首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wallace proposed in 1868 that natural rather than sexual selection could explain the striking differences in avian plumage dichromatism. Thus, he predicted that nesting habits, through their association with nest predation, could drive changes in sexual dichromatism by enabling females in cavity nesters to become as conspicuous as males, whereas Darwin (1871, The Descent of Man and Selection in Relation to Sex, John Murray, London) argued that sexual selection was the sole explanation for dichromatism. Sexual dichromatism is currently used as indicating the strength of sexual selection, and therefore testing Wallace's claim with modern phylogentically controlled methodologies is of prime interest for comparing the roles of natural and sexual selection in affecting the evolution of avian coloration. Here, we have related information on nest attendance, sexual dichromatism and nesting habits (open and cavity nesting) to male and female plumage conspicuousness in European passerines. Nest incubation attendance does not explain male or female plumage conspicuousness but nest type does. Moreover, although females of monochromatic and cavity nesting species are more conspicuous than females of other species, males of monochromatic and open nesting species are those with more cryptic plumage. Finally, analyses of character evolution suggest that changes in nesting habits influence the probability of changes in both dichromatism and plumage conspicuousness of males but do not significantly affect those in females. These results strongly suggest a role of nesting habits in the evolution of plumage conspicuousness of males, and a role for sexual selection also in females, both factors affecting the evolution of sexual dichromatism. We discuss our findings in relation to the debate that Darwin and Wallace maintained more than one century ago on the importance of natural and sexual selection in driving the evolution of plumage conspicuousness and sexual dichromatism in birds, and conclude that our results partly support the evolutionary scenarios envisaged by both extraordinary scientists.  相似文献   

2.
The evolution of sexual dichromatism provoked one of the greatest disagreements between Charles Darwin and Alfred Russel Wallace. According to Darwin the main driving force is sexual selection, whereby choosy females prefer showy males, leading to the evolution of conspicuous male plumage. On the other hand, Wallace suggested that dichromatism may arise because nest predation favors more cryptic females. To test the role of natural selection in the evolution of dichromatism we combined quantitative data on differences in parental share in nest attentiveness (representing the strength of natural selection on males vs females) with spectrophotometric measurements of dichromatism in 412 species of songbirds from 69 families. We expected to find stronger dichromatism in open‐nesting species with more divergent parental roles and in body parts exposed during incubation. Dichromatism was not related to the differences in parental share during incubation, but it was most pronounced in lekking species, migrants, and small species. Our results thus suggest that Wallace's hypothesis is not able to explain broad‐scale variation in the dichromatism of songbirds, but point to a role for sexual selection, mutual mate choice, and migration strategy in shaping the extraordinary variation in dichromatism exhibited by songbirds.  相似文献   

3.
Males and females can be under different evolutionary pressures if sexual and natural selection is differentially operating in each sex. As a result, many species have evolved sexual dichromatism, or differences in coloration between sexes. Although sexual dichromatism is often used as an index of the magnitude of sexual selection, sexual dichromatism is a composite trait. Here, we examine the evolution of sexual dichromatism in one of the largest and most ecologically diverse families of birds, the tanagers, using the avian visual perspective and a species‐level phylogeny. Our results demonstrate that the evolutionary decreases of sexual dichromatism are more often associated with larger and more frequent changes in male plumage coloration, and evolutionary increases are not more often associated with larger changes in either sex. Furthermore, we show that the crown and ventral plumage regions are correlated with sexual dichromatism in males, and that only male plumage complexity is positively correlated with sexual dichromatism. Finally, we demonstrate that light environment is important in shaping both plumage brilliance and complexity. By conducting a multilevel analysis of plumage evolution in males and females, we show that sexual dichromatism evolves via a mosaic of sexual and natural selection in both sexes.  相似文献   

4.
Ornamentation of parents poses a high risk for offspring because it reduces cryptic nest defence. Over a century ago, Wallace proposed that sexual dichromatism enhances crypsis of open-nesting females although subsequent studies found that dichromatism per se is not necessarily adaptive. We tested whether reduced female ornamentation in a sexually dichromatic species reduces the risk of clutch depredation and leads to adaptive parental roles in the red-capped plover Charadrius ruficapillus, a species with biparental incubation. Males had significantly brighter and redder head coloration than females. During daytime, when visually foraging predators are active, colour-matched model males incurred a higher risk of clutch depredation than females, whereas at night there was no difference in depredation risk between sexes. In turn, red-capped plovers maintained a strongly diurnal/nocturnal division of parental care during incubation, with males attending the nest largely at night when visual predators were inactive and females incubating during the day. We found support for Wallace''s conclusion that reduced female ornamentation provides a selective advantage when reproductive success is threatened by visually foraging predators. We conclude that predators may alter their prey''s parental care patterns and therefore may affect parental cooperation during care.  相似文献   

