首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Comparing closely related species that live in different environments is a powerful way to understand selective pressures that influence life‐history evolution. We examined a suite of life‐history traits and parental care in neotropical buff‐breasted wrens Cantorchilus leucotis and north‐temperate Carolina wrens Thryothorus ludovicianus (Family Troglodytidae), to test hypotheses about life‐history evolution. As expected, buff‐breasted wrens exhibited smaller clutch sizes and higher annual adult survival than Carolina wrens. We found minimal support for the nest predation hypothesis, as nest survival and age‐corrected provisioning rates to whole broods were similar between species, and number of breeding attempts and breeding season length were greater in temperate wrens. Critical predictions of the food limitation hypothesis were not supported; in particular age‐corrected provisioning rates per nestling were higher in the tropical than temperate species. The adult survival and offspring quality hypothesis garnered the most support, as buff‐breasted wrens exhibited greater age‐corrected provisioning rates per nestling, a longer nestling period, longer re‐nesting intervals following nest success, and lower annual fecundity than Carolina wrens. Despite similarly prolonged breeding seasons, reproductive strategies differ between species with buff‐breasted wrens investing considerably in single broods to optimize first‐year survival and Carolina wrens investing in multiple small broods to optimize annual fecundity.  相似文献   

2.
Several long‐standing hypotheses have been proposed to explain latitudinal patterns of life‐history strategies. Here, we test predictions of four such hypotheses (seasonality, food limitation, nest predation and adult survival probability) by examining life‐history traits and age‐specific mortality rates of several species of thrushes (Turdinae) based on field studies at temperate and tropical sites and data gathered from the literature. Thrushes in the genus Catharus showed the typical pattern of slower life‐history strategies in the tropics while co‐occuring Turdus thrushes differed much less across latitudes. Seasonality is a broadly accepted hypothesis for latitudinal patterns, but the lack of concordance in latitudinal patterns between co‐existing genera that experience the same seasonal patterns suggests seasonality cannot fully explain latitudinal trait variation in thrushes. Nest‐predation also could not explain patterns based on our field data and literature data for these two genera. Total feeding rates were similar, and per‐nestling feeding rates were higher at tropical latitudes in both genera, suggesting food limitation does not explain trait differences in thrushes. Latitudinal patterns of life histories in these two genera were closely associated with adult survival probability. Thus, our data suggest that environmental influences on adult survival probability may play a particularly strong role in shaping latitudinal patterns of life‐history traits.  相似文献   

3.
Michael Coslovsky  Heinz Richner 《Oikos》2012,121(10):1691-1701
Experimental studies incorporating multiple trophic levels are scarce but of increasing interest for understanding ecological communities. Here we investigated interactive effects of perceived predation risk and parasite pressure on life‐history traits in a hole‐nesting bird, and the effects of predation risk on parasite success. In a 3 × 2 experimental design we increased perceived predation risk for breeding great tits Parus major via simulations of either nest‐predators (woodpeckers) or post‐fledging predators (sparrowhawks) close to nests, and used a non‐predatory species (song thrush) as a control. Concurrently, half of the nests in each treatment were either infested with ectoparasites, or kept parasite‐free. Regarding the predation risk – parasite interaction, exposure to nest‐predators tended to lower wing and sternum growth rates of nestlings in the absence, but not the presence, of parasites. In the presence of parasites, exposure to a post‐fledging, but not to a nest‐predator, led to significantly reduced wing growth. Mass and tarsus length were not affected by predator exposure, but ectoparasites had slight positive effects on mass gain. In the last third of the nestling period, overall nestling size was significantly smaller when exposed to a post‐fledging predator than to a nest‐predator, but neither differed from the control. Parental feeding rates were not affected by the treatments, but parents became less selective towards food items under either predation risk. Hen‐flea population sizes (adult or larvae) in nests were not affected by predation risk treatment of hosts. In summary, we found some evidence for an interactive effect of predation risk and parasite pressure on nestling growth. The complexity of the interaction, combined with certain inconsistencies of the effects and potential statistical artifacts, prevent however a straightforward interpretation of the results. The insights from the study are useful for designing additional experiments to further investigate the complexity of predator–parasite interactions in wild populations.  相似文献   

