首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role and metabolism of indole-3-acetic acid in gram-negative bacteria is well documented, but little is known about indole-3-acetic acid biosynthesis and regulation in gram-positive bacteria. The phytopathogen Rhodococcus fascians, a gram-positive organism, incites diverse developmental alterations, such as leafy galls, on a wide range of plants. Phenotypic analysis of a leafy gall suggests that auxin may play an important role in the development of the symptoms. We show here for the first time that R. fascians produces and secretes the auxin indole-3-acetic acid. Interestingly, whereas noninfected-tobacco extracts have no effect, indole-3-acetic acid synthesis is highly induced in the presence of infected-tobacco extracts when tryptophan is not limiting. Indole-3-acetic acid production by a plasmid-free strain shows that the biosynthetic genes are located on the bacterial chromosome, although plasmid-encoded genes contribute to the kinetics and regulation of indole-3-acetic acid biosynthesis. The indole-3-acetic acid intermediates present in bacterial cells and secreted into the growth media show that the main biosynthetic route used by R. fascians is the indole-3-pyruvic acid pathway with a possible rate-limiting role for indole-3-ethanol. The relationship between indole-3-acetic acid production and the symptoms induced by R. fascians is discussed.  相似文献   

3.
Limonoate dehydrogenase from Rhodococcus fascians has been purified to electrophoretic homogeneity by a procedure that consists of ion-exchange, hydrophobic, and affinity chromatography. The native enzyme has a molecular mass of around 128,000 Da and appears to be composed of four similar subunits (30,000 Da each). The isoelectric point is 4.9 as determined by isoelectric focusing. The homogeneous enzyme was used to determine the NH2-terminal amino acid sequence. The enzyme was purified from cells grown in either fructose or limonoate as a carbon source. Limonoate dehydrogenase activity was higher in limonoate-grown cultures. Additionally, the enzyme preparations differed in their affinity for limonoids but not for NAD+. In all cases limonoate dehydrogenase exhibited a higher catalytic rate and stronger affinity for limonoate A-ring lactone than for disodium limonoate, the limonoid traditionally used for in vitro activity assays. Our data confirm previous reports proposing that limonoate A-ring lactone is the physiological substrate for limonoate dehydrogenase. The increase in limonoate dehydrogenase activity observed in limonoate-grown cultures appears to be caused by a rise in protein levels, since chloramphenicol prevented such an effect.  相似文献   

4.
A 6.0-kb SalI DNA fragment containing an entire rRNA operon (rrnB) was cloned from a cosmid gene bank of the phytopathogenic strain Rhodococcus fascians D188. The nucleotide sequence of the 6-kb fragment was determined and had the organization 16S rRNA-spacer-23S rRNA-spacer-5S rRNA without tRNA-encoding genes in the spacer regions. The 5′ and 3′ ends of the mature 16S, 23S, and 5S rRNAs were determined by alignment with the rrn operons of Bacillus subtilis and other gram-positive bacteria. Four copies of the rrn operons were identified by hybridization with an rrnB probe in R. fascians type strain ATCC 12974 and in the virulent strain R. fascians D188. However, another isolate, CECT 3001 (= NRRL B15096), also classified as R. fascians, produced five rrn-hybridizing bands. An integrative vector containing a 2.5-kb DNA fragment internal to rrnB was constructed for targeted integration of exogenous genes at the rrn loci. Transformants carrying the exogenous chloramphenicol resistance gene (cmr) integrated in different rrn operons were obtained. These transformants had normal growth rates in complex medium and minimal medium and were fully stable for the integrated marker.

Rhodococcus fascians is a gram-positive bacterium with a high G+C content belonging to the group of lower actinomycetes (14) closely related to corynebacteria. Strains of this species are of interest because they are phytopathogenic (32), causing the formation of galls on dicotyledonous plants (30) and malformations of bulbs of monocotyledonous plants (24).The molecular genetics of nonpathogenic corynebacteria have received considerable attention (for reviews see references 23 and 29), but there are no advanced recombinant DNA tools for studying molecular genetics of plant-pathogenic bacteria such as R. fascians. Several plasmids, including circular and high-molecular-weight linear plasmids, are present in strains of R. fascians (7, 11). Conjugative plasmids carrying genes determining resistance to cadmium salts (10) or chloramphenicol (12) have been characterized. One of these plasmids, pRF2, was used to develop bifunctional vectors that also replicate in Escherichia coli (12). By using these vectors, transformation of R. fascians strains has been obtained by electroporation (9, 11).Some genes associated with phytopathogenicity were found in a 200-kb linear plasmid in R. fascians D188 (7, 8). Chromosomal genes also appear to be required to produce plant disease (7). In order to clone and study additional genetic determinants involved in plant pathogenicity, there is a need to develop a system for chromosomal integration and expression of homologous or heterologous DNA in well-characterized dispensable sites of the R. fascians chromosome. As part of an effort in this direction, we characterized the nucleotide sequence and organization of an rRNA operon (rrnB) of R. fascians D188. Although the 5S rRNA gene of this species (21) and the 16S rRNA gene were amplified by PCR and used in phylogenetic analyses of gram-positive bacteria previously (26), the complete organization of the rrn operons and the number of rrn loci were not established.Gene targeting is a useful strategy for introducing exogenous genes into specific chromosomal regions. Due to their repetitive nature, rRNA operons are very suitable targets for chromosomal integration of foreign DNA fragments without modification of growth rates and viability characteristics (5). In this paper we describe the characterization of the rrnB locus and the use of rRNA-encoding regions of R. fascians D188 as target sites for integration and expression of the exogenous gene cmr, a gene conferring chloramphenicol resistance (12).  相似文献   