5.
In polygynous birds, bright plumage is typically more extensive in the sexually competitive males and develops at or after sexual maturity. These patterns, coupled with the importance of male plumage in sexual displays, fostered the traditional hypothesis that bright plumages and sexual dichromatism develop through the actions of sexual selection on males. This view remains problematic for hummingbirds, all of which are polygynous, because their bright iridescent plumages are also important non-sexual signals associated with dominance at floral nectar sources. Here I show that female amethyst-throated sunangels [ Heliangelus amethysticollis (d'Orbigny & Lafresnaye)], moult from an immature plumage with an iridescent gorget to an adult plumage with a non-iridescent gorget. This 'reversed' ontogeny contradicts the notion that iridescent plumage has a sexual function because sexual selection in polygynous birds should be lowest among non-reproductive immature females. Moreover, loss of iridescent plumage in adult females indicates that adult sexual dichromatism in H. amethysticollis is due in large part to changes in female ontogeny. I suggest that both the ontogeny and sexual dichromatism evolved in response to competition for nectar.  相似文献   

6.
The mechanisms underlying evolutionary changes in sexual dimorphism have long been of interest to biologists. A striking gradient in sexual dichromatism exists among songbirds in North America, including the wood-warblers (Parulidae): males are generally more colourful than females at northern latitudes, while the sexes are similarly ornamented at lower latitudes. We use phylogenetically controlled comparative analysis to test three non-mutually exclusive hypotheses for the evolution of sexual dichromatism among wood-warblers. The first two hypotheses focus on the loss of female coloration with the evolution of migration, either owing to the costs imposed by visual predators during migration, or owing to the relaxation of selection for female social signalling at higher latitudes. The third hypothesis focuses on whether sexual dichromatism evolved owing to changes in male ornamentation as the strength of sexual selection increases with breeding latitude. To test these hypotheses, we compared sexual dichromatism to three variables: the presence of migration, migration distance, and breeding latitude. We found that the presence of migration and migration distance were both positively correlated with sexual dichromatism, but models including breeding latitude alone were not strongly supported. Ancestral state reconstruction supports the hypothesis that the ancestral wood-warblers were monochromatic, with both colourful males and females. Combined, these results are consistent with the hypotheses that the evolution of migration is associated with the relaxation of selection for social signalling among females and that there are increased predatory costs along longer migratory routes for colourful females. These results suggest that loss of female ornamentation can be a driver of sexual dichromatism and that social or natural selection may be a stronger contributor to variation in dichromatism than sexual selection.  相似文献   

7.
A survey of 166 hummingbird species reveals novel associations of bill-length sexual dimorphism (BLSD) with plumage and breeding behaviours. Across all species, female bills become proportionately longer than male bills (higher female-to-male BLSD ratio) as sexual dichromatism increases. However, male bills are proportionately longer (lower female-to-male BLSD ratio) in both lekkers (traditional group display) and clustered breeders (female harems or colonial nests) compared with dispersed breeders. The overall positive association of plumage with BLSD suggests that social status determines priority of access to nectar-providing flowers. Furthermore, the distinctive BLSD associated with breeding aggregations may arise from behaviours that impose constraints on the usual male priority at flowers: female dominance over males around nest colonies and male residence on lek-mating territories. These various factors appear to alter plumage and bill characters of both sexes to produce the range of dimorphisms within the various dispersed and aggregated breeding system categories. Feedback loops caused by ecological consequences of breeding behaviour may alter the evolutionary dynamics of breeding systems, bird-plant interactions, and competing pollinators, as well as help explain the lek paradox.  相似文献   