4.
Among the range of determinants of post‐fledging survival in altricial birds, the energy supply to the growing juveniles is likely to play a central role. However, the exact mechanisms shaping post‐fledging survival are poorly understood. Using a food supplementation experiment, we determined the effect of variation in food supply on the survival of juvenile Little Owls Athene noctua from hatching to 2 months post‐fledging. Experimental broods were food‐supplemented for 36 days during the nestling and the early post‐fledging period. The fate of 307 juveniles (95 of them provided with extra food) was determined by nest monitoring and radiotelemetry. In unsupplemented birds, the rates of survival measured at 5‐day intervals were lowest during the nestling stage, remained low during the early post‐fledging stage and steadily increased after about 2 weeks post‐fledging. Food supplementation substantially increased nestling survival, but we detected no direct treatment effect on post‐fledging survival. Instead, we found a strong indirect effect of food supplementation, in that fledglings of good physical condition had markedly higher chances of surviving the post‐fledging period compared with those in poor condition. Experimental food supplementation increased survival over the first 3 months from 45% to 64.6%. This suggests that energy reserves built up during the nestling stage influence post‐fledging survival and ultimately parental reproductive output. The low nestling and post‐fledging survival shows that the early life‐history stages constitute a crucial bottleneck of reproductive ecology in Little Owls. The strong treatment effects on the number of independent offspring indicate that natural variation in food supply is an important determinant of spatio‐temporal patterns in Little Owl demography.  相似文献   

5.
How environmental conditions affect the timing and extent of parental care is a fundamental question in comparative studies of life histories. The post‐fledging period is deemed critical for offspring fitness, yet few studies have examined this period, particularly in tropical birds. Tropical birds are predicted to have extended parental care during the post‐fledging period and this period may be key to understanding geographic variation in avian reproductive strategies. We studied a neotropical passerine, the western slaty‐antshrike Thamnophilus atrinucha, and predicted greater care and higher survival during the post‐fledging period compared to earlier stages. Furthermore, we predicted that duration of post‐fledging parental care and survival would be at the upper end of the distribution for Northern Hemisphere passerines. Correspondingly, we observed that provisioning continued for 6–12 weeks after fledging. In addition, provisioning rate was greater after fledging and offspring survival from fledging to independence was 75%, greater than all estimates from north‐temperate passerines. Intervals between nesting attempts were longer when the first brood produced successful fledglings compared to nests where offspring died either in the nest or upon fledging. Parents delayed initiating second nests after the first successful brood until fledglings were near independence. Our results indicate that parents provide greater care after fledging and this extended care likely increased offspring survival. Moreover, our findings of extended post‐fledging parental care and higher post‐fledging survival compared to Northern Hemisphere species have implications for understanding latitudinal variation in reproductive effort and parental investment strategies.  相似文献   

6.
The investigation of factors that cause differences in life-history traits between temperate and tropical birds is often hampered by a lack of knowledge about tropical species. Even within the well-known warblers of the genus Sylvia , which include resident species from temperate and tropical regions as well as migrants, there are few data from tropical species. We investigated the breeding biology of the tropical species Sylvia lugens and S. boehmi in a 2-year study in Kenya. Both species had a clutch size of 2.0 and laid c.  3.7 clutches per year. Breeding was characterized by long incubation periods ( S. lugens 14.5 days, S. boehmi 15.0 days), long nestling periods (16.0 and 12.9 days, respectively) and high predation rates (Mayfield nest success S. lugens 33.2%, S. boehmi 19.4%). Annual fecundity was 2.3 fledglings in S. lugens and 1.4 fledglings in S. boehmi . After fledging, the young birds were fed for 37.5 days ( S. lugens ) and 58.5 days ( S. boehmi ) (time to independence) and they stayed in their parents' territory for days or weeks, even after feeding had stopped. Fledgling survival until independence was 55.4% in S. lugens and 69.2% in S. boehmi . In general, S. lugens and S. boehmi have smaller but more numerous clutches, longer developmental periods, higher nest predation rates, lower annual fecundity and longer post-fledging care than their temperate congenerics.  相似文献   

