首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many migratory bird species have undergone recent population declines, but there is considerable variation in trends between species and between populations employing different migratory routes. Understanding species-specific migratory behaviours is therefore of critical importance for their conservation. The Common Sandpiper Actitis hypoleucos is an Afro-Palaearctic migratory bird species whose European populations are in decline. We fitted geolocators to individuals breeding in England or wintering in Senegal to determine their migration routes and breeding or non-breeding locations. We used these geolocator data in combination with previously published data from Scottish breeding birds to determine the distributions and migratory connectivity of breeding (English and Scottish) and wintering (Senegalese) populations of the Common Sandpiper, and used simulated random migrations to investigate wind assistance during autumn and spring migration. We revealed that the Common Sandpipers tagged in England spent the winter in West Africa, and that at least some birds wintering in Senegal bred in Scandinavia; this provides insights into the links between European breeding populations and their wintering grounds. Furthermore, birds tagged in England, Scotland and Senegal overlapped considerably in their migration routes and wintering locations, meaning that local breeding populations could be buffered against habitat change, but susceptible to large-scale environmental changes. These findings also suggest that contrasting population trends in England and Scotland are unlikely to be the result of population-specific migration routes and wintering regions. Finally, we found that birds used wind to facilitate their migration in autumn, but less so in spring, when the wind costs associated with their migrations were higher than expected at random. This was despite the wind costs of simulated migrations being significantly lower in spring than in autumn. Indeed, theory suggests that individuals are under greater time pressures in spring than in autumn because of the time constraints associated with reproduction.  相似文献   

2.
Migratory divides represent narrow zones of overlap between parapatric populations with distinct migration directions and, consequently, expected divergent non‐breeding distributions. The composition of the mixed population at a migratory divide and the corresponding non‐breeding ranges remain, however, unknown for many Palaearctic‐African migrants. Here, we used light‐level geolocation to track migration direction and non‐breeding grounds of Eurasian reed warblers Acrocephalus scirpaceus from three breeding populations across the species’ migratory divide. Moreover, by using feathers grown at non‐breeding grounds, we quantified stable isotope composition for individuals with known southwestern (SW) and southeastern (SE) migration directions. On a larger sample per population, we then assessed the proportions of SW‐ and SE‐migrating phenotypes in each of the three populations. All tracked reed warblers from Germany and two thirds of the birds tagged from the Czech population headed initially SW. Nevertheless, about one third of the birds from the Czech site migrated towards SE. No tracking data have been obtained for the Bulgarian population. The initial migration direction determined by geolocators was a strong predictor of the non‐breeding region, with SW migrants staying in west Africa and SE migrants in central Africa. Feather δ34S and δ15N values confirmed the predominance of SW migrants in the German population, the co‐occurrence of SW and SE migrants in the Czech population, and indicated a high (72%) proportion of SE migrants in the Bulgarian population. Thus, the combined approach of geolocator tracking and stable isotopic assignments provided clear evidence for the existence of a migratory divide in the southeast of central Europe and predicted non‐breeding range in central and central‐eastern Africa for the eastern population.  相似文献   

3.
Stable isotope analysis of feathers can be useful in the study of seasonal interactions and migratory connectivity in birds. For the Palaearctic–African migration system, however, the lack of isotope data from feathers of known origin in Africa renders the geographic assignment of birds captured on European breeding grounds to potential wintering areas problematic. Rectrices of the threatened aquatic warbler Acrocephalus paludicola grown in Africa were sampled across six European countries to assess whether birds in different breeding populations shared similar isotopic signatures and so were likely to have wintered in the same region in Africa. Freshly grown feathers of aquatic warblers collected at the only known wintering site in Senegal showed high variation in carbon, nitrogen, and hydrogen isotope ratios. Due to similarly high variation in isotope ratios of African‐grown feathers within all breeding populations, it was not possible to determine whether different populations wintered in different regions. However, isotope signatures of 20% of birds captured on European breeding grounds fell outside the range of those captured in Senegal, suggesting a wider wintering distribution than is currently known. We therefore assessed whether the origin of these feathers could be estimated by trying to establish isotopic gradients across sub‐Saharan West Africa. Feathers of three ecologically similar surrogate species were sampled from wetlands across a 3000 km east‐west and a 2000 km north–south transect. Within‐site variation in feather isotope ratios was frequently larger than the difference predicted by gradients across West Africa. Thus, predicting the origin of individual feathers using single‐isotope gradients was not reliable. The large within‐site variability of feather isotope ratios of a habitat specialist species like the aquatic warbler indicates that using feather isotope ratios will require large sample sizes from many locations, and may thus not be an efficient tool in identifying wintering areas of Palaearctic–African migrants.  相似文献   