8.
Males of sexually dimorphic species often appear more divergent among taxa than do females, so it is often assumed that evolutionary changes have occurred primarily in males. Yet, sexual dimorphisms can result from historical changes in either or both of the sexes, and few previous studies have investigated such patterns using phylogenetic methods. Here, we describe the evolution of male and female plumage colors in the grackles and allies (Icteridae), a songbird clade with a broad range in levels of sexual dichromatism. Using a model of avian perceptual color space, we calculated color distances within and among taxa on a molecular phylogeny. Our results show that female plumage colors have changed more dramatically than male colors in the evolutionary past, yet male colors are significantly more divergent among species today. Historical increases in dichromatism have involved changes in both sexes, whereas decreases in dichromatism have nearly always involved females evolving rapidly to look like males. Dichromatism is also associated with mating system in this group, with monogamous taxa tending to exhibit relatively low levels of sexual dichromatism. Our findings suggest that, despite appearances, female plumage evolution plays a more prominent role in sexual dichromatism than is generally assumed.  相似文献   

9.
The evolution of sexual dichromatism in tanagers (family Thraupidae) was studied from a phylogenetic perspective using a molecular-based phylogeny. Mapping patterns of sexual dimorphism in plumage onto the phylogeny reveals that changes in female plumage occur more frequently than changes in male plumage. Possible explanations for this pattern include sexual selection acting on female plumage and natural selection for background matching. The results of this study and other recent phylogenetic and comparative studies suggest that factors affecting female plumage are important in shaping patterns of sexual dimorphism.  相似文献   

10.
Both sexual selection and natural selection can influence the form of dimorphism in secondary sexual traits. Here, we used a comparative approach to examine the relative roles of sexual selection and natural selection in the evolution of sexually dimorphic coloration (dichromatism) and ornamentation in agamid lizards. Sexual dimorphism in head and body size were used as indirect indicators of sexual selection, and habitat type (openness) as an index of natural selection. We examined separately the dichromatism of body regions "exposed to" and "concealed from" visual predators, because these body regions are likely to be subject to different selection pressures. Dichromatism of "exposed" body regions was significantly associated with habitat type: males were typically more conspicuously coloured than females in closed habitats. By contrast, dichromatism of "concealed" body regions and ornament dimorphism were positively associated with sexual size dimorphism (SSD). When we examined male and female ornamentation separately, however, both were positively associated with habitat openness in addition to snout-vent length and head SSD. These results suggest that natural selection constrains the evolution of elaborate ornamentation in both sexes as well as sexual dichromatism of body regions exposed to visual predators. By contrast, dichromatism of "concealed" body regions and degree of ornament dimorphism appear to be driven to a greater degree by sexual selection.  相似文献   

11.
Sexual dichromatism in birds is often attributed to selection for elaboration in males. However, evolutionary changes in either sex can result in plumage differences between them, and such changes can result in either gains or losses of dimorphism. We reconstructed the evolution of plumage colors in both males and females of species in Maluridae, a family comprising the fairy‐wrens (Malurus, Clytomias, Sipodotus), emu‐wrens (Stipiturus), and grasswrens (Amytornis). Our results show that, across species, males and females differ in their patterns of color evolution. Male plumage has diverged at relatively steady rates, whereas female coloration has changed dramatically in some lineages and little in others. Accordingly, in comparisons against evolutionary models, plumage changes in males best fit a Brownian motion (BM) model, whereas plumage changes in females fit an Ornstein Uhlenbeck (OU) multioptimum model, with different adaptive peaks corresponding to distributions in either Australia or New Guinea. Levels of dichromatism were significantly associated with latitude, with greater dichromatism in more southerly taxa. Our results suggest that current patterns of plumage diversity in fairy‐wrens are a product of evolutionary changes in both sexes, driven in part by environmental differences across the distribution of the family.  相似文献   

12.
Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male–male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation.  相似文献   

13.
Examinations of variation in plumage dichromatism in birds have focused on male plumage brightness and largely neglected variation in female plumage brightness. Nest predation previously was concluded to constrain male brightness and thereby reduce dimorphism in ground-nesting birds based on an incorrect assumption that nest predation is greater for ground nests. Correlations of plumage brightness and dichromatism with nest predation have never been tested directly and we do so here with data for warblers (Parulinae) and finches (Carduelinae). We show that male plumage brightness varies among nest heights, but in a pattern that is not correlated with nest predation. Female plumage brightness also varies among nest heights, but in a pattern that differs from males, and one in which variation in female plumage brightness was negatively correlated with nest predation. These results suggest that nest predation may place greater constraints on female than male plumage brightness, at least in taxa where only females incubate eggs and brood young. These results also show that female plumage patterns vary at least partly independently of male patterns and emphasize the need to include consideration of both female and male plumage variation in tests of plumage dimorphism. Plumage dimorphism differs between ground and off-ground nesters as previously described and, if anything, the relationship between plumage dimorphism and nest predation was positive rather than negative as previously argued.  相似文献   

