首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Extra‐pair paternity (EPP) is common in chickadees and often attributed to the good genes hypothesis. Females generally seek dominant males, who are typically larger, older and sing at higher rates than subordinate males, as extra‐pair sires. In other songbird species, habitat quality and urbanization have been found to influence EPP. Mountain chickadees commonly inhabit suburban habitat, and previous research on our population has shown urbanization may provide benefits to these adaptable songbirds. Here, we ask how individual condition and urbanization influence rates of EPP in mountain chickadees. Over three breeding seasons, we monitored mountain chickadee nests in urban and rural habitat, and determined parentage by genotyping adults and nestlings at six microsatellite loci. Extra‐pair paternity is common in mountain chickadees, with extra‐pair offspring (EPO) in 43.2% of nests and accounting for 17.9% of offspring. We found tenuous support for the good genes hypothesis with females tending to engage in EPCs with older males. However, we did not find an influence of male or female condition on the proportion of EPO in a nest. In addition, we did not find a significant effect of habitat on EPP rates, suggesting the impacts of urbanization on mountain chickadee reproduction may not extend to altering extra‐pair behaviour.  相似文献   

2.
Understanding how individual differences in physiological performance modify behavioral responses to environmental variability and its fitness consequences is key to predicting the vulnerability of species and populations to environmental change. For many species, summit metabolic rate (MSUM; the upper limit to heat production) and basal metabolic rate (BMR; the lower limit related to energy acquisition and processing) often constrain aspects of physiological performance and behavioral activity. We examined the relationship between metabolic phenotypes, foraging behavior, and survival in overwintering black‐capped chickadees Poecile atricapillus inhabiting contiguous and fragmented forested landscapes. We found that birds with lower summit metabolic rates were generally more sensitive to winter weather and increased their use of supplemental feeding stations as ambient temperatures decreased. In highly fragmented forests, this relationship may have incurred strong survival consequences, as birds with lower summit metabolic rates were less likely to survive the winter season. Additionally, we found that chickadee populations persisting in fragmented landscapes were characterized by slightly higher thermogenic capacity (MSUM) and lower maintenance metabolic costs (BMR). We suggest that habitat loss and fragmentation present unique selection pressures that alter the relationships between environmental variability, behavior and physiology, and result in context‐specific fitness consequences.  相似文献   

3.
Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured-exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.  相似文献   

4.
Forest fragmentation can affect various aspects of population dynamics, but few investigators have assessed possible effects on the behavior of a species. Loss of habitat may limit population recruitment and abundance, which may alter breeding dynamics in forest remnants. We examined the lekking behavior of White-throated Manakins (Corapipo gutturalis) in a fragmented landscape to determine if forest fragmentation affected the spatial distribution of display courts and male behavior at courts. We captured and observed males at 19 courts located in 11 primary forests of different sizes in forest habitats of the Biological Dynamics of Forest Fragments Project area, an experimentally fragmented landscape located in the central Brazilian Amazon, and estimated their spatial distribution as the distance to the nearest court in the landscape. We quantified habitat loss using the proportion of forest cover surrounding courts and their distances to forest edges. No courts were detected in 1-ha forest fragments, suggesting direct effects from habitat loss following fragmentation that affected connectivity and thus recruitment and persistence of courts in the smallest fragments. The spatial distribution of display courts in forests larger than 10 ha remained unaltered, compared to display courts in continuous forests, but adult males were less numerous on courts with a higher percentage of forest cover and they displayed less on courts closer to forest edges. The spatial distribution of courts also contributed to variation in male social behavior, with more juvenile males present and adult males displaying at lower rates at more isolated courts. Although White-throated Manakins are locally common, the observed behavioral changes in response to habitat loss may affect their population dynamics. Our results show the importance of assessing behavioral changes in conservation programs and, in particular, of including biologically relevant measures of habitat loss in addressing its possible effects on species persistence in fragmented landscapes.  相似文献   