4.
Aim Conservation programmes for endangered migratory species or populations require locating and evaluating breeding, stopover and wintering areas. We used multiple stable isotopes in two endangered European populations of wrynecks, Jynx torquilla L., to locate wintering regions and assess the degree of migratory connectivity between breeding and wintering populations. Location Switzerland and Germany. Methods We analysed stable nitrogen (δ15N), carbon (δ13C) and hydrogen (δD) isotopes from wing feathers from two populations of wrynecks to infer their wintering origins and to assess the strength of migratory connectivity. We tested whether variation in feather isotopic values within the Swiss population was affected by bird age and collection year and then considered differences in isotopic values between the two breeding populations. We used isotopic values of summer‐ and winter‐grown feathers to estimate seasonal distributions. Finally, we calculated a species‐specific δD discrimination factor between feathers and mean annual δD values to assign winter‐grown feathers to origin. Results Bird age and collection year caused substantial isotopic variation in winter‐grown feathers, which may be because of annually variable weather conditions, movements of birds among wintering sites and/or reflect asynchronous moulting or selection pressure. The large isotopic variance in winter‐grown feathers nevertheless suggested low migratory connectivity for each breeding population, with partially overlapping wintering regions for the two populations. Main conclusions Isotopic variance in winter‐grown feathers of two breeding populations of wrynecks and their geographical assignment point to defined, albeit overlapping, wintering areas, suggesting both leapfrog migration and low migratory connectivity. On this basis, integrative demographic models can be built looking at seasonal survival patterns with links to local environmental conditions on both breeding and wintering grounds, which may elucidate causes of declines in migratory bird species.  相似文献   

5.
Populations of most North American aerial insectivores have undergone steep population declines over the past 40 years but the relative importance of factors operating on breeding, wintering, or stopover sites remains unknown. We used archival light-level geolocators to track the phenology, movements and winter locations of barn swallows (Hirdundo rustica; n = 27) from populations across North America to determine their migratory connectivity. We identified an east-west continental migratory divide for barn swallows with birds from western regions (Washington State, USA (n = 8) and Saskatchewan, Canada (n = 5)) traveling shorter distances to wintering areas ranging from Oregon to northern Colombia than eastern populations (Ontario (n = 3) and New Brunswick (n = 10), Canada) which wintered in South America south of the Amazon basin. A single swallow from a stable population in Alabama shared a similar migration route to eastern barn swallows but wintered farther north in northeast Brazil indicating a potential leap frog pattern migratory among eastern birds. Six of 9 (67%) birds from the two eastern populations and Alabama underwent a loop migration west of fall migration routes including around the Gulf of Mexico travelling a mean of 2,224 km and 722 km longer on spring migration, respectively. Longer migration distances, including the requirement to cross the Caribbean Sea and Gulf of Mexico and subsequent shorter sedentary wintering periods, may exacerbate declines for populations breeding in northeastern North America.  相似文献   

6.
Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species'' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ 15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ 13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ 2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.  相似文献   