14.
Sexual selection has been invoked as a major force in the evolution of secondary sexual traits, including sexually dimorphic colourations. For example, previous studies have shown that display complexity and elaborate ornamentation in lizards are associated with variables that reflect the intensity of intrasexual selection. However, these studies have relied on techniques of colour analysis based on human – rather than lizard – visual perception. Here, we use reflectance spectrophotometry and visual modelling to quantify sexual dichromatism considering the overall colour patterns of lacertids, a lizard clade in which visual signalling has traditionally been underrated. These objective methods of colour analysis reveal a large, previously unreported, degree of sexual dichromatism in lacertids. Using a comparative phylogenetic approach, we further demonstrate that sexual dichromatism is positively associated with body size dimorphism (an index of intrasexual selection), suggesting that conspicuous coloration in male lacertids has evolved to improve opponent assessment under conditions of intense male–male competition. Our findings provide the first evidence for the covariation of sexual dichromatism and sexual size dimorphism in lacertids and suggest that the prevalent role of intrasexual selection in the evolution of ornamental coloration is not restricted to the iguanian lineage, but rather may be a general trend common to many diurnal lizards.  相似文献   

15.
In birds, carotenoid-based plumage coloration is more dependent on physical condition and foraging abilities and less constrained developmentally than is melanin-based coloration. Thus, female mate choice for honest signals should result in more intense sexual selection on carotenoid- than on melanin-based plumage coloration. Using variation in sexual dimorphism as an indirect measure of the intensity of sexual selection, we tested the prediction mat variation in sexual dimorphism is driven more by change in carotenoid-based coloration between males and females dian by change in melanin-based coloration. Examination of historical changes in carotenoid- versus melanin-based pigmentation in 126 extant species of Cardueline finches supported this prediction. We found that carotenoid-derived coloration changed more frequendy among congeners dian melanin-based coloration. In both sexes, increase in carotenoid-based coloration score, but not in melanin-based coloration score, was strongly associated with increase in sexual dichromatism. In addition, sexual dimorphism in carotenoid-based coloration contributed more to overall dichromatism than dimorphism in melanin-based plumage. Our results supported die hypothesis that melanin-based and carotenoid-based coloration have fundamentally different signal content and suggest that combining melanin-based and carotenoid-based coloration in comparative analyses is not appropriate.  相似文献   

16.
Colorful plumage plays a prominent role in the evolution of birds, influencing communication (sexual/social selection), and crypsis (natural selection). Comparative studies have focused primarily on these selective pressures, but the mechanisms underlying color production can also be important by constraining the color gamut upon which selection acts. Iridescence is particularly interesting to study the interaction between selection and color‐producing mechanisms because a broad range of colors can be produced with a shared template, and innovations to this template further expand this by increasing the parameters interacting to produce colors. We examine the patterns of ornamentation and dichromatism evolution in African starlings, a group remarkably diverse in color production mechanisms, social systems, and ecologies. We find that the presence of iridescence is ancestral to the group, being predominantly lost in females and cooperative breeders, as well as species with less labile templates. Color‐producing mechanisms interact and are the main predictors of plumage ornamentation and elaboration, with little influence of selective pressures in their evolution. Dichromatism, however is influenced by social system and the loss of iridescence. Our results show the importance of considering both selection and constraints, and the different roles that they may have, in the evolution of ornamentation and dimorphism.  相似文献   