5.
Isolate A-3 from Antarctic soil in Casey Station, Wilkes Land, was characterized for growth on hydrocarbons. Use of glucose or kerosene as a sole carbon source in the culture medium favoured biosynthesis of surfactant which, by thin-layer chromatography, indicated the formation of a rhamnose-containing glycolipid. This compound lowered the surface tension at the air/water interface to 27 mN/m as well as inhibited the growth of B. subtilis ATCC 6633 and exhibited hemolytic activity. A highly hydrophobic surface of the cells suggests that uptake occurs via a direct cell–hydrocarbon substrate contact. Strain A-3 is Gram-positive, halotolerant, catalase positive, urease negative and has rod–coccus shape. Its cell walls contained meso-diaminopimelic acid. Phylogenetic analysis based on comparative analysis of 16S rRNA gene sequences revealed that strain A-3 is closely related to Rhodococcus fascians with which it shares 100% sequence similarity. This is the first report on rhamnose-containing biosurfactant production by Rhodococcus fascians isolated from Antarctic soil.  相似文献   

6.
Rhodococcus fascians is currently the only phytopathogen of which the virulence genes occur on a linear plasmid. To get insight into the origin of this replicon and into the virulence strategy of this broad-spectrum phytopathogen, the sequence of the linear plasmid of strain D188, pFiD188, was determined. Analysis of the 198,917 bp revealed four syntenic regions with linear plasmids of R. erythropolis, R. jostii, and R. opacus, suggesting a common origin of these replicons. Mutational analysis of pFi_086 and pFi_102, similar to cutinases and type IV peptidases, respectively, showed that conserved region R2 was involved in plasmid dispersal and pointed toward a novel function for actinobacterial cutinases in conjugation. Additionally, pFiD188 had three regions that were unique for R. fascians. Functional analysis of the stk and nrp loci of regions U2 and U3, respectively, indicated that their role in symptom development was limited compared with that of the previously identified fas, att, and hyp virulence loci situated in region U1. Thus, pFiD188 is a typical rhodococcal linear plasmid with a composite structure that encodes core functions involved in plasmid maintenance and accessory functions, some possibly acquired through horizontal gene transfer, implicated in virulence and the interaction with the host.  相似文献   

7.
Summary The ability of Rhodococcus fascians cells to degrade limonin and limonin species (limonoate, limonoate-D-ring lactone and limonoate-A-ring lactone) was checked against pH. These studies showed a marked effect of pH on cell growth mainly due to substrate availability (limonin species). Evolution of limonin and its species within the medium were followed at different pH values. The best substrate for Rhodococcus fascians at pH 7.0 was limonoate whereas at pH 4.0 to 5.5 it appeared to be limonin. Results suggest that the citrus juice debittering process start only once the natural precursor of limonin (limonoate A ring lactone) has been transformed into limonin, the equilibrium displacement being governed by the citrus juice pH.  相似文献   

8.
Plant growth, development, and morphology can be affected by several environmental stimuli and by specific interactions with phytopathogens. In many cases, plants respond to pathogenic stimuli by adapting their hormone levels. Here, the interaction between the phytopathogen Rhodococcus fascians and one of its host plants, tobacco, was analyzed phenotypically and molecularly. To elucidate the basis of the cell division modulation and shoot primordia initiation caused by R. fascians, tobacco plants were infected at leaf axils and shoot apices. Adventitious meristems that gave rise to multiple-shoot primordia (leafy galls) were formed. The use of a transgenic line carrying the mitotic CycB1 promoter fused to the reporter gene coding for beta-glucuronidase from Escherichia coli (uidA), revealed that stem cortical cells were stimulated to divide in an initial phase of the leafy gall ontogenesis. Local cytokinin and auxin levels throughout the infection process as well as modulation of expression of the cell cycle regulator gene Nicta;CycD3;2 are discussed.  相似文献   