7.
Yellow Warblers (Setophaga petechia) are abundant breeding birds in North America, but their migratory and non‐breeding biology remain poorly understood. Studies where genetic and isotopic techniques were used identified parallel migration systems and longitudinal segregation among eastern‐ and western‐breeding populations of Yellow Warblers in North America, but these techniques have low spatial resolution. During the 2015 breeding season, we tagged male Yellow Warblers breeding in Maine (= 10) and Wisconsin (= 10) with light‐level geolocators to elucidate fine‐scale migratory connectivity within the eastern haplotype of this species and determine fall migration timing, routes, and wintering locations. We recovered seven of 20 geolocators (35%), including four in Maine and three in Wisconsin. The mean duration of fall migration was 49 d with departure from breeding areas in late August and early September and arrival in wintering areas in mid‐October. Most individuals crossed the Gulf of Mexico to Central America before completing the final eastward leg of their migration to northern South America. Yellow Warblers breeding in Maine wintered in north‐central Colombia, west of those breeding in Wisconsin that wintered in Venezuela and the border region between Brazil, Colombia, and Venezuela. Our results provide an example of crosswise migration, where the more easterly breeding population wintered farther west than the more westerly breeding population (and vice versa), a seldom‐documented phenomenon in birds. Our results confirm earlier work demonstrating that the eastern haplotype of northern Yellow Warblers winters in northern South America, and provide novel information about migratory strategies, timing, and wintering locations of birds from two different populations.  相似文献   

8.
Understanding the population dynamics of migratory animals and predicting the consequences of environmental change requires knowing how populations are spatially connected between different periods of the annual cycle. We used stable isotopes to examine patterns of migratory connectivity across the range of the western sandpiper Calidris mauri. First, we developed a winter isotope basemap from stable‐hydrogen (δD), ‐carbon (δ13C), and ‐nitrogen (δ15N) isotopes of feathers grown in wintering areas. δD and δ15N values from wintering individuals varied with the latitude and longitude of capture location, while δ13C varied with longitude only. We then tested the ability of the basemap to assign known‐origin individuals. Sixty percent of wintering individuals were correctly assigned to their region of origin out of seven possible regions. Finally, we estimated the winter origins of breeding and migrant individuals and compared the resulting empirical distribution against the distribution that would be expected based on patterns of winter relative abundance. For breeding birds, the distribution of winter origins differed from expected only among males in the Yukon‐Kuskokwim (Y‐K) Delta and Nome, Alaska. Males in the Y‐K Delta originated overwhelmingly from western Mexico, while in Nome, there were fewer males from western North America and more from the Baja Peninsula than expected. An unexpectedly high proportion of migrants captured at a stopover site in the interior United States originated from eastern and southern wintering areas, while none originated from western North America. In general, we document substantial mixing between the breeding and wintering populations of both sexes, which will buffer the global population of western sandpipers from the effects of local habitat loss on both breeding and wintering grounds.  相似文献   

9.
Understanding connections between breeding, stopover and wintering grounds for long‐distance migratory birds can provide important insight into factors influencing demography and the strength of carry‐over effects among various periods of the annual cycle. Using previously described, multi‐isotope (δ13C, δ15N, δ2H) feather isoscapes for Africa, we identified the most probable wintering areas for house martins Delichon urbica breeding at Badajoz in southwestern Spain. We identified two most‐probable wintering areas differing in isotopic signature in west Africa. We found that the probability to winter in the isotopic cluster two was related to age and sex of individuals. Specifically, experienced males (i.e. two years or older) winter in the isotopic cluster two with a greater probability than experienced females, whereas first‐year females winter in the isotopic cluster two with a greater probability than first‐year males. In addition, wintering area was correlated with breeding phenology, with individuals wintering in the isotopic cluster two initiating their clutches earlier than those wintering in the isotopic cluster one. For birds wintering in the isotopic cluster two, there was no relationship between age and clutch initiation date. In contrast, young birds wintering in the isotopic cluster one initiated their clutches earlier than experienced birds wintering in this area. There was no significant correlation between wintering area and clutch size or the number of fledglings produced. We hypothesize that the relationship among social status, population density and winter habitat quality should be the most important driver of the carry‐over effect we found for this population.  相似文献   