7.
Juveniles of several passerine species renew all of their fresh juvenile feathers immediately after fledging (complete post‐juvenile moult), in contrast to the majority, which perform a partial post‐juvenile moult. To understand the adaptive roles of this phenomenon we compared the quality of juvenile plumage in species that perform a complete post‐juvenile moult with that of species which perform a partial post‐juvenile moult; we similarly compared juveniles and adults in each of these groups. The quality of feathers was measured by mass of primaries, colour, and length. In species which perform a complete post‐juvenile moult the plumage quality of second‐year individuals, in their first breeding season, is similar to the plumage quality of adults, unlike those species that perform a partial post‐juvenile moult. In species which perform complete post‐juvenile moult, the quality of the feathers grown in the nest is lower than the quality of adult post‐breeding feathers. In contrast, in species which perform partial post‐juvenile moult the quality of the feathers grown in the nest is similar to that of adult post‐breeding feathers. We found that a complete post‐juvenile moult strategy is much more common 1) in residents and short‐distance migrants than in long‐distance migrants, 2) in southern latitudes, 3) in species with medium body mass and 4) in omnivores and granivores. Our results indicate two adaptive roles of the complete post‐juvenile moult strategy: 1) achieving high quality plumage in the first year which may increase individual survival probability and fitness and 2) allocating fewer resources to nestling plumage and more to nestling development, which enables the nestlings to leave the nest earlier, thus reducing the probability of encountering nest predators. We suggest that the complete post‐juvenile moult, immediately after fledging, is an optimal strategy in favourable habitats and under low time constraints, as in some tropical ecosystems.  相似文献   

8.
Juvenile mortality is one of crucial drivers of life‐history evolution, and predation is the main cause of nest loss in birds. Thus, understanding how nest predation and failure vary in nature is important for understanding life history evolution and, moreover, for effective conservation. We used published data and unpublished records to study factors influencing nest predation and total failure in 138 populations of 90 species of Australian songbirds. Daily predation (average 2.0% d?1) and failure rates (2.9%) increased from temperate regions to the tropics, over the last four decades, and were lowest in temperate south‐western Australia. Predation and failure were higher in smaller species, and failure rates were lower in species with closed nests than in species with open nests. There was no effect of nest height or nest site (ground, shrub, canopy) or social organization on nest predation or failure rates. Nest predation caused on average 72% of total nest failure, similar to other tropical, subtropical, and temperate areas. Our study spanning from the tropics to temperate regions and using > 10 000 nests confirmed that tropical birds faced higher nest failure rates. We identified an increase in nest depredation rates in the last four decades in Australia, suggesting that a large‐scale ecological phenomenon must be responsible. It may include increases in predator abundances and/or ranges, possibly connected with human‐caused habitat change. A global comparison of nest failure rates confirmed that predation is the main source of nest mortality in songbirds worldwide. We discuss implications of our results for the evolution of reproductive strategies and for the conservation of Australian birds.  相似文献   

9.
For altricial young, fledging is an abrupt step into an unknown environment. Despite increasing numbers of studies addressing the post‐fledging period, our current knowledge of the causes and consequences of post‐fledging survival remains fragmentary. Here, we review the literature on post‐fledging survival of juvenile altricial birds, addressing the following main questions: Is low post‐fledging survival a bottleneck in the altricial reproductive cycle? What is known of proximate and ultimate causal factors such as trophic relations (food and predation), habitat conditions, or abiotic factors acting in the post‐fledging period? We analyzed weekly survival estimates from 123 data series based on studies of 65 species, covering weeks 1–13 post‐fledging. As a general pattern, survival of fledglings was low during the first week post‐fledging (median rate = 0.83), and improved rapidly with time post‐fledging (week 4 median rate = 0.96). For ground‐nesting species, survival immediately after leaving nests was similar to egg‐to‐fledging survival. For species breeding above‐ground, survival during the first week post‐fledging was substantially lower than during both the nestling period and later post‐fledging stages. Thus, the early post‐fledging period is a bottleneck of markedly elevated mortality for most altricial species. Predation was the main proximate cause of mortality. Various factors such as habitat, annual and seasonal variation in the environment, and the physical condition of fledglings have been found to affect post‐fledging survival. Individual survival depended strongly on physical traits such as mass and wing length, which likely influence the ability of fledglings to escape predation. Trophic relationships at various levels are the main ultimate driver of adaptation of traits relevant to survival during the pre‐ and post‐fledging periods. Spatiotemporal dynamics of food resources determine the physical development of juveniles and, in turn, their performance after fledging. However, predators can cause quick and efficient selection for fledgling traits and adult breeding decisions. Parental strategies related to clutch size and timing of breeding, and the age and developmental stage at which young fledge have substantial effects on post‐fledging survival. The intensity and duration of post‐fledging parental investment also influences fledgling survival. Post‐fledging mortality is therefore not a random and inevitable loss. Traits and strategies related to fledging and the post‐fledging stage create large fitness differentials and, therefore, are integral, yet poorly understood, parts of the altricial reproductive strategy.  相似文献   