9.
Bacterial strains isolated from the healthy breech mucosa and myiatic wounds of ewes were tested for their volatile production as fly attractants towards Wohlfahrtia magnifica (Diptera: Sarcophagidae). Cultures were studied as fly baits in field experiments, and strains performing with the best chemotropic effect were selected for further analysis. Static and dynamic headspace samples from shaken cultures were examined by gas chromatography-mass spectrometry (GC-MS). Strains identified as Rhodococcus fascians and Mycobacterium aurum produced various volatile sulfur compounds and benzene, and proved to be the best fly attractants.  相似文献   

10.
Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiting X. fastidiosa growth, as indicated by low minimum inhibitory concentrations (MICs). In addition, phenolic compounds with different structural features exhibited different anti-Xylella capacities. Particularly, catechol, caffeic acid and resveratrol showed strong anti-Xylella activities. Differential response to phenolic compounds was observed among X. fastidiosa strains isolated from grape and almond. Elucidation of secondary metabolite-based host resistance to X. fastidiosa will have broad implication in combating X. fastidiosa-caused plant diseases. It will facilitate future production of plants with improved disease resistance properties through genetic engineering or traditional breeding approaches and will significantly improve crop yield.  相似文献   

11.
The nucleotide sequence of the chloramphenicol-resistance gene (cmr) of Rhodococcus fascians NCPPB 1675 (located on the conjugative plasmid pRF2) allowed the identification of two possible open reading frames (ORFs), of which ORF1 was consistent with the mutational analysis. Biochemical analysis of cmr revealed that it does not encode an antibiotic-modifying enzyme. The amino acid sequence of ORF1 predicted a hydrophobic protein, with 12 putative membrane-spanning domains, homologous to proteins involved in the efflux of tetracycline across the plasma membrane. Expression of the cmr gene was induced by addition of chloramphenicol to the growth media. The promoter of this gene was restricted to 50 bp upstream from a 200 bp 5'-untranslated mRNA region, the latter containing two inverted repeats. At the amino acid level, the cmr gene is 52% identical to a previously identified chloramphenicol-resistance determinant in Streptomyces lividans, indicating a wider dispersion of this type of cmr gene among the actinomycetes.  相似文献   

12.
13.
The effect of Rhodococcus fascians, the causal agent of leafy gall disease, on the mitotic behavior of synchronized tobacco Bright Yellow-2 (BY-2) cells was investigated. Incubation of aphidicolin-synchronized BY-2 cells with R. fascians cells specifically resulted in a broader mitotic index peak, an effect that was linked to an intact and expressed fas virulence locus. The obtained results pointed towards an effect of R. fascians on the prophase of mitosis. The relevance of these results to the virulence of the bacterium is discussed.  相似文献   

14.
Rhodococcus fascians is a plant-pathogenic bacterium that causes malformations on aerial plant parts, whereby leafy galls occur at axillary meristems. The colonization behavior on Nicotiana tabacum and Arabidopsis thaliana plants was examined. Independent of the infection methods, R. fascians extensively colonized the plant surface where the bacteria were surrounded by a slime layer. R. fascians caused the collapse of epidermal cells and penetrated intercellularly into the plant tissues. The onset of symptom development preceded the extensive colonization of the interior. The meristematic regions induced by pathogenic strain D188 were surrounded by bacteria. The nonpathogenic strain, D188-5, colonized the exterior of the plant equally well, but the linear plasmid (pFiD188) seemed to be involved in the penetration efficiency and colonization of tobacco tissues.  相似文献   

15.
本文以我们的研究结果为基础,并结合国内外近几年有关研究报道,对植物体细胞胚发生中的超策结构和ATP酶活性时空分布动脉及内源激素的变化和作用进行专题评述。(1)超微结构的变化:当植物体细胞一量转化为胚性细胞后,各种细胞器相继增加,不仅丰富而且活跃,特别是线粒体内发达,有的正处于分裂状态;核糖体聚集成多聚核糖体;质体中含大量淀粉粒,接着出现高尔基体等。早期胚性细胞与周围细胞还存在胞间连丝,随着胚性细胞壁的加厚,胞间连丝也随之消失。(2)ATP酶时空分布动态:早期的胚性细胞中ATP酶反应产物主要沉积于质和液泡上,后期ATP酶活性转入细胞内,液泡和细胞核中,而且在胚性细胞壁加厚处有活跃的A5P酶活性反应,并证明ATP酶活性是在胚性细胞发生过程中形成的。(3)内源激素的变化与作用:在体细胞胚诱导过程中内源激素起着关键性作用,内源生长素含量的提高为胚性细胞的诱导奠定了基础,细胞分裂素含量的增加可促进胚性细胞的分裂和增殖,ABA不仅提高了体细胞胚的诱导频率,而且促进了体细胞胚的正常发育。  相似文献   

