAT2 into the axon, which negatively affects the stability and function of mitochondria and leads to an increased calcium concentration (Wang et al., 2012). The effector caspase, caspase 6, is dispensable for this form of axonal degeneration (Vohra et al., 2010; Simon et al., 2012). Regulatory proteins such as the IAPs and also the proteasome seem to play a role in limiting the extent of activation to the degenerating part of the axon (Wang et al., 2012; Cusack et al., 2013; Unsain et al., 2013). (D) Simplified schematic of the main pro- and anti-apoptotic components. DISC, death-induced signaling complex. IAP, inhibitor of apoptosis protein. See Fig. 1 for details.These findings indicate that the apoptotic machinery acts at different levels in the cell, ranging from driving sub-lethal degradation of a compartment (Fig. 3 C) and attenuating synaptic transmission at the neuronal network level (Fig. 3 B) to destroying the entire cell during development or in disease (Fig. 3 D). How the cell spatially restricts the extent of activation of the apoptotic machinery is yet unclear. For example, elimination of the somata of developing neurons after neurotrophin deprivation is preceded by axonal degeneration, but not all instances of axonal degeneration lead to the death of the neuron (Campenot, 1977; Raff et al., 2002). Local regulation of caspase activation by IAPs is well established as a means for ensuring the elimination of neuronal processes in D. melanogaster (Kuo et al., 2006; Williams et al., 2006). Recent findings suggest a similar role for IAP in mammalian neurons, where it limits caspase activation to the degenerating axon (Fig. 3 C; Cusack et al., 2013; Unsain et al., 2013). The spontaneous mutation Wallerian degeneration slow (WldS; Lunn et al., 1989) has been instrumental to understand that trauma-induced axon degeneration is a regulated process different from, and independent of, cell body degeneration (Wang et al., 2012), but also distinct from axon pruning (Hoopfer et al., 2006). Work on the chimeric protein encoded by the WldS mutation also led to the identification of the protein NMNAT2 (nicotinamide mononucleotide adenylyltransferase 2) as a labile axon survival factor (Gilley and Coleman, 2010). How the WldS chimeric protein and NMNAT2 result in axon protection is unclear, but several lines of evidence seem to converge on local regulation of mitochondrial function and motility (Avery et al., 2012; Fang et al., 2012).Related to the spatial limiting of apoptotic activity is the question of how a local source of neurotrophins leads to the rescue of a developing peripheral neuron. When neurons encounter a source of neurotrophins, only the receptors close to the target will be activated, whereas the others, located further away, are not. The cell, therefore, needs to integrate a pro-survival signal from the activated receptors, and death-inducing signals from the nonactivated dependence receptors. The continued signaling of activated neurotrophin receptors that are retrogradely transported to the soma (Grimes et al., 1996; Howe et al., 2001; Wu et al., 2001; Harrington et al., 2011) likely play a role in counteracting the pro-apoptotic signaling proximal to the source of neurotrophins. It will be interesting to investigate whether similar mechanisms play a role in axon pruning and traumatic axon degeneration as well.

Programmed cell death in the adult brain

Most of the nervous system becomes post-mitotic early in development. In rodents, two brain areas retain the capacity to generate new neurons in the adult: the sub-ventricular zone, which generates neurons that migrate toward the olfactory bulb, and the sub-granular zone of the dentate gyrus of the hippocampus, where neurons are generated that integrate locally. Similar to what is observed during embryonic development, these adult-generated neurons are produced in excess, and a large fraction undergoes apoptosis when contacting its designated targets (Petreanu and Alvarez-Buylla, 2002; Kempermann et al., 2003; Ninkovic et al., 2007). Preventing apoptosis of adult-generated neurons in the olfactory bulb only has limited functional consequences (Kim et al., 2007), whereas a similar maneuver in the dentate gyrus does lead to impaired performance in memory tasks (Kim et al., 2009). Why superfluous hippocampal neurons would need to be eliminated for proper function is a matter of speculation, but may be linked with the fact that these are excitatory projection neurons, whereas in the olfactory bulb only axon-less inhibitory granule cells are integrated. The extent of survival in both these areas critically depends on the activity of the neuronal network in which these newly born neurons have to integrate (Petreanu and Alvarez-Buylla, 2002; Kempermann et al., 2006; Ninkovic et al., 2007). In this context, BDNF, the expression level of which is well known to be regulated by network activity, supports the survival of young adult–generated neurons and possibly even stimulates the proliferation of neural progenitors (Y. Li et al., 2008; Waterhouse et al., 2012). Interestingly, in young adult mouse mutants that exhibit spontaneous epileptic seizures, significantly higher levels of BDNF have been measured (Lavebratt et al., 2006; Heyden et al., 2011). Concomitantly, the entire hippocampal formation is considerably enlarged by as much as 40% (Lavebratt et al., 2006; Angenstein et al., 2007), which in turn is dependent on the epileptic seizures (Lavebratt et al., 2006). Whether or not there is a causal relationship between increased BDNF levels and hippocampal volume remains to be established.

Conclusion

Now that is has become clear that action of the apoptotic machinery can be limited spatially and temporally, several questions need to be addressed: how do neurons integrate intrinsic and extrinsic pro- and anti-apoptotic signals; and how they are spatially restricted to allow degradation of a dendrite or axon, or modulation of synaptic transmission? Another important issue is the regulation of cell death by intrinsic mechanisms in the central nervous system of vertebrates, not least because programmed cell death is observed in the CNS in a number of neurodegenerative diseases (Vila and Przedborski, 2003). Indeed, several of the central apoptotic components discussed here are also involved in these disorders (Hyman and Yuan, 2012). New insights in the regulation of programmed cell death in the developing nervous system may therefore continue to help to better understand the pathophysiological mechanisms of neurodegenerative disorders.  相似文献   