5.
ABSTRACT.   Forest fragmentation can create negative edge effects that reduce the reproductive success of birds nesting near the forest/nonforest interface, and threaten bird populations deeper in remnant forest habitats. Negative edge effects may be more pronounced in landscapes that are moderately fragmented, particularly where agriculture is the primary land-use fragmenting forests. Information about the extent and strength of edge effects at a site can help guide conservation actions, and determine their effectiveness. We examined edge effects for birds breeding in a nearly contiguous forest fragmented by relatively narrow agricultural corridors in Illinois (USA). We measured rates of nest predation and brood parasitism for Acadian Flycatchers ( Empidonax virescens ) over a continuum of distances from the edge of an agricultural inholding. Nest predation and brood parasitism were highest near the edge and decreased with increasing distance from the edge. Given the cumulative effects of nest predation and brood parasitism on reproductive success, we determined that forest within 600 m of the inholding was sink habitat. We found, however, that deeper forest interior areas currently serve as source habitat, and that conversion of the entire 205 ha agricultural corridor to forest would add 1350 ha of source habitat for Acadian Flycatchers. Such results provide support for a local conservation strategy of forest consolidation and establish baseline measures necessary to determine the relative effectiveness of any subsequent reforestation efforts.  相似文献   

6.
REVIEWS     
Jones, P. J. 1978. Overlap of breeding and moult in the Whitebrowed Sparrowweaver in northwestern Botswana. Ostrich 48:21-24.

Female Whitebrowed Sparrowweavers Plocepasser mahali trapped on the nest while incubating showed advanced active moult of wing and tail feathers, indicating a complete overlap of moulting and breeding schedules. Additional moult data indicated an unusually protracted primary moult of 183 days. It is suggested that the low daily metabolic demands of a slow moult enable it to be compatible with breeding activities, which may be of advantage to some species living in semi-arid environments.  相似文献   

7.
Habitat fragmentation is a ubiquitous by-product of human activities that can alter the genetic structure of natural populations, with potentially deleterious effects on population persistence and evolutionary potential. When habitat fragmentation results in the subdivision of a population, random genetic drift then leads to the erosion of genetic diversity from within the resulting subpopulation, random genetic drift then leads to the erosion of genetic diversity from within the resulting subpopulations and greater genetic divergence among them. Theoretical and simulation analyses predict that these two main genetic effects of fragmentation, greater differentiation among resulting subpopulation and reduced genetic diversity within them, will proceed at very different rates. Despite important implications for the interpretation of genetics data from fragmented populations, empirical evidence for this phenomenon has been lacking. In this analysis, we carry out an empirical study in population of an alpine meadow-dwelling butterfly, which have become fragmented increasing forest cover over five decades. We show that genetic differentiation among subpopulations (G(ST)) is most highly correlated with contemporary forest cover, while genetics diversity within subpopulation (expected heterozygosity) is better correlated with the spatial pattern of forest cover 40 years in the past. Thus, where habitat fragmentation has occurred in recent decades, genetic differentiation among subpopulation can be near equilibrium while contemporary measures of within subpopulation diversity may substantially overestimate the equilibrium values that will eventually be attained.  相似文献   

8.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

9.
Many studies have demonstrated that forest fragmentation reduces populations of animal species and causes local extinction, triggering many cascading effects. The effect of fragmentation on animals can be exerted through various processes, but such effects have been understudied. In this study, we posed the possibility of differences in the seasonal effects of fragmentation on frugivorous birds and their dispersal of seeds belonging to five tree species. We hypothesized that these effects may be caused by birds and their habitat selection for suitable breeding forests. We compared the abundance and species richness of frugivorous birds and the number of bird-removed fruits between a well-preserved and a fragmented temperate forest for two consecutive years. The abundance of birds was lower in the fragmented compared to the well-preserved forest during the breeding season, although no clear differences in species richness were observed. In contrast, similar decreases in bird abundance were not observed during the migratory season. After controlling for variation in crop size, the number of bird-removed fruits was lower in the fragmented forest compared to the well-preserved forest during the breeding season, but there was no such tendency during the migratory season. These results indicate that evaluations regarding the effects of fragmentation on seed dispersal that do not consider seasonal factors may lead to erroneous conclusions. This study suggests that the effects of fragmentation can be exerted though various processes, many of which remain poorly studied and warrant further examination.  相似文献   