16.
17.
本文以我们的研究结果为基础,并结合国内外近几年有关研究报道,对植物体细胞胚发生中的超微结构和ATP酶活性时空分布动态及内源激素的变化和作用进行专题评述。⑴ 超微结构的变化:当植物体细胞一旦转化为胚性细胞后,各种细胞器相继增加,不仅丰富而且活跃,特别是线粒体内嵴发达,有的正处于分裂状态;核糖体聚集成多聚核糖体;质体中含大量淀粉粒,接着出现高尔基体等。早期胚性细胞与周围细胞还存在胞间连丝,随着胚性细胞壁的加厚,胞间连丝也随之消失。⑵ ATP酶时空分布动态:早期的胚性细胞中ATP酶反应产物主要沉积于质膜和液泡膜上,后期ATP酶活性转入细胞内,液泡和细胞核中,而且在胚性细胞壁加厚处有活跃的ATP酶活性反应,并证明ATP酶活性是在胚性细胞发生过程中形成的。⑶ 内源激素的变化与作用:在体细胞胚诱导过程中内源激素起着关键性作用,内源生长素含量的提高为胚性细胞的诱导奠定了基础,细胞分裂素含量的增加可促进胚性细胞的分裂和增殖,ABA不仅提高了体细胞胚的诱导频率,而且促进了体细胞胚的正常发育。  相似文献   

18.
The phytopathogenic bacterium Rhodococcus fascians provokes shoot meristem formation and malformations on aerial plant parts, mainly at the axils. The interaction is accompanied by bacterial colonization of the plant surface and tissues. Upon infection, the two bacterial loci required for full virulence, fas and att, were expressed only at the sites of symptom development, although their expression profiles differed both spatially and temporally. The att locus was expressed principally in bacteria located on the plant surface at early stages of infection. Expression of the fas locus occurred throughout infection, mainly in bacteria that were penetrating, or had penetrated, the plant tissues and coincided with sites of meristem initiation and proliferation. The implications for the regulation of virulence genes of R. fascians during plant infection are discussed.  相似文献   

19.
Rhodococcus fascians is a nocardiform bacteria that induces leafy galls (fasciation) on dicotyledonous and several monocotyledonous plants. The wild-type strain D188 contained a conjugative, 200 kb linear extrachromosomal element, pFiD188. Linear plasmid-cured strains were avirulent and reintroduction of this linear element restored virulence. Pulsed field electrophoresis indicated that the chromosome might also be a linear molecule of 4 megabases. Three loci involved in phytopathogenicity have been identified by insertion mutagenesis of this Fi plasmid. Inactivation of the fas locus resulted in avirulent strains, whereas insertions in the two other loci affected the degree of virulence, yielding attenuated (att) and hypervirulent (hyp) bacteria. One of the genes within the fas locus encoded an isopentenyltranferase (IPT) with low homology to analogous proteins from Gram-negative phytopathogenic bacteria. IPT activity was detected after expression of this protein in Escherichia coli cells. In R.fascians, ipt expression could only be detected in bacteria induced with extracts from fasciated tissue. R.fascians strains without the linear plasmid but containing this fas locus alone could not provoke any phenotype on plants, indicating additional genes from the linear plasmid were also essential for virulence. These studies, the first genetic analysis of the interaction of a Gram-positive bacterium with plants, suggest that a novel mechanism for plant tumour induction has evolved in R.fascians independently from the other branches of the eubacteria.  相似文献   

20.
The role and metabolism of indole-3-acetic acid in gram-negative bacteria is well documented, but little is known about indole-3-acetic acid biosynthesis and regulation in gram-positive bacteria. The phytopathogen Rhodococcus fascians, a gram-positive organism, incites diverse developmental alterations, such as leafy galls, on a wide range of plants. Phenotypic analysis of a leafy gall suggests that auxin may play an important role in the development of the symptoms. We show here for the first time that R. fascians produces and secretes the auxin indole-3-acetic acid. Interestingly, whereas noninfected-tobacco extracts have no effect, indole-3-acetic acid synthesis is highly induced in the presence of infected-tobacco extracts when tryptophan is not limiting. Indole-3-acetic acid production by a plasmid-free strain shows that the biosynthetic genes are located on the bacterial chromosome, although plasmid-encoded genes contribute to the kinetics and regulation of indole-3-acetic acid biosynthesis. The indole-3-acetic acid intermediates present in bacterial cells and secreted into the growth media show that the main biosynthetic route used by R. fascians is the indole-3-pyruvic acid pathway with a possible rate-limiting role for indole-3-ethanol. The relationship between indole-3-acetic acid production and the symptoms induced by R. fascians is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号