9.
A segmental tibial defect model in a large animal can provide a basis for testing materials and techniques for use in nonunions and severe trauma. This study reports the rationale behind establishing such a model and its design and conclusions. After ethics approval of the study, aged ewes (older than 5 y; n = 12) were enrolled. A 5-cm mid diaphyseal osteoperiosteal defect was made in the left tibia and was stabilized by using an 8-mm stainless-steel cross-locked intramedullary nail. Sheep were euthanized at 12 wk after surgery and evaluated by using radiography, microCT, and soft-tissue histology techniques. Radiology confirmed a lack of hard tissue callus bridging across the defect. Volumetric analysis based on microCT showed bone growth across the 16.5-cm3 defect of 1.82 ± 0.94 cm3. Histologic sections of the bridging tissues revealed callus originating from both the periosteal and endosteal surfaces, with fibrous tissue completing the bridging in all instances. Immunohistochemistry was used to evaluate the quality of the healing response. Clinical, radiographic, and histologic union was not achieved by 12 wk. This model may be effective for the investigation of surgical techniques and healing adjuncts for nonunion cases, where severe traumatic injury has led to significant bone loss.Abbreviations: BMP2, bone morphogenic protein 2; CATK, cathepsin K; VEGF, vascular endothelial growth factorThe human tibia is the most frequently broken long bone, often with significant bone loss.4 Segmental tibial defects can occur as a result of large tumor removal, trauma such as motor vehicle accidents, and more recently, blast injuries as seen with the escalating number of global conflicts. Treatment of these large bone and surrounding soft tissue defects is an ongoing, costly, and challenging clinical problem; no surgical technique has currently achieved preeminence.4 The general consensus on factors that affect healing include concomitant disease, age, and degree of trauma.5 When the first 2 factors, which are patient-related, are removed from the equation, healing is influenced by the size, anatomic location, and soft-tissue coverage of the defect. The ability to study these situations in a well-controlled, robust, and reproducible preclinical model would be advantageous to help establish effective surgical techniques and evaluate implants and materials.A literature review revealed that many ovine models for bone defects have been used, but all have limitations6,12,14,15,20,21,24,25,27,31,37,39,40 (Figure 1). Variations in protocols, such as age of the animals, size of the defect, and the bone and stabilization techniques used, limit meaningful comparison between studies.33,34 Although some studies have investigated material performance in the healing of defects, they did not rigorously quantify control defects,17,20 and others used no controls at all.39 There is often no explanation regarding the use of a particular defect size, leading to the question of whether the defect size was critical.24 The choice of bone used has been also varied; the femur,15 tibia,37 and metatarsus40 have all been studied. A noncritical-size defect implies that healing would eventually occur without the presence of any graft materials. One study,12 for example, used a 3-cm defect at an average of 1.8 times the diameter of the tibias in question and found that empty controls achieved as much as 26% of the stiffness of an intact tibia after 12 wk. Stabilization methods include plating,21,40 external fixtures,20 intramedullary nails,6,16 and a combination of intramedullary nails and plating.37Open in a separate windowFigure 1.A limited summary of the many studies where a segmental tibial has been used with their references.The criteria used in the present study for a critical-size segmental tibial defect model were based on the following factors. The ovine tibia closely resembles that of the human tibia in terms of size, shape, and physical properties and is commonly used when studying human orthopedic diseases.26,34 Intramedullary nailing has become the most commonly used method of tibial fracture fixation in human orthopedic surgery.8,22 An 8-mm intramedullary nail is commonly used in the treatment of human fractures, further confirming the size similarity between the ovine and human tibiae.19The aim of this study was to establish and characterize a preclinical ovine 5-cm osteoperiosteal critical-size tibial segmental defect model in mature sheep. The endpoints included those commonly used clinically, such as radiography and microCT. Histology to investigate the degree of healing and immunohistochemistry to characterize the healing process were included to complete the evaluation process.  相似文献   

10.
11.
12.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

13.
14.
Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation.Chemical synapses are highly specialized, asymmetric intercellular junction structures that are the basic units of neuronal communication. Proper development of synapses determines appropriate connectivity for the assembly of functional neuronal circuits. Synaptic circuits arise during development through a series of intricate steps (Waites et al., 2005; McAllister, 2007; Jin and Garner, 2008). First, spatiotemporal cues guide axons through complex cellular environments to contact their appropriate postsynaptic targets. At their destination, synapse formation is specified and initiated through adhesive interactions between synaptic partner cells or by local diffusible signaling molecules. Stabilization of intercellular contacts and assembly into functional synapses involves cytoskeletal rearrangements, aggregation, and insertion of pre- and postsynaptic components at nascent synaptic sites. Maturation and modulation of these newly formed synapses can then occur by altering the organization or composition of synaptic proteins and post-translational modifications to achieve its required physiological responsiveness (Budnik, 1996; Lee and Sheng, 2000). Conversely, retraction of contacts and elimination of inappropriate synaptic proteins help to refine the neuronal circuitry (Goda and Davis, 2003; Sanes and Yamagata, 2009).Over the last decade, new insights have furthered our understanding of synapse development through the identification of new molecular players and by advanced imaging technology that has allowed for high-resolution inspection of the dynamics and relative positions of synaptic proteins. This review will highlight recent results on the development of presynaptic specializations, and the roles of trans-synaptic organizers, intracellular synaptic proteins, and the cytoskeleton during the formation and maintenance of synapses.