10.
Moult entails costs related to the acquisition of energy and nutrients necessary for feather synthesis, as well as the impact of reduced flight performance induced by gaps in the wing plumage. Variation in moult strategies within and between populations may convey valuable information on energetic trade-offs and other responses to differing environmental constraints. We studied the moult strategies of two populations of a pelagic seabird, the black-browed albatross Thalassarche melanophris, nesting in contrasting environments. According to conventional wisdom, it is exceptional for albatrosses (Diomedeidae) to moult while breeding. Here we show that black-browed albatrosses breeding on the Falklands regularly moult primaries, tail and body feathers during chick-rearing, and the majority of those at South Georgia show some body feather moult in late chick-rearing. The greater moult-breeding overlap at the Falklands allows the birds to annually renew more primary feathers than their counterparts at South Georgia. The results of the present paper, pooled with other evidence, suggest that black-browed albatrosses from South Georgia face a more challenging environment during reproduction. They also serve to warn against the uncritical acceptance of conventional ideas about moult patterns when using feathers to study the ecology of seabirds and other migrants for which there is scant information at particular stages of the annual cycle.  相似文献   

11.
Parasite populations do not necessarily conform to expected patterns of genetic diversity and structure. Parasitic plants may be more vulnerable to the negative consequences of landscape fragmentation because of their specialized life history strategies and dependence on host plants, which are themselves susceptible to genetic erosion and reduced fitness following habitat change. We used AFLP genetic markers to investigate the effects of habitat fragmentation on genetic diversity and structure within and among populations of hemiparasitic Viscum album. Comparing populations from two landscapes differing in the amount of forest fragmentation allowed us to directly quantify habitat fragmentation effects. Populations from both landscapes exhibited significant isolation-by-distance and sex ratios biased towards females. The less severely fragmented landscape had larger and less isolated populations, resulting in lower levels of population genetic structure (F ST = 0.05 vs. 0.09) and inbreeding (F IS = 0.13 vs. 0.27). Genetic differentiation between host-tree subpopulations was also higher in the more fragmented landscape. We found no significant differences in within-population gene diversity, percentage of polymorphic loci, or molecular variance between the two regions, nor did we find relationships between genetic diversity measures and germination success. Our results indicate that increasing habitat fragmentation negatively affects population genetic structure and levels of inbreeding in V. album, with the degree of isolation among populations exerting a stronger influence than forest patch size.  相似文献   

12.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

13.
Trade‐offs between moult and fuelling in migrant birds vary with migration distance and the environmental conditions they encounter. We compared wing moult and fuelling at the northern and southern ends of migration in two populations of adult Common Whitethroats Sylvia communis. The western population moults most remiges at the breeding grounds in Europe (e.g. Poland) and migrates 4000–5000 km to western Africa (e.g. Nigeria). The eastern population moults all remiges at the non‐breeding grounds and migrates 7000–10 000 km from western Asia (e.g. southwestern Siberia) to eastern and southern Africa. We tested the hypotheses that: (1) Whitethroats moult their wing feathers slowly in South Africa, where they face fewer time constraints than in Poland, and (2) fuelling is slower when it coincides with moulting (Poland, South Africa) than when it occurs alone (Siberia, Nigeria). We estimated moult timing of primaries, secondaries and tertials from moult records of Polish and South African Whitethroats ringed in 1987–2017 and determined fuelling patterns from the body mass of Whitethroats ringed in all four regions. The western population moulted wing feathers in Poland over 55 days (2 July–26 August) at a varying rate, up to 13 feathers simultaneously, but fuelled slowly until departure in August–mid‐September. In Nigeria, during the drier period of mid‐February–March they fuelled slowly, but the fuelling rate increased three‐fold in April–May after the rains before mid‐April–May departure. The eastern population did not moult in Siberia but fuelled three times faster before mid‐July–early August departure than did the western birds moulting in Poland. In South Africa, the Whitethroats moulted over 57 days (2 January–28 February) at a constant rate of up to nine feathers simultaneously and fuelled slowly from mid‐December until mid‐April–May departure. These results suggest the two populations use contrasting strategies to capitalize on food supplies before departure from breeding and non‐breeding grounds.  相似文献   