10.
Knowledge about migratory connectivity, the degree to which individuals from the same breeding site migrate to the same wintering site, is essential to understand processes affecting populations of migrants throughout the annual cycle. Here, we study the migration system of a long-distance migratory bird, the Montagu''s harrier Circus pygargus, by tracking individuals from different breeding populations throughout northern Europe. We identified three main migration routes towards wintering areas in sub-Saharan Africa. Wintering areas and migration routes of different breeding populations overlapped, a pattern best described by ‘weak (diffuse) connectivity’. Migratory performance, i.e. timing, duration, distance and speed of migration, was surprisingly similar for the three routes despite differences in habitat characteristics. This study provides, to our knowledge, a first comprehensive overview of the migration system of a Palaearctic-African long-distance migrant. We emphasize the importance of spatial scale (e.g. distances between breeding populations) in defining patterns of connectivity and suggest that knowledge about fundamental aspects determining distribution patterns, such as the among-individual variation in mean migration directions, is required to ultimately understand migratory connectivity. Furthermore, we stress that for conservation purposes it is pivotal to consider wintering areas as well as migration routes and in particular stopover sites.  相似文献   

11.
Ecosystems around the world are connected by seasonal migration. The migrant animals themselves are influenced by migratory connectivity through effects on the individual and the population level. Measuring migratory connectivity is notoriously difficult due to the simple requirement of data conveying information about the nonbreeding distribution of many individuals from several breeding populations. Explicit integration of data derived from different methods increases the precision and the reliability of parameter estimates. We combine ring‐reencounter, stable isotope, and blood parasite data of Barn Swallows Hirundo rustica in a single integrated model to estimate migratory connectivity for three large scale breeding populations across a latitudinal gradient from Central Europe to Scandinavia. To this end, we integrated a non‐Markovian multistate mark‐recovery model for the ring‐reencounter data with normal and binomial mixture models for the stable isotope and parasite data. The integration of different data sources within a mark‐recapture modeling framework enables the most precise quantification of migratory connectivity on the given broad spatial scale. The results show that northern‐breeding populations and Southern Africa as well as southern‐breeding populations and Western–Central Africa are more strongly connected through Barn Swallow migration than central European breeding populations with any of the African wintering areas. The nonbreeding distribution of Barn Swallows from central European breeding populations seems to be a mixture of those populations breeding further north and south, indicating a migratory divide.  相似文献   

12.
Since 1899 ringing (or banding) remained the most important source of information about migration routes, stopover sites and wintering grounds for birds that are too small to carry satellite-based tracking systems. Despite the large quantity of migrating birds ringed in their breeding areas in Europe, the number of ring recoveries from sub-Saharan Africa is very low and therefore the whereabouts of most small bird species outside the breeding season remain a mystery. With new miniaturized light-level geolocators it is now possible to look beyond the limits of ring recovery data. Here we show for the first time year round tracks of a near passerine trans-Saharan migrant, the European Hoopoe (Upupa epops epops). Three birds wintered in the Sahel zone of Western Africa where they remained stationary for most of the time. One bird chose a south-easterly route following the Italian peninsula. Birds from the same breeding population used different migration routes and wintering sites, suggesting a low level of migratory connectivity between breeding and wintering areas. Our tracking of a near passerine bird, the European Hoopoe, with light-level geolocators opens a new chapter in the research of Palaearctic-African bird migration as this new tool revolutionizes our ability to discover migration routes, stopover sites and wintering grounds of small birds.  相似文献   

13.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

14.
We examined long-term (1943–2003) variability in laying dates and clutch sizes in a Finnish population of the pied flycatcher Ficedula hypoleuca Pallas, and analysed whether potential changes were explained by changes in climatic factors at the wintering area in Africa, at migration route or at breeding grounds. Among-year variation in both mean and skewness of laying dates increased, which for mean laying date appeared to be explained by variability of temperatures at the breeding grounds and for skewness by variable temperature trends along the migration route. Pied flycatchers bred earlier in warm springs, but despite a warming trend in pre-laying temperatures, the laying dates tended to delay. Laying dates became continuously later in relation to the phenology of the environment. Mean clutch size decreased with time when mean laying date was controlled for, but the climatic factors did not appear to explain the decrease. The advancement of spring phenology may have shifted some food sources needed for egg-laying, thus leading to later laying and smaller clutches. Variation in clutch size increased when wintering conditions were favourable so that clutch size distribution was skewed with a tail of small clutches when there had been lot of rainfall (more vegetation and insects) in the wintering area. We suggest that when ecological conditions during winter were good, the tail of small clutches represented low-quality individuals that were not able to breed after bad winters. Our analyses demonstrate that measures of spread and symmetry give different information about population level changes than means, and thus complement the understanding of the potential influences of climate change on populations.  相似文献   