Axonal transport of synaptic vesicle and active zone proteins

After cell fate determination and morphogenesis, neurons continue to differentiate by entering the phase of synapse formation. Most synaptic material required for this process is synthesized in the cell body of neurons and transported to synapses by microtubule (MT)-based molecular motors (Fig. 1). MTs are intrinsically polarized filaments with a plus and a minus end (Fig. 1 B). MT-based molecular motors use this polarity to transport cargoes to specific cellular locations. Examination of MTs by electron microscopy in dissociated cultured neurons showed that the organizations of MTs is different in axon and dendrite (Baas et al., 1988, 2006). In axons, all microtubules have their minus ends oriented toward the cell body and their plus ends extend distally. On the contrary, the MT polarity in dendrites is mixed. Recent studies tracking the movement of end-binding MT-capping proteins confirmed these results in vivo. Specifically, axonal MTs are uniformly organized with their plus ends pointing distally in all organisms. Dendrites of vertebrate neurons show more plus end–out MTs in vivo, whereas flies and worms have more minus end–out MTs in dendrites (Stepanova et al., 2003; Rolls et al., 2007; Stone et al., 2008).Open in a separate windowFigure 1.Regulatory steps during polarized motor-based transport of synaptic material. (A) At the Golgi apparatus, synaptic proteins have to be sorted into appropriate vesicles. These vesicles and other cargo such as mitochondria get loaded onto specific motor proteins. (B) Establishment of proper microtubule polarity along the axon determines anterograde and retrograde trafficking by plus end– and minus end–directed motor proteins such as kinesins and dynein. (C) At the appropriate destination, motor-cargo unloading occurs in a regulated fashion to achieve the appropriate distribution of synaptic boutons. At synapses, synaptic vesicle precursors give rise to mature synaptic vesicles. Proteins required for the SV cycle and trans-synaptic adhesion coalesce into the active zone (AZ) underneath the plasma membrane juxtaposed against the postsynaptic membrane.Does the difference in microtubule organization and polarity help to segregate synaptic cargoes between axons and dendrites? Recent studies have started to identify some molecules that create these differences in MT polarity in different neuronal subcellular compartments and show how disruption of their function affects synapse formation. For example, a recent paper showed that kinesin-1 is required to establish the predominantly minus end–out organization in the dendrites of Caenorhabditis elegans motor neurons (Yan et al., 2013). In kinesin-1/unc-116 mutants, dendrites adopt the axon-like MT polarity causing presynaptic cargoes to mislocalize into dendrites (Seeger and Rice, 2010; Yan et al., 2013). Similarly, loss of the MT-binding CRMP protein UNC-33 or the actin–spectrin adaptor protein ankyrin/UNC-44 in worms also results in MT polarity defects, which also results in ectopic localization of synaptic vesicles and active zone proteins into dendrites (Maniar et al., 2012). These results support the idea that MT polarity ensures the faithful targeting of presynaptic components to the axon. However, another way motors can distinguish between axons and dendrites is through MT-associated proteins (MAPs). In a recent study, Banker and colleagues showed that plus end–orienting kinesins can differentiate axon and dendrite, likely due to specific MT-binding proteins in these compartments (Huang and Banker, 2012).The direct regulation of motor activity by MTs or synaptic vesicle–associated proteins is likely to contribute to the trafficking of synaptic cargoes. Doublecortin, a MAP, binds to kinesin-3/KIF1A to affect the trafficking of the synaptic vesicle protein, synaptobrevin, in hippocampal neurons by altering the affinity of ADP-bound KIF1A to MTs (Liu et al., 2012). The Rab3 guanine nucleotide exchange factor, DENN/MADD, functions as an adaptor between kinesin-3 and GTP-Rab3–containing synaptic vesicles to promote the trafficking of synaptic vesicles in the axon (Niwa et al., 2008).Precise regulation of motor-based transport ensures that synaptic cargoes are delivered to and maintained at synapses. Several recent studies have provided evidence that two postmitotic cyclin-dependent kinases are important regulators of anterograde and retrograde trafficking of presynaptic cargoes. The kinase CDK-5 is required in many aspects of nervous system function. In the context of presynaptic development and function, CDK-5 has been shown to regulate the transport of synaptic vesicles and dense core vesicles, which contain neuropeptides, by inhibiting a dynein-mediated pathway that mobilizes presynaptic components to the somatodendritic compartments in C. elegans neurons (Ou et al., 2010; Goodwin et al., 2012). A paralogue of CDK-5, the PCT-1 kinase acts in a partially redundant pathway to prevent the mislocalization of presynaptic material to dendrites. In animals lacking both kinases or their activators, synaptic cargoes completely mislocalize to the dendrites, leaving an “empty” axon (Ou et al., 2010). Vertebrate CDK-5 also plays profound roles in the regulation of synaptic vesicle pools by modifying Ca2+ channels. Genetic ablation or pharmacological inhibition of CDK-5 increases the pool of synaptic vesicles that are docked at the active zone, termed the readily releasable pool, and potentiates synaptic function (Kim and Ryan, 2010, 2013). These results suggest that CDK-5 and its paralogue control local and global vesicle pools. Regulation of the exchange between these pools can affect membrane trafficking at presynaptic terminals as well as the overall polarity of neurons.To form synapses at defined locations, cargoes not only need to know how to “get on” the transport system but also need to know where to precisely “get off” at their destination (Fig. 1 C). Loss of a conserved small G-protein of the Arf-like family, ARL-8, in C. elegans, resulted in premature exit of synaptic cargoes during transport and showed ectopic aggregations of synaptic vesicles in the proximal axon. This causes a reduction in the number but an increase in the size of synapses (Klassen et al., 2010). ARL-8 localizes to both stable and trafficking synaptic vesicles and promotes trafficking by increasing kinesin-3 activity and suppressing aggregation-induced stoppage of synaptic cargoes along the axon (Wu et al., 2013). Hence, the balance between motor activity and aggregation propensity of trafficking cargoes may determine the number, size, and location of presynaptic terminals. Interestingly, the small GTPase Rab3, which normally associates with synaptic vesicles, has recently been shown to affect the distribution of active zone proteins at fly neuromuscular junction (NMJ) synapses, further suggesting that the trafficking of synaptic vesicles and formation of active zones are linked (Graf et al., 2009).Besides synaptic material, another major organelle cargo that is often present at the presynaptic terminal is mitochondria. The Milton–Miro complex functions as an adaptor between kinesin-1 and mitochondria to support axonal transport of mitochondria. Interestingly, the coupling of the Milton–Miro complex to kinesin is regulated by Ca2+ (Macaskill et al., 2009; Wang and Schwarz, 2009), providing a mechanism for neuronal activity controlling transport of mitochondria along the axon.Previous studies have suggested that components of the presynaptic active zone are transported in a preassembled form by Piccolo-Bassoon transport vesicles (PTVs) that may contain multiple components required to build a synapse (Zhai et al., 2001; Shapira et al., 2003). Recent studies found that Golgi-derived PTVs contain many active zone proteins including Piccolo, Bassoon, RIM1α, and ELKS2/CAST, but lack another active zone component, Munc-13, which may exit the Golgi on separate vesicles (Maas et al., 2012). Packing of various active zone components that have the propensity to self-assemble into separate vesicles may contribute a way to control synaptogenesis. This is interesting in light of the finding that Munc-13 can function as a protein scaffold for Bassoon and ELKS2 (Wang et al., 2009). The link between trafficking of synaptic vesicle and active zone components is not well understood. In vivo time-lapse imaging of synaptic vesicle and active zone trafficking showed that these components, possibly in the form of dense core vesicles, could be trafficked together in C. elegans neurons, suggestive of prepackaged presynaptic material during transport (Wu et al., 2013). Taken together, axonal transport of synaptic components is a necessary step for synapse formation and maintenance. The regulation of MTs, molecular motors, and synaptic cargoes ensure the targeting of appropriate proteins to synapses.