14.
Nest predation is widely regarded as a major driver underlying the population dynamics of small forest birds. Following forest fragmentation and the subsequent invasion by species from non-forested landscape matrices, shifts in predator communities may increase nest predation near forest edges. However, effects of human-driven habitat change on nest predation have mainly been inferred from studies with artificial nests, despite being regarded as poor surrogates for natural ones. We studied variation in predation rates, and relationships with timing of breeding and characteristics of microhabitats and fragments, on natural white-starred robin Pogonocichla stellata nests during three consecutive breeding seasons (2004–2007) in a Kenyan fragmented cloud forest. More than 70% of all initiated nests were predated during each breeding season. Predation rates nearly quadrupled between the earliest and the latest nests within a single breeding season, increased with distance to the forest edge, and decreased with the edge-to-area ratio of forest fragments. These spatial relationships oppose the traditional perception of edge and fragmentation effects on nest predation, but are in line with results from artificial nest experiments in other East African forests. In case of inverse edge and fragmentation effects on nest predation, such as shown in this study, species that tolerate edges for breeding may be affected positively, rather than negatively, by forest fragmentation, while the opposite can be expected for species restricted to the forest interior. The possibility of inverse edge effects, and its conservation implications, should therefore be taken into account when drafting habitat restoration plans.  相似文献   

15.
In songbirds, song complexity and song sharing are features of prime importance for territorial defence and mate attraction. These aspects of song may be strongly influenced by changes in social environment caused by habitat fragmentation. We tested the hypothesis that habitat fragmentation induced by human activities influences song complexity and song sharing in the skylark, a songbird with a very large repertoire and whose population recently underwent a large decline. We applied powerful mathematical and statistical tools to assess and compare song complexity and song sharing patterns of syllables and sequences of syllables in two populations: a declining population in a fragmented habitat, in which breeding areas are separated from each other by unsuitable surroundings, and a stable population in a continuous habitat. Our results show that the structure of the habitat influences song sharing, but not song complexity. Neighbouring birds shared more syllables and sequences of syllables in the fragmented habitat than in the continuous one. Habitat fragmentation seems thus to have an effect on the composition of elements in songs, but not on the number and complexity of these elements, which may be a fixed feature of song peculiar to skylarks.  相似文献   

16.
Spatial configuration of habitats influences genetic structure and population fitness whereas it affects mainly species with limited dispersal ability. To reveal how habitat fragmentation determines dispersal and dispersal-related morphology in a ground-dispersing insect species we used a bush-cricket (Pholidoptera griseoaptera) which is associated with forest-edge habitat. We analysed spatial genetic patterns together with variability of the phenotype in two forested landscapes with different levels of fragmentation. While spatial configuration of forest habitats did not negatively affect genetic characteristics related to the fitness of sampled populations, genetic differentiation was found higher among populations from an extensive forest. Compared to an agricultural matrix between forest patches, the matrix of extensive forest had lower permeability and posed barriers for the dispersal of this species. Landscape configuration significantly affected also morphological traits that are supposed to account for species dispersal potential; individuals from fragmented forest patches had longer hind femurs and a higher femur to pronotum ratio. This result suggests that selection pressure act differently on populations from both landscape types since dispersal-related morphology was related to the level of habitat fragmentation. Thus observed patterns may be explained as plastic according to the level of landscape configuration; while anthropogenic fragmentation of habitats for this species can lead to homogenization of spatial genetic structure.  相似文献   