10.
Nest survival is critical to breeding in birds and plays an important role in life‐history evolution and population dynamics. Studies evaluating the proximate factors involved in explaining nest survival and the resulting temporal patterns are biased in favor of temperate regions. Yet, such studies are especially pertinent to the tropics, where nest predation rates are typically high and environmental conditions often allow for year‐round breeding. To tease apart the effects of calendar month and year, population‐level breeding activity and environmental conditions, we studied nest survival over a 64‐month period in equatorial, year‐round breeding red‐capped larks Calandrella cinerea in Kenya. We show that daily nest survival rates varied with time, but not in a predictable seasonal fashion among months or consistently among years. We found negative influences of flying invertebrate biomass and rain on nest survival and higher survival of nests when nests were more abundant, which suggests that nest predation resulted from incidental predation. Although an increase in nest predation is often attributed to an increase in nest predators, we suggest that in our study, it may be caused by altered predator activity resulting from increased activity of the primary prey, invertebrates, rather than activity of the red‐capped larks. Our results emphasize the need to conduct more studies in Afro‐tropical regions because proximate mechanisms explaining nest predation can be different in the unpredictable and highly variable environments of the tropics compared with the relatively predictable seasonal changes found in temperate regions. Such studies will aid in better understanding of the environmental influences on life‐history variation and population dynamics in birds.  相似文献   

11.
Survival of offspring is a key fitness component and, for birds, the threat of predation on nests is especially influential. Data on rates of nest success from tropical regions are comparatively few, conservation‐relevant, and essential for assessing the validity of models comparing the life histories and behavior or birds across latitudinal gradients. We monitored over 2 000 nests in the lowland forests of central Panama and, using the logistic exposure to model the fate of nests, explored the importance of variation in rate of nest success according to type of nest, height of nests, among years, in early versus late nests, and at different stages of the nest cycle. Analyses of over 1 400 nests for 18 species revealed considerable variation among species in the daily survival rate of nests (range among 18 species=0.91 to 0.98), but nest type and stage of the nesting cycle were generally influential on the probability of nest success. Cavity or enclosed nesters experienced greater nest success than open cup nesters and rates of nest loss were generally greatest in the nestling stage. We found limited evidence that height of nests affected probability of success, but no indication that timing of nesting effort was influential. Despite the occurrence of a severe ENSO event during our sampling, annual variation in nest success was not consistent among species. Interspecific variation in the rates and patterns of nest predation in our study, coupled with reports of high rates of nest loss at temperate latitudes, lead us to question long standing assumptions about latitudinal trends in rates of nest loss. We urge further work to understand the implications of nest predation on the evolutionary ecology of tropical birds.  相似文献   

12.
Attempts to understand the causes of variation in senescence trajectories would benefit greatly from biomarkers that reflect the progressive declines in somatic integrity (SI) that lead to senescence. While telomere length has attracted considerable interest in this regard, sources of variation in telomere length potentially unrelated to declines in SI could, in some contexts, leave telomere attrition rates a more effective biomarker than telomere length alone. Here, we investigate whether telomere length and telomere attrition rates predict the survival of wild white‐browed sparrow‐weaver nestlings (Plocepasser mahali). Our analyses of telomere length reveal counterintuitive patterns: telomere length soon after hatching negatively predicted nestling survival to fledging, a pattern that appears to be driven by differentially high in‐nest predation of broods with longer telomeres. Telomere length did not predict survival outside this period: neither hatchling telomere length nor telomere length in the mid‐nestling period predicted survival from fledging to adulthood. Our analyses using within‐individual telomere attrition rates, by contrast, revealed the expected relationships: nestlings that experienced a higher rate of telomere attrition were less likely to survive to adulthood, regardless of their initial telomere length and independent of effects of body mass. Our findings support the growing use of telomeric traits as biomarkers of SI, but lend strength to the view that longitudinal assessments of within‐individual telomere attrition since early life may be a more effective biomarker in some contexts than telomere length alone.  相似文献   