Role of the actin cytoskeleton in presynaptic assembly

Although MT-mediated transport is critical for long-range trafficking, actin-based mechanisms often organize local protein complexes in subcellular domains. A large body of work has described the role of the actin cytoskeleton in postsynaptic structure and function (Schubert and Dotti, 2007; Hotulainen and Hoogenraad, 2010). We will focus on more recent work that has highlighted the importance of the actin cytoskeleton in presynaptic formation.F-actin is required for presynaptic assembly during the early stages of synaptogenesis. Depolymerization of F-actin in young hippocampal neuronal cultures results in a reduction in the size and number of synapses. This effect was not seen with older cultures when synapses are more mature (Zhang and Benson, 2001). This observation correlates with an increase in both pre- and postsynaptic F-actin levels in newly formed synapses compared with mature synapses (Zhang and Benson, 2002).F-actin has been implicated in many steps of synapse assembly and function (Fig. 2; Cingolani and Goda, 2008). One of the roles that has been proposed for F-actin is to act as a scaffold for other presynaptic proteins (Sankaranarayanan et al., 2003). A recent study identified an F-actin–binding active zone molecule Neurabin/NAB-1 that is recruited by a presynaptic F-actin network (Chia et al., 2012). In addition, knockdown of Rac/Cdc42 GTPase exchange factor β-Pix resulted in a decrease in actin at synapses with a concomitant loss of synaptic vesicle clustering (Sun and Bamji, 2011). These studies demonstrate that F-actin at presynaptic sites can recruit and stabilize presynaptic components.Open in a separate windowFigure 2.Assembling the presynaptic active zone. Scaffolding proteins including Liprin, SYD-1, ELKS, Neurabin, Piccolo, and Bassoon form the dense protein network in the presynaptic cytomatrix that facilitates synaptic vesicle docking and fusion. The presynaptic F-actin networks are required for presynaptic assembly and maintenance.Studies of Drosophila NMJs have found that the presynaptic spectrin–actin cytoskeleton is important for synapse stability. Loss of presynaptic spectrin led to retraction of synapses (Pielage et al., 2005). Intriguingly, loss of postsynaptic spectrin increased the total number of the active zone specializations, termed T-bars, and affected the size and distribution of presynaptic sites. Thus, the spectrin cytoskeleton can impose a trans-synaptic influence on synapse development (Pielage et al., 2006).Given the importance of F-actin at synapses, it is crucial to understand the signaling pathways that instruct F-actin organization. Multiple studies have shown that signaling from synaptic cell adhesion molecules can lead to cytoskeletal rearrangements at synapses. Adhesion of hippocampal neurons to syndecan-2–coated beads is sufficient to induce F-actin clustering and downstream formation of presynaptic boutons (Lucido et al., 2009). In mice, the adhesion molecule L1CAM may bind to spectrin–actin adaptor ankyrin to mediate GABAergic synapse formation (Guan and Maness, 2010). Another adhesion molecule of the immunoglobulin superfamily SYG-1 in C. elegans has also been shown to be necessary and sufficient to recruit F-actin to synapses (Chia et al., 2012). In a recent study, secreted bone morphogenetic protein (BMP) can signal in a retrograde fashion to regulate Rac-GEF Trio expression in presynaptic neurons, which is important for controlling synaptic growth (Ball et al., 2010).Interestingly, presynaptic active zone proteins can also affect F-actin assembly (Fig. 2). Knockdown of Piccolo reduced activity-dependent assembly of F-actin at synapses and enhanced dispersion of Synapsin1a and synaptic vesicles in hippocampal neurons. Loss of Piccolo also resulted in a loss of Profilin 2, a regulator of actin polymerization (Waites et al., 2011).Various studies have begun to shed light on the actin regulators required for synaptic F-actin establishment and maintenance. Diaphanous, a formin-related gene that associates with barbed ends of F-actin, was found to function downstream of presynaptic receptor Dlar at fly NMJs. Spectrin–actin capping protein, Adducin, is enriched at presynaptic sites and is required to prevent synapse retraction and elimination (Bednarek and Caroni, 2011; Pielage et al., 2011). Activators of the Arp2/3 complex, WASP and WAVE, have also been implicated in the regulation of F-actin at synapses (Coyle et al., 2004; Stavoe et al., 2012; Zhao et al., 2013). This diversity of F-actin modulators suggests that there are probably different F-actin structures at different stages of development or even in subcellular domains within the synapse. This is supported by observations that F-actin can localize with synaptic vesicles, at the active zone and in the perisynaptic region (Bloom et al., 2003; Sankaranarayanan et al., 2003; Waites et al., 2011; Chia et al., 2012). Thus, much remains to be done in our understanding how distinct F-actin structures are formed and regulated to mediate various processes during synapse assembly and maintenance.

Assembly of the molecular network at presynaptic terminals

Although F-actin might help to initiate the presynaptic assembly process, many other ensuing molecular interactions are required to form the mature presynaptic apparatus (Fig. 2). The presynaptic active zone is comprised of a framework of scaffolding proteins that function as protein-binding hubs for other presynaptic components. Piccolo and Bassoon are important vertebrate multidomain proteins that traditionally have been widely used as active zone markers. Recent electrophysiology data on Piccolo mutant and Bassoon knockdown neurons showed that these molecules are dispensable for synaptic transmission but affect synaptic vesicle clustering (Mukherjee et al., 2010). Furthermore, Piccolo and Bassoon were found to be required for maintaining synapse integrity by regulating ubiquitination and degradation of presynaptic components (Waites et al., 2013).Forward genetic approaches in worms and flies have made important contributions to our understanding of the presynaptic cytomatrix. Studies have found that two active zone scaffolding molecules, SYD-1 and Liprin-α/SYD-2, are required for proper synapse formation (Zhen and Jin, 1999; Patel et al., 2006; Astigarraga et al., 2010; Owald et al., 2010; Stigloher et al., 2011). Interestingly, at fly NMJs, SYD-1 is necessary for clustering presynaptic neurexin that in turn clusters postsynaptic neuroligin (Owald et al., 2012). The presynaptic assembly function of SYD-1 and SYD-2 appears to be conserved because mutation analysis of mammalian SYD-1 and knockdown of Liprin-α both caused defects in presynaptic development and function (Spangler et al., 2013; Wentzel et al., 2013). In flies, the active zone T-bar structure is comprised of ERC/CAST family protein bruchpilot (brp) as the major active zone organizing protein (Fouquet et al., 2009). Brp is not only present at the active zone but also plays important scaffolding roles in localizing Ca2+ channels. In C. elegans, the Brp homologue ELKS-1 is also localized to the active zone; however, the importance of ELKS-1 during development of synapses was only revealed in sensitized genetic backgrounds (Dai et al., 2006; Patel and Shen, 2009), suggesting that there are likely redundant molecular pathways for presynaptic assembly. In the vertebrate system, loss of one of the three ELKS genes, surprisingly, caused an increase in the inhibitory synaptic transmission (Kaeser et al., 2009). Besides Brp, Rab3-interacting molecule (RIM) binding protein (RBP) was found to be important for active zone structural integrity in flies. Using super-resolution microscopy, RBP was found to surround Ca2+ channels at T-bars and loss of RBP resulted in defective Ca2+ channel clustering and reduced evoked neurotransmitter release (Liu et al., 2011).Assembly of the presynaptic active zone is subjected to several layers of regulation. The assembly process is balanced by inhibitory mechanisms that control the number and size of synapses. Loss of the E3 ubiquitin ligase Highwire/RPM-1 results in an increased number of synaptic boutons in flies and multiple active zones in worms (Wan et al., 2000; Zhen et al., 2000). Working together with F-box protein FSN-1, RPM-1 down-regulates the DLK MAP kinase signaling pathway (Liao et al., 2004; Nakata et al., 2005; Yan et al., 2009). Another E3 ubiquitin ligase, the SKP complex, has been shown to eliminate transient synapses during development in worms (Ding et al., 2007). Therefore, ubiquitin-mediated mechanisms play important roles in controlling the presynaptic assembly program.Other inhibitory mechanisms include SRPK79D, a serine–arginine protein kinase discovered in flies that represses T-bar formation (Johnson et al., 2009). In the mutant, the T-bar component Brp is ectopically accumulated in the axonal shaft. Regulator of synaptogenesis, RSY-1, limits the extent of presynaptic assembly by directly binding to active zone scaffold molecule Liprin-α/SYD-2 and SYD-1 (Patel and Shen, 2009). In addition, Liprin-α/SYD-2 may inhibit its own activity via intramolecular interactions (Taru and Jin, 2011; Chia et al., 2013).Taken together, the presynaptic assembly process driven by scaffolding molecules is controlled by complex inhibitory mechanisms to achieve the appropriate extent of aggregation in the process of synapse formation.