17.
The expression in females of ornaments thought to be the target of sexual selection in males is a long-standing puzzle. Two main hypotheses are proposed to account for the existence of conspicuous ornaments in both sexes (mutual ornamentation): genetic correlation between the sexes and sexual selection on females as well as males. We examined the pattern of ornament gains and losses in 240 species of dragon lizards (Agamidae) in order to elucidate the relative contribution of these two factors in the evolution of mutual ornamentation. In addition, we tested whether the type of shelter used by lizards to avoid predators predicts the evolutionary loss or constraint of ornament expression. We found evidence that the origin of female ornaments is broadly consistent with the predictions of the genetic correlation hypothesis. Ornaments appear congruently in both sexes with some lineages subsequently evolving male biased sexual dimorphism, apparently through the process of natural selection for reduced ornamentation in females. Nevertheless, ornaments have also frequently evolved in both sexes independently. This suggests that genetic correlations are potentially weak for several lineages and sexual selection on females is responsible for at least some evolutionary change in this group. Unexpectedly, we found that the evolutionary loss of some ornaments is concentrated more in males than females and this trend cannot be fully explained by our measures of natural selection.  相似文献   

18.
Sex differences in behavior, morphology, and physiology are common in animals. In many bird species, differences in the feather colors of the sexes are apparent when judged by human observers and using physical measures of plumage reflectance, cryptic (to human) plumage dichromatism has also been detected in several additional avian lineages. However, it remains to be confirmed in almost all species whether sexual dichromatism is perceivable by individuals of the studied species. This latter step is essential because it allows the evaluation of alternative hypotheses regarding the signaling and communication functions of plumage variation. We applied perceptual modeling of the avian visual system for the first time to an endemic New Zealand bird to provide evidence of subtle but consistent sexual dichromatism in the whitehead, Mohoua albicilla. Molecular sexing techniques were also used in this species to confirm the extent of the sexual size dimorphism in plumage and body mass. Despite the small sample sizes, we now validate previous reports based on human perception that in male whiteheads head and chest feathers are physically brighter than in females. We further suggest that the extent of sexual plumage dichromatism is pronounced and can be perceived by these birds. In contrast, although sexual dimorphism was also detectable in the mass among the DNA‐sexed individuals, it was found to be less extensive than previously thought. Sexual size dimorphism and intraspecifically perceivable plumage dichromatism represent reliable traits that differ between female and male whiteheads. These traits, in turn, may contribute to honest communication displays within the complex social recognition systems of communally breeding whitehead and other group‐breeding taxa. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Sexual selection drives the evolution of exaggerated traits in males of many animal species. Nevertheless, the response to this selective pressure can be constrained by genetic correlation between sexes. This hypothesis predicts that costly ornamental structures selected for only in males appear also in females, at least because both sexes share most of their genomes. If a trait bears no fitness advantages to females, its expression should reflect a compromise between selection for hypertrophy in males and natural selection favouring reduction of ornamentation in females. Therefore, extravagant male ornaments should evolve predominantly under weak intersexual genetic correlation. Here, we explore the role and evolutionary stability of the constraint imposed by intersexual genetic correlation in the evolution of body colouration in three species-rich families of killifishes. Across most killifish lineages, the evolutionary changes in male and female variegation were correlated, which identifies intersexual genetic correlation as an important factor in the evolution of killifish colouration. Several lineages overcame the constraining intersexual genetic correlation and evolved extremely conspicuous colouration in males together with plain colouration in females. Hormonal manipulations in two species from closely related genera (Nothobranchius and Fundulopanchax) differing in magnitude of sexual dichromatism suggest that pronounced sexual dimorphism in variegation evolved via disappearance of vivid body colours in females and extension of androgen-linked vivid colouration over body surface in males.  相似文献   

20.
Why do some bird species show dramatic sexual dichromatism in their plumage? Sexual selection is the most common answer to this question. However, other competing explanations mean it is unwise to assume that all sexual dichromatism has evolved by this mechanism. Even if sexual selection is involved, further work is necessary to determine whether dichromatism results from competition amongst rival males, or by female choice for attractive traits, or both. Here, we test whether sexually dichromatic hihi (Notiomystis cincta) plumage is currently under sexual selection, with detailed behavioural and genetic analyses of a free‐living island population. Bateman gradients measured for males and females reveal the potential for sexual selection, whilst selection gradients, relating reproductive success to specific colourful traits, show that there is stabilizing selection on white ear tuft length in males. By correlating colourful male plumage with different components of reproductive success, we show that properties of yellow plumage are most likely a product of male–male competition, whilst properties of the black and white plumage are an outcome of both male–male competition and female choice. Male plumage therefore potentially signals to multiple receivers (rival males and potential mates), and this may explain the multicoloured appearance of one of the most strikingly dichromatic species in New Zealand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号