13.
Bo Söderström 《Ecography》1999,22(4):455-463
Nest predation rates are believed to be higher in tropical than in temperate forests. This notion is central in explaining different life history traits of tropical and temperate birds, but it is not known whether this assertion is true for all nest sites, such as ground and shrub nests, and at different distances from forest edge. I reviewed 22 studies using artificial nest experiments which concurrently contrasted predation rates of ground and shrub nests in temperate and tropical forests and found, contrary to the current dogma, no overall difference in predation rates between regions. However, there was a significant interaction between region and nest site. Ground nest predation rates were significantly higher in the tropical region, while predation rates on shrub nests were similar between regions. Within the tropical region, ground nests had significantly higher predation rates than shrub nests. Elevated nest predation rates at forest edges were found in both temperate and tropical forests. The results may have great implications for expected patterns of avian life histories and for the effects of forest fragmentation in temperate and tropical regions. First, if nest predation affects avian life histories, my results predict ground-nesting species in tropical forests to have shorter nestling periods, more broods and smaller clutch sizes than shrub-nesting species. Second, vulnerability of ground- and shrub-nesting guilds is suggested to differ between regions due to differences in forest vegetation structure, and the composition of predator faunas and their specific responses to forest fragmentation. Data to test these hypotheses are limited, but agree with the results of this review.  相似文献   

14.
Productivity is a key demographic trait that can be influenced by climate change, but there are substantial gaps in our understanding of the impact of weather on productivity and recruitment in birds. Weather is known to influence reproductive success in numerous species, although such effects have not been reported in all studies, perhaps because they are masked by high nest predation rates or buffered by density dependence. Here, we use a 19‐yr study of a population of individually marked long‐tailed tits Aegithalos caudatus to quantify the impacts of weather on productivity in the nest (from eggs to fledging) and subsequent recruitment, while taking nest predation rates and density dependence into account. We find that weather has negligible effects on clutch size, hatching success, brood size, probability of fledging and number of fledglings. Annual variation in nest predation rates is a strong predictor of productivity, but we find no evidence that the magnitude of nest predation is determined by weather. Recruitment was strongly associated with breeding season weather, even when taking density dependence effects into account. This contrasts with the conventional view that first year survival of temperate passerines is primarily determined by winter weather. Recruitment was reduced when March temperatures were high, perhaps caused by earlier peaks in caterpillar abundance and thus reduced food availability at the time of fledging. Recruitment increased following high May temperatures, perhaps due to an improved thermo‐regulatory environment for young fledglings. These opposing effects of warm March and May temperatures highlight the importance of considering asymmetrical rates of warming in different months when predicting climate change impacts.  相似文献   

15.
Among stages of avian ontogeny, the act of nest departure or fledging is an abrupt transition into a new environment and a major leap toward independence for offspring. In altricial birds, the timing (i.e. time of day) of fledging is notable in that many species tend to fledge early in the morning. Past studies have proposed nest predation as a key factor driving birds to fledge earlier in the morning (the ‘survival hypothesis’), whereby offspring avoid peak times of nest predation that occur later in the day. A natural extension of this hypothesis is the predation of offspring post-fledging, whereby offspring are also timing their fledging with future survival prospects outside of the nest. However, few studies have investigated fledging behaviour in the context of both nesting and post-fledging predation. To help fill this knowledge gap, we investigated factors driving the timing and duration of fledging across six songbird species in the context of offspring predation: daily nest mortality, post-fledging mortality and diel patterns of nest predation risk. We found that > 60% of songbirds fledged early in the morning, whereas the peaks in nest predation risk occurred several hours post-fledging. Furthermore, species under greater risk of nest predation fledged earlier in the day and in closer succession to their siblings. Parameters of post-fledging mortality were poor predictors of fledging timing, but individuals from broods of species under higher risk of post-fledging mortality fledged in closer succession to their siblings. These results provide evidence in support of the survival hypothesis, and suggest that songbirds fledge in the morning to avoid peak times of nest predation risk that occur later in the day (~ 8 h after civil dawn). Such results corroborate past research highlighting predation on dependent offspring as a key factor driving variation in life histories across animal taxa; however, estimates of post-fledging mortality suggest that nest predation alone does not fully explain variation in fledging behaviour among species. Future research is therefore needed to investigate the contribution of other factors, such as energetics, parent–offspring conflict and diel patterns of post-fledging survival, which may help to mediate diel patterns of fledging within and among songbird species.  相似文献   