Trans-synaptic signals orchestrate pre- and postsynaptic formation

Coordinated pre- and postsynaptic development requires the precise apposition of presynaptic components to postsynaptic specializations. It is conceivable that signals from pre and postsynaptic sides functioning across the synaptic cleft coordinate synaptic differentiation reciprocally. Although a vast assortment of factors have been identified as synaptic organizers, the fact that genetic ablation of some synaptic organizers in vivo fails to elicit dramatic synaptic defects suggests the incomplete view of the trans-synaptic signaling. Moreover, the underlying mechanisms and the cross talk of these signaling pathways are still unclear. In recent years, an emerging body of literature has begun to shed light on trans-synaptic signaling and the importance of environmental cues in synapse formation.

Adhesion proteins instruct synaptic differentiation

A large body of literature suggests that trans-synaptic interactions between synaptic adhesion molecules function bi-directionally for synapse formation and maturation (Fig. 3). Neurexin–neuroligin is the first pair to be shown to induce pre- and postsynapse formation (Scheiffele et al., 2000; Graf et al., 2004; Chih et al., 2005; Nam and Chen, 2005; Chubykin et al., 2007). Recent in vitro studies have unveiled more components interacting with neurexin or neuroligin in specific synaptic differentiation events (Fig. 3, B and C). In early developmental stages, a secreted synaptic organizer, thrombospondin 1 (TSP1, see next section) increases the speed of synaptogenesis through neuroligin 1 (Xu et al., 2010). At excitatory synapses, a retrograde signaling controls synaptic vesicle clustering, neurotransmitter release, and presynaptic maturation by cooperation of neuroligin and N-cadherin (Wittenmayer et al., 2009; Stan et al., 2010; Aiga et al., 2011). A leucine-rich repeat transmembrane (LRRTM) protein family was also identified as an organizer of the function of excitatory synapses through interactions with neurexin (Linhoff et al., 2009). Further studies showed that binding of LRRTMs and neuroligins to neurexin acts redundantly to maintain excitatory synapses by preventing activity and Ca2+-dependent synapse elimination during early development, while performing divergent functions upon synapse maturation (de Wit et al., 2009; Ko et al., 2009, 2011; Soler-Llavina et al., 2011).Open in a separate windowFigure 3.Adhesive trans-synaptic signalings orchestrate excitatory and inhibitory synaptic assembly. Multiple pairs of trans-synaptic adhesion molecules organize synaptic differentiation and function on both pre- and postsynaptic sites. Note that different adhesion molecules are used at excitatory and inhibitory synapses. LPH1, latrophilin 1; α-DG, α-dystroglycan; β-DG, β-dystroglycan; S-SCAM, synaptic scaffolding molecule; Lasso, LPH1-associated synaptic surface organizer; IL-1RAcp, interleukin-1 receptor accessory protein.The function of neurexin and neuroligin in mediating synaptic differentiation has also been shown at Drosophila NMJs and mammalian CNS. In mammalian, although neither compound knockout of three neurexins nor two individual neuroligin knockout mice display severe defects in the number or morphology of synapses (Missler et al., 2003), the deletion of either neurexin or neuroligin affects the neurotransmitter release and in turn impairs the relevant behavior (Zhang et al., 2005; Blundell et al., 2009, 2010; Etherton et al., 2009; Jedlicka et al., 2011). Neurexin loss of function in fly leads to reduced number and defective morphology of synaptic boutons and active zones from early developmental stages (Li et al., 2007; Chen et al., 2010). In contrast, deletion of either neuroligin 1 or 2 causes NMJ defects and alternations of active zones only in the larval stage, indicating that they function mainly in the expansion of NMJs during development (Banovic et al., 2010; Sun et al., 2011). These abnormalities further impair synaptic transmission at the NMJs (Li et al., 2007; Banovic et al., 2010; Chen et al., 2010; Sun et al., 2011). Moreover, these phenotypes are enhanced when the Teneurin family of adhesion molecules is deleted, suggestive of functional redundancy between adhesion molecules (Mosca et al., 2012). Recently, it has been reported that an active zone protein, SYD-1, is required for the formation and function of the neurexin–neuroligin complex in flies (Fig. 2; Owald et al., 2012), providing an example of how trans-synaptic neurexin–neuroligin signaling orchestrates synaptic assembly bi-directionally. Interestingly, at postsynaptic sites, the NMDA receptor activity-triggered Ca2+-dependent cleavage of neuroligin 1 was found to destabilize presynaptic neurexin, reduce presynaptic release probability, and depress synaptic transmission (Peixoto et al., 2012). This observation raises a possibility that neurexin and neuroligin could fine-tune synaptogenesis both positively and negatively.Although Drosophila neuroligin and neurexin mutants share many phenotypes in synaptic differentiation, there are some unique features for each mutant, suggesting that they play distinct roles. For example, some aspects of synaptic specificity are achieved by different pairs of neurexin–neuroligin interactions. Neuroligin 1 promotes the growth and differentiation of excitatory synapses by binding to PSD-95, whose amount balances the ratio of excitatory-to-inhibitory synaptic specializations (Prange et al., 2004; Banovic et al., 2010). Neuroligin 2, on the contrary, binds to a scaffold protein gephyrin at inhibitory synapses, instructing inhibitory postsynaptic assembly (Fig. 3, B and C; Poulopoulos et al., 2009). Different isoforms of neurexin also contribute to the differentiation of excitatory and inhibitory synapses (Fig. 3, B and C; Chih et al., 2006; Graf et al., 2006; Kang et al., 2008).Other novel trans-synaptic interactions have also been identified to organize synaptic differentiation (Fig. 3, B and C). For example, Netrin-G ligand 3 (NGL-3), localized at postsynaptic region, induces excitatory synaptic differentiation by interacting with the receptor tyrosine phosphatase LAR family proteins, including PTPδ and PTPσ (Woo et al., 2009; Kwon et al., 2010). PTPδ can also trans-interact with Slitrk3 and IL-1 receptor accessory protein (IL-1RAcP) to promote presynaptic formation (Takahashi et al., 2012; Yoshida et al., 2012). Molecules that function in other neuronal developmental processes have also been shown to regulate synaptic differentiation. Farp1, essential for the dynamics of dendritic filopodia, regulates postsynaptic development and triggers a retrograde signal promoting active zone assembly by binding to SynCAM 1 (Cheadle and Biederer, 2012). Teneurins, instructing synaptic partner selection in fly olfactory system (Hong et al., 2012), act in synaptogenesis through trans-synaptic interaction at NMJs (Mosca et al., 2012). Another splice variant of a postsynaptic Teneurin-2 in rat, Lasso, binding with presynaptic Latrophilin 1 (LPH1), induces presynaptic Ca2+ signals and regulates synaptic function (Silva et al., 2011). Neural activity is also involved in controlling the growth of the presynapse. Conditioning or BDNF application induces presynaptic bouton development via an ephrin-B–dependent manner (Li et al., 2011), suggesting the role of EphB/ephrin-B signaling in activity-dependent synaptic modification.