15.
There is an overdue and urgent need to establish patterns of migratory connectivity linking breeding grounds, stopover sites, and wintering grounds of migratory birds. Such information allows more effective application of conservation efforts by applying focused actions along movement trajectories at the population level. Stable isotope methods, especially those using stable hydrogen isotope abundance in feathers (δ2Hf) combined with Bayesian assignment techniques incorporating prior information such as relative abundance of breeding birds, now provide a fast and reliable means of establishing migratory connectivity, especially for Neotropical migrants that breed in North America and molt prior to fall migration. Here we demonstrate how opportunistic sampling of feathers of 30 species of wintering birds in Cuba, Venezuela, Guatemala, Puerto Rico, and Mexico, regions that have typically been poorly sampled for estimating migratory connectivity, can be assigned to breeding areas in North America through both advanced spatial assignment to probability surfaces and through simpler map lookup approaches. Incorporating relative abundance information from the North American Breeding Bird Survey in our Bayesian assignment models generally resulted in a reduction in potential assignment areas on breeding grounds. However, additional tools to constrain longitude such as DNA markers or other isotopes would be desirable for establishing breeding or molt origins of species with broad longitudinal distributions. The isotope approach could act as a rapid means of establishing basic patterns of migratory connectivity across numerous species and populations. We propose a large‐scale coordinated sampling effort on the wintering grounds to establish an isotopic atlas of migratory connectivity for North American Neotropical migrants and suggest that isotopic variance be considered as a valuable metric to quantify migratory connectivity. This initiative could then act as a strategic template to guide further efforts involving stable isotopes, light‐sensitive geolocators, and other technologies.  相似文献   

16.
In the face of hybridization, species integrity can only be maintained through post-zygotic isolating barriers (PIBs). PIBs need not only be intrinsic (i.e. hybrid inviability and sterility caused by developmental incompatibilities), but also can be extrinsic due to the hybrid's intermediate phenotype falling between the parental niches. For example, in migratory species, hybrid fitness might be reduced as a result of intermediate migration pathways and reaching suboptimal wintering grounds. Here, we test this idea by comparing the juvenile to adult survival probabilities as well as the wintering grounds of pied flycatchers (Ficedula hypoleuca), collared flycatchers (Ficedula albicollis) and their hybrids using stable isotope ratios of carbon (delta13C) and nitrogen (delta15N) in feathers developed at the wintering site. Our result supports earlier observations of largely segregated wintering grounds of the two parental species. The isotope signature of hybrids clustered with that of pied flycatchers. We argue that this pattern can explain the high annual survival of hybrid flycatchers. Hence, dominant expression of the traits of one of the parental species in hybrids may substantially reduce the ecological costs of hybridization.  相似文献   

17.
The study of the extent of the connection between areas where populations of birds breed and areas where they winter has flourished in recent years mainly thanks to the development of new techniques, but also due to traditional ringing and recovery schemes, which allow tracking of individuals or populations linking wintering and breeding distributions. Currently, studies on migratory connectivity focus on retention of breeding population spatial structure on the non-breeding grounds and vice versa.Here we propose a method to quantify migratory connectivity based on Mantel correlation coefficients and to statistically test for deviations of the observed connectivity from a random mix of individuals. In addition, we propose a procedure, based on clustering algorithms, to identify whether observed connectivity depends on aggregation of individuals or on rigid transference of distribution patterns between areas.We applied this method to a large dataset of ringing recoveries of barn swallows (Hirundo rustica L) migrating from their Western Palearctic breeding areas to sub-Saharan winter quarters. We show that migration of barn swallow populations connects specific breeding and wintering areas, and that the “sub-populations” quantitatively identified by our method are consistent with qualitative patterns of migratory connectivity identified by studies of individual geographical populations based on other methods. Finally, we tested the performance of the method by running simulations under different scenarios. Such simulations showed that the method is robust and able to correctly detect migratory connectivity even with smaller datasets and when a strong geographical pattern is not present in the population. Our method provides a quantitative measure of migratory connectivity and allows for the identification of populations showing high connectivity between the breeding and wintering areas. This method is suitable for a generalized application to diverse animal taxa as well as to large scale analyses of connectivity for conservation purposes.  相似文献   