16.
For avian group living to be evolutionary stable, multiple fitness benefits are expected. Yet, the difficulty of tracking fledglings, and thus estimating their survival rates, limits our knowledge on how such benefits may manifest postfledging. We radio‐tagged breeding females of the Afrotropical cooperatively breeding Placid greenbul (Phyllastrephus placidus) during nesting. Tracking these females after fledging permitted us to locate juvenile birds, their parents, and any helpers present and to build individual fledgling resighting datasets without incurring mortality costs or causing premature fledging due to handling or transmitter effects. A Bayesian framework was used to infer age‐specific mortality rates in relation to group size, fledging date, maternal condition, and nestling condition. Postfledging survival was positively related to group size, with fledglings raised in groups with four helpers showing nearly 30% higher survival until independence compared with pair‐only offspring, independent of fledging date, maternal condition or nestling condition. Our results demonstrate the importance of studying the early dependency period just after fledging when assessing presumed benefits of cooperative breeding. While studying small, mobile organisms after they leave the nest remains highly challenging, we argue that the telemetric approach proposed here may be a broadly applicable method to obtain unbiased estimates of postfledging survival.  相似文献   

17.
Previous studies have shown that avian growth and development covary with juvenile mortality. Juveniles of birds under strong nest predation pressure grow rapidly, have short incubation and nestling periods, and leave the nest at low body mass. Life-history theory predicts that parental investment increases with adult mortality rate. Thus, developmental traits that depend on the parental effort exerted (pre- and postnatal growth rate) should scale positively with adult mortality, in contrast to those that do not have a direct relationship with parental investment (timing of developmental events, e.g. nest leaving). I tested this prediction on a sample of 84 North American songbirds. Nestling growth rate scaled positively and incubation period duration negatively with annual adult mortality rates even when controlled for nest predation and other covariates, including phylogeny. On the contrary, neither the duration of the nestling period nor body mass at fledging showed any relationship. Proximate mechanisms generating the relationship of pre- and postnatal growth rates to adult mortality may include increased feeding, nest attentiveness during incubation and/or allocation of hormones, and deserve further attention.  相似文献   

18.
Urban environments impose novel selection pressures with varying impacts across species and life history stages. The post‐fledging stage for migratory passerines, defined as the period of time from when hatch‐year birds fledge until their first migration, is a poorly understood component of annual productivity that potentially limits population growth. We studied two migratory passerines with positive and negative population responses to urbanization, respectively: gray catbird Dumetella carolinensis and wood thrush Hylocichla mustelina. Our goals were to estimate post‐fledging survival rates for urban bird populations and determine which features of the urban landscape impact mortality risk during the post‐fledging stage. From 2012–2014, we tracked 127 fledglings (60 gray catbirds and 67 wood thrushes). Over 55 d after fledging, cumulative survival of gray catbirds (0.32 [95% CI: 0.22–0.47]) was approximately half that of wood thrushes (0.63 [95% CI: 0.52–0.75]). Thus, survival rates during the post‐fledging stage, taken in isolation, do not explain differential trajectories of gray catbird and wood thrush populations in urban environments. Most mortality (86%) for both species was due to predation. However, after reaching independence from parental care, 6 birds (9.4% of mortalities) died of anthropogenic causes (e.g. building, car strikes). Crossing roads significantly increased mortality risk, but increasing daily movement distance decreased mortality risk. Our results raise the question of whether anthropogenic sources of mortality are compensatory or additive to natural mortality; we emphasize the need to monitor fledgling survival beyond the parental‐dependence stage in order to fully understand the impacts of anthropogenic hazards on juvenile birds.  相似文献   

19.
Life history studies have established that trade‐offs between growth and survival are common both within and among species. Identifying the factor(s) that mediate this trade‐off has proven difficult, however, especially at the among‐species level. In this study, we examined a series of potentially interrelated traits in a community of temperate‐zone passerine birds to help understand the putative causes and consequences of variation in early‐life growth among species. First, we examined whether nest predation risk (a proven driver of interspecific variation in growth and development rates) was correlated with species‐level patterns of incubation duration and nestling period length. We then assessed whether proxies for growth rate covaried with mean trait covariance strength (i.e., phenotypic correlations ( rp), which can be a marker of early‐life stress) among body mass, tarsus length, and wing length at fledging. Finally, we examined whether trait covariance strength at fledging was related to postfledging survival. We found that higher nest predation risk was correlated with faster skeletal growth and that our proxies for growth corresponded with increased trait covariance strength ( rp), which subsequently, correlated with higher mortality in the next life stage (postfledging period). These results provide an indication that extrinsic pressures (nest predation) impact rates of growth, and that there are costs of rapid growth across species, expressed as higher mean rp and elevated postfledging mortality. The link between higher levels of trait covariance at fledging and increased mortality is unclear, but increased trait covariance strength may reflect reduced phenotypic flexibility (i.e., phenotypic canalization), which may limit an organism''s capacity for coping with environmental or ecological variability.  相似文献   

20.
Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号