Secreted molecules organize synapse differentiation

In addition to adhesion molecules, some secreted molecules also serve as synaptic organizers (Fig. 4). For example, the motor neuron–derived ligand agrin, which was the first identified secreted organizing molecule for postsynaptic differentiation, activates MuSK, a postsynaptic receptor tyrosine kinase, to regulate NMJ specialization (Glass et al., 1996; Zhou et al., 1999). Recently, a low-density lipoprotein receptor–related protein, LRP4, was identified as the co-receptor of agrin, forming a complex with MuSK and mediating MuSK signaling (Kim et al., 2008; Zhang et al., 2008). Several Wnts appears to act together with agrin to activate the LRP4–MuSK receptor complex to promote postsynaptic differentiation (Jing et al., 2009; Zhang et al., 2012). LRP4 also acts as a direct retrograde signal, functioning independently of MuSK for presynaptic differentiation (Yumoto et al., 2012), demonstrating that LRP4 acts as a bi-directional synaptic organizer (Fig. 4, left).Open in a separate windowFigure 4.Secreted trans-synaptic signaling at NMJs and CNS synapses. (Left) At Drosophila neuromuscular junctions (NMJs), Wnts are secreted from presynaptic terminals in association with Evi in the form of exosomes. In vertebrate NMJs, Wnt binds to the Agrin–LRP4–MuSK complex to regulate synapse formation. (Right) At CNS synapses, glia-derived thrombospondins (TSPs) and presynaptic neuron–derived cerebellin (Cbln) organize synapse differentiation and formation bi-directionally through binding to GluD2 and an isoform of neurexin (S4+) on the postsynaptic and presynaptic membranes, respectively. LTCC, L-type Ca2+ channel complex; AChR, acetyl choline receptor.Wnt is another well-characterized signaling molecule regulating many developmental processes including synaptic differentiation bi-directionally. Wnt regulates synaptic assembly both positively and negatively. For example, Wnt3 collaborates with agrin to promote the clustering of acetyl choline receptor (AChR) at the vertebrate NMJs (Henriquez et al., 2008), while Wnt3a inhibits AChR aggregation through β-catenin signaling (Wang et al., 2008). In the C. elegans NMJ, a Wnt molecule, CWN-2, stimulates the delivery and insertion of AchR to the postsynaptic membrane through the activation of a Frizzled–CAM-1 receptor complex (Jensen et al., 2012). Local Wnt gradient can suppress synapse formation in both C. elegans and Drosophila (Inaki et al., 2007; Klassen and Shen, 2007). Interestingly, in these contexts, Wnts are secreted from nonneuronal or nonsynaptic partner cells, suggesting that environmental factors can shape synaptic connections. Wnt can also be secreted from presynaptic neurons. A recent study demonstrated the trans-synaptic transmission of Wnt by exosome-like vesicles containing the Wnt-binding protein Evi at Drosophila NMJs (Fig. 4, left; Korkut et al., 2009; Koles et al., 2012). Presynaptic vesicular release of Evi is required for the secretion of Wnt. Intriguingly, different Wnt ligands regulate synapse formation in distinct cellular contexts. Wnt3a promotes excitatory synaptic assembly through CaMKII, whereas Wnt5a mediates inhibitory synapse formation by stabilizing GABAA receptors (Cuitino et al., 2010; Ciani et al., 2011). This functional diversity indicates that different Wnts, receptors, and downstream pathways, as well as cell-specific contexts dictate the action of extracellular cues. Another conserved secreted molecule, netrin/UNC-6, can also pattern synapses by either promoting or inhibiting synapse formation (Colón-Ramos et al., 2007; Poon et al., 2008). Because Wnt and netrin often exist in gradients, these observations suggest that the localization of synapses can be specified by the gradient of extrinsic cues.In mammalian, several glia-derived cues have been shown to play important roles in regulating synapse formation or elimination. Thrombospondins (TSPs) are trans-synaptic organizers secreted from immature astrocytes (Christopherson et al., 2005). Both in vitro and in vivo data demonstrate the capacity of TSPs to increase synapse number, promote the localization of synaptic molecules, and refine the pre- and postsynaptic alignment (Christopherson et al., 2005; Eroglu et al., 2009). Recently, two transmembrane molecules were uncovered in mediating TSP-induced synaptogenesis (Fig. 4, right). Neuroligin 1 interacts with TSP1 with its extracellular domain mediating the acceleration of synaptogenesis in hippocampal neurons (Xu et al., 2010). α2δ-1, a subunit of the L-type Ca2+ channel complex (LTCC), was also identified as the postsynaptic receptor of TSP in excitatory CNS neurons (Eroglu et al., 2009). Interaction between TSP and α2δ–1 triggers the conformational changes and sequentially recruits synaptic scaffolding molecules and initiates synapse formation (Eroglu et al., 2009). Interestingly, TSP-induced synapses, although structurally normal and presynaptically active, are postsynaptically silent due to the lack of AMPA receptors (Christopherson et al., 2005), indicating the existence of other glia-derived signals involved in synapse