18.
Many organisms use day length as a cue for synchronizing their life cycles with seasonal changes in environmental productivity. Under rapid climate change, however, responses to day length may become maladaptive, and photo‐responsive organisms may only be able to evade increasingly unsuitable habitats if they can accommodate to a wide range of photoperiodic conditions. A previous experiment showed that the pied flycatcher, Ficedula hypoleuca, a Palaearctic‐Afrotropical migratory bird, would strongly advance the timing of spring migration and reproductive maturation if it shifted its wintering area from sub‐Saharan Africa to the Mediterranean region. However, it is unknown whether this marked response to latitudinal variation in photoperiodic conditions is continuous over the entire range of potential wintering areas, and if a shortening of migration distance would be an effective mechanism to adjust the timing of migration to rapidly changing climatic conditions. Here, we experimentally show that a moderate northward displacement of the pied flycatcher's current wintering grounds by 10° would result in a clear advancement of the termination of prenuptial moult and the initiation of spring migratory activity and gonadal growth. However, we found no further advancement under conditions simulating higher wintering latitudes, suggesting the existence of a critical photoperiodic threshold or a steep gradual response within a narrow geographical range between 10° and 20° northern latitude. Because habitat conditions in this area are deteriorating rapidly, the potential for pied flycatchers to adjust their life cycle to changing climatic conditions by shortening the migration distance may be limited in the future.  相似文献   

19.
The objectives of this study were to describe and evaluate potential drivers of genetic structure in Canadian breeding populations of the Ovenbird, Seiurus aurocapilla. We performed genetic analyses on feather samples of individuals from six study sites using nuclear microsatellites. We also assessed species identity and population genetic structure of quill mites (Acariformes, Syringophilidae). For male Ovenbirds breeding in three study sites, we collected light‐level geolocator data to document migratory paths and identify the wintering grounds. We also generated paleohindcast projections from bioclimatic models of Ovenbird distribution to identify potential refugia during the last glacial maximum (LGM, 21,000 years before present) as a factor explaining population genetic structure. Birds breeding in the Cypress Hills (Alberta/Saskatchewan) may be considered a distinct genetic unit, but there was no evidence for genetic differentiation among any other populations. We found relatively strong migratory connectivity in both western and eastern populations, but some evidence of mixing among populations on the wintering grounds. There was also little genetic variation among syringophilid mites from the different Ovenbird populations. These results are consistent with paleohindcast distribution predictions derived from two different global climate models indicating a continuous single LGM refugium, with the possibility of two refugia. Our results suggest that Ovenbird populations breeding in boreal and hemiboreal regions are panmictic, whereas the population breeding in Cypress Hills should be considered a distinct management unit.  相似文献   

20.
Migratory species are of special concern in the face of global climate change, since they may be affected by changes in the wintering area, along the migration route and at the breeding grounds. Here we show that migration and breeding times of a trans‐Saharan migrant, the pied flycatcher Ficedula hypoleuca, closely follow local temperatures along the migration route and at the breeding grounds. Because of differences in long‐term temperature trends of short within‐spring periods, the migration period and the time interval between migration and breeding dates of this species have extended in SW Finland. Temperatures in northern parts of Central Europe have risen at the time when the first migrants arrive there, facilitating their migration northward. Temperatures later in the spring have not changed, and the last individuals arrive at the same time as before. The timing of breeding has not advanced because temperatures at the breeding site after arrival have not changed. These results show that the pied flycatchers can speed up their migration in response to rising temperatures along the migration route. Our results strongly indicate that the effects of climate change have to be studied at the appropriate time and geographical scales for each species and population concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号