formation. In fact, in cultured hippocampal neurons, a glia-derived neurotrophic factor GDNF enhances the pre- and postsynaptic adhesion by triggering the trans-homophilic interaction of its receptors GFRα1 localized at both pre- and postsynaptic sites (Ledda et al., 2007). Several other glia-derived factors have been shown to play critical roles in synaptogenesis. Astrocytes secrete extracellular molecules hevin and SPARC to regulate synapse formation in vitro and in vivo (Kucukdereli et al., 2011). Astrocytes also express a transmembrane adhesion protein, protocadherin-γ, serving as a local cue to promote synapse formation (Garrett and Weiner, 2009). TGF-β secreted from the NMJ glia acts together with the muscle-derived TGF-β to control synaptic growth (Fuentes-Medel et al., 2012). In a similar fashion, secretion of BDNF by vestibular supporting cells is required for synapse formation between hair cells and sensory organs (Gómez-Casati et al., 2010).Another important synaptic organizer is cerebellin (Cbln), a presynapse-derived complement protein, C1q-like family protein. In cbln1-null mice the number of parallel fibers (PF)–Purkinje synapses is dramatically reduced; the postsynaptic densities in the remaining synapses are larger than the apposite active zones (Hirai et al., 2005). Cbln was also found to regulate synaptic plasticity, as cbln1-null mice show impaired long-term depression in cerebellum (Hirai et al., 2005). These defects precisely resemble those in mice lacking a putative glutamate receptor, GluD2 (Kashiwabuchi et al., 1995; Kurihara et al., 1997), suggesting that Cbln1 and GluD2 function in synaptic differentiation through a common pathway. Interestingly, the C-terminal domain and N-terminal domains of GluD2 are indispensable for cerebella LTD and PF–Purkinje synaptic morphology, respectively (Kohda et al., 2007; Uemura et al., 2007; Kakegawa et al., 2008, 2009). Further studies suggested that Cbln1 directly binds to the N-terminal domain of GluD2 and recruits postsynaptic proteins by clustering GluD2 (Matsuda et al., 2010). Neurexin was recently reported as the presynaptic receptor of Cbln in promoting synaptogenesis (Uemura et al., 2010), which reinforces the understanding of Cbln-mediated trans-synaptic signaling: Cbln serves as a bi-directional synapse organizer by linking presynaptic neurexin and postsynaptic GluD2 (Fig. 4, right).Besides being required for synapse formation at early stages, genetic ablation of GluD2 in adult cerebellum leads to loss of PF–Purkinje synapses (Takeuchi et al., 2005), indicating that Cbln1–GluD2 signaling is also important for the maintenance of PF–Purkinje synapses. Chronic stimulation of neural activity decreases Cbln1 expression and diminishes the number of PF–Purkinje synapses (Iijima et al., 2009), suggesting the importance of Cbln1–GluD2 signaling for synaptic plasticity and homeostasis.Cbln subfamily proteins are widely expressed throughout the brain (Miura et al., 2006), suggesting that their synaptogenic roles may be wide spread in other regions of the brain. Cbln2 and 4 are also secreted proteins, whereas Cbln3 is retained in the cellular endomembrane system (Iijima et al., 2007). Cbln1 and 2, interacting with an isoform of presynaptic neurexin, induce synaptogenesis (Joo et al., 2011; Matsuda and Yuzaki, 2011). Notably, the cortical synapses induced by neurexin–Cbln signaling are preferentially inhibitory (Joo et al., 2011), distinguishing the effects of Cbln from neuroligin. GluD1 was recently found to be the postsynaptic receptor of Cbln1 and 2 in cortical neurons, mediating the differentiation of inhibitory presynapses (Yasumura et al., 2012). On the other side, Cbln4 selectively binds to the netrin receptor DCC in a netrin-displaceable manner (Fig. 4, right), suggesting a potential function of Cbln4 through DCC signaling pathway (Iijima et al., 2007). Intriguingly, C1q, although sharing similar structure with Cbln, serves an opposite role by regulating the synapse elimination: C1q released from retinal ganglion cells refines the retinogeniculate connections by eliminating unneeded synapses (Stevens et al., 2007).

Concluding remarks

Synapse development is regulated in multiple steps. Research over the last few years have uncovered many regulatory mechanisms on how trafficking of synaptic material is regulated and how scaffold proteins act with cytoskeleton networks and trans-synaptic signaling to instruct the synapse formation. Nevertheless, our understanding of the cellular and molecular mechanisms regulating synapse development is still incomplete. For example, how is the direction, speed, and amount of synaptic material being transported specified? How is a synapse’s size determined? How is synapse type and strength specified through adhesive and secreted trans-synaptic signaling? How do the redundant synapse-inducing pathways interact with each other? Given the rapidly emerging improvements of technologies, especially super-resolution microscopy and high-throughput genomics and proteomics, the synapse development field will likely rapidly evolve in the near future.  相似文献   

15.
16.
Volatile methyl esters are common constituents of plant volatiles with important functions in plant defense. To study the biosynthesis of these compounds, especially methyl anthranilate and methyl salicylate, we identified a group of methyltransferases that are members of the SABATH enzyme family in maize (Zea mays). In vitro biochemical characterization after bacterial expression revealed three S-adenosyl-l-methionine-dependent methyltransferases with high specificity for anthranilic acid as a substrate. Of these three proteins, Anthranilic Acid Methyltransferase1 (AAMT1) appears to be responsible for most of the S-adenosyl-l-methionine-dependent methyltransferase activity and methyl anthranilate formation observed in maize after herbivore damage. The enzymes may also be involved in the formation of low amounts of methyl salicylate, which are emitted from herbivore-damaged maize. Homology-based structural modeling combined with site-directed mutagenesis identified two amino acid residues, designated tyrosine-246 and glutamine-167 in AAMT1, which are responsible for the high specificity of AAMTs toward anthranilic acid. These residues are conserved in each of the three main clades of the SABATH family, indicating that the carboxyl methyltransferases are functionally separated by these clades. In maize, this gene family has diversified especially toward benzenoid carboxyl methyltransferases that accept anthranilic acid and benzoic acid.Volatile compounds have important roles in the reproduction and defense of plants. Volatiles can attract pollinators and seed dispersers (Dobson and Bergström, 2000; Knudsen et al., 2006) or function as indirect defense compounds that attract natural enemies of herbivores (Dicke, 1994; Degenhardt et al., 2003; Howe and Jander, 2008). A well-studied example for the role of volatiles in plant defense is the tritrophic interaction between maize (Zea mays) plants, their lepidopteran herbivores, and parasitoid wasps of the herbivores. After damage by larvae of Spodoptera species, maize releases a complex volatile blend containing different classes of natural products (Turlings et al., 1990; Turlings and Benrey, 1998a). This volatile blend can be used as a cue by parasitic wasps to find hosts for oviposition (Turlings et al., 1990, 2005). After parasitization, lepidopteran larvae feed less and die upon emergence of the adult wasp, resulting in a considerable reduction in damage to the plant (Hoballah et al., 2002, 2004). The composition of the maize volatile blend is complex, consisting of terpenoids and products of the lipoxygenase pathway, along with three aromatic compounds: indole, methyl anthranilate, and methyl salicylate (Turlings et al., 1990; Degen et al., 2004; Köllner et al., 2004a). In the last decade, several studies have addressed the biosynthesis of terpenoids (Shen et al., 2000; Schnee et al., 2002, 2006; Köllner et al., 2004b, 2008a, 2008b) and indole (Frey et al., 2000, 2004) in maize. The formation of methyl anthranilate and methyl salicylate, however, has not been elucidated.Methyl anthranilate and methyl salicylate are carboxyl methyl esters of anthranilic acid, an intermediate of Trp biosynthesis, and the plant hormone salicylic acid, respectively. Our understanding of methyl anthranilate biosynthesis in plants is very limited. The only enzyme that has been described to be involved in methyl anthranilate synthesis is the anthraniloyl-CoA:methanol acyltransferase in Washington Concord grape (Vitis vinifera; Wang and De Luca, 2005). In contrast, the biosynthesis of methyl salicylate has been well studied in several plant species, such as Clarkia brewerii (Ross et al., 1999), Arabidopsis (Arabidopsis thaliana; Chen et al., 2003), and rice (Oryza sativa; Xu et al., 2006; Koo et al., 2007; Zhao et al., 2010). In all these species, methyl salicylate is synthesized by the action of S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase (SAMT). The apparent homology of SAMTs from different plant species suggests that methyl salicylate formation in maize, a species closely related to rice, is also catalyzed by an SAMT. SAMT enzymes are considered part of a larger family of methyltransferases called SABATH methyltransferases (D''Auria et al., 2003). The SABATH family also includes methyltransferases producing other methyl esters such as methyl benzoate, methyl jasmonate, and methyl indole-3-acetate (Seo et al., 2001; Effmert et al., 2005; Qin et al., 2005; Song et al., 2005; Zhao et al., 2007). An activity forming methyl anthranilate has not been described in the SABATH family, despite the striking structural similarity between methyl anthranilate and methyl salicylate or methyl benzoate. Two different classes of enzymes, methanol acyl transferases and methyltransferases, therefore, might be responsible for methyl anthranilate biosynthesis in maize (Fig. 1). Some of the SABATH methyltransferases have been shown previously to have methyltransferase activity in vitro using anthranilic acid as substrate (Chen et al., 2003; Zhao et al., 2010), but the biological relevance of such activity is unknown.Open in a separate windowFigure 1.The biosynthesis of methyl anthranilate from anthranilic acid can proceed over two pathways. Pathway A has been documented in grape, while pathway B is demonstrated here. AMAT, Anthraniloyl-CoA:methanol acyltransferase; SAH, S-adenosyl-l-homocysteine.In our ongoing attempt to investigate the biosynthesis and function of maize volatiles, we have studied the biosynthesis of the aromatic methyl esters, methyl salicylate and methyl anthranilate, and their regulation by herbivory. Biochemical characterization of maize benzenoid carboxyl methyltransferases of the SABATH family led to the discovery of a group of anthranilic acid methyltransferases (AAMTs). Homology-based structural modeling combined with site-directed mutagenesis identified the residues critical for the binding of the anthranilic acid substrate. Such functionally important residues are responsible for the diversification and evolution of benzenoid carboxyl methyltransferases in plants.  相似文献   

17.
18.
19.
A signaling pathway that induces programmed necrotic cell death (necroptosis) was reported to be activated in cells by several cytokines and various pathogen components. The major proteins participating in that pathway are the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL). Recent studies have suggested that MLKL, once activated, mediates necroptosis by binding to cellular membranes, thereby triggering ion fluxes. However, our knowledge of both the sequence of molecular events leading to MLKL activation and the subcellular sites of these events is fragmentary. Here we report that the association of MLKL with the cell membrane in necroptotic death is preceded by the translocation of phosphorylated MLKL, along with RIPK1 and RIPK3, to the nucleus.Apart from the apoptotic cell death pathway that ligands of the tumor necrosis factor (TNF) family can activate, these ligands and various other inducers, including the interferons and various pathogen components, have in recent years been found also to trigger a signaling cascade that induces programmed necrotic death (necroptosis). This cascade encompasses sequential activation of the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL).1, 2, 3, 4, 5 RIPK3-mediated phosphorylation of MLKL triggers its oligomerization, which is necessary and sufficient for the induction of cell death,6, 7, 8 and can also trigger some non-deadly functions.9 MLKL was recently suggested to trigger cell death by binding to cellular membranes and initiating ion fluxes through them.6, 7, 8, 10 However, its exact molecular target in death induction is contentious.6, 8, 10, 11, 12 Current knowledge of the subcellular sites of MLKL action is based mainly on determination of the location of this protein close to the time of cell death. Here we present a detailed assessment of the cellular location of MLKL at different times following its activation. Our findings indicate that before cell death, MLKL translocates to the nucleus along with RIPK1 and RIPK3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号