17.
Climate instability strongly affects overwintering conditions in organisms living in a strongly seasonal environment and consequently their survival and population dynamics. Food, predation and density effects are also strong during winter, but the effect of fragmentation of ground vegetation on ground-dwelling small mammals is unknown. Here, we report the results of a winter experiment on the effects of habitat fragmentation and food on experimental overwintering populations of bank voles Myodes glareolus. The study was conducted in large outdoor enclosures containing one large, two medium-sized or four small habitat patches or the total enclosure area covered with protective tall-grass habitat. During the stable snow cover of midwinter, only food affected the overwintering success, body condition, trappability and earlier onset of breeding in bank voles. However, after the snow thaw in spring, habitat fragmentation gained importance again, and breeding activities increased the movements of voles in the most fragmented habitat. The use of an open, risky matrix area increased along the habitat fragmentation. Our experiment showed that long-lasting stable snow cover protects overwintering individuals in otherwise exposed and risky ground habitats. We conclude that a stable winter climate and snow cover should even out habitat fragmentation effects on small mammals. However, along prolonged snow-free early winter and in an earlier spring thaw, this means loss of protection by snow cover both in terms of thermoregulation and predation. Thus, habitat cover is important for the survival of small ground-dwelling boreal mammals also during the non-breeding season.  相似文献   

18.
Habitat loss and resultant fragmentation are major threats to biodiversity, particularly in tropical and subtropical ecosystems. It is increasingly urgent to understand fragmentation effects, which are often complex and vary across taxa, time and space. We determined whether recent fragmentation of Atlantic forest is causing population subdivision in a widespread and important Neotropical seed disperser: Artibeus lituratus (Chiroptera: Phyllostomidae). Genetic structure within highly fragmented forest in Paraguay was compared to that in mostly contiguous forest in neighbouring Misiones, Argentina. Further, observed genetic structure across the fragmented landscape was compared with expected levels of structure for similar time spans in realistic simulated landscapes under different degrees of reduction in gene flow. If fragmentation significantly reduced successful dispersal, greater population differentiation and stronger isolation by distance would be expected in the fragmented than in the continuous landscape, and genetic structure in the fragmented landscape should be similar to structure for simulated landscapes where dispersal had been substantially reduced. Instead, little genetic differentiation was observed, and no significant correlation was found between genetic and geographic distance in fragmented or continuous landscapes. Furthermore, comparison of empirical and simulated landscapes indicated empirical results were consistent with regular long‐distance dispersal and high migration rates. Our results suggest maintenance of high gene flow for this relatively mobile and generalist species, which could be preventing or significantly delaying reduction in population connectivity in fragmented habitat. Our conclusions apply to A. lituratus in Interior Atlantic Forest, and do not contradict broad evidence that habitat fragmentation is contributing to extinction of populations and species, and poses a threat to biodiversity worldwide.  相似文献   

19.
Humans fragment landscapes to the detriment of wildlife. We review why fragmentation is detrimental to wildlife (especially birds), review the effects of urbanization on birds inhabiting nearby native habitats, suggest how restoration ecologists can minimize these effects, and discuss future research needs. We emphasize the importance of individual fitness to determining community composition. This means that reproduction, survivorship, and dispersal (not simply community composition) must be maintained, restored, and monitored. We suggest that the severity of the effects of fragmentation are determined by (1) the natural disturbance regime, (2) the similarity of the anthropogenic matrix to the natural matrix, and (3) the persistence of the anthropogenic change. As a result, urbanization is likely to produce greater effects of fragmentation than either agriculture or timber harvest. Restoration ecologists, land managers, and urban planners can help maintain native birds in fragmented landscapes by a combination of short‐ and long‐term actions designed to restore ecological function (not just shape and structure) to fragments, including: (1) maintaining native vegetation, deadwood, and other nesting structures in the fragment, (2) managing the landscape surrounding the fragment (matrix), not just the fragment, (3) making the matrix more like the native habitat fragments, (4) increasing the foliage height diversity within fragments, (5) designing buffers that reduce penetration of undesirable agents from the matrix, (6) recognizing that human activity is not compatible with interior conditions, (7) actively managing mammal populations in fragments, (8) discouraging open lawn on public and private property, (9) providing statutory recognition of the value of complexes of small wetlands, (10) integrating urban parks into the native habitat system, (11) anticipating urbanization and seeking creative ways to increase native habitat and manage it collectively, (12) reducing the growing effects of urbanization on once remote natural areas, (13) realizing that fragments may be best suited to conserve only a few species, (14) developing monitoring programs that measure fitness, and (15) developing a new educational paradigm.  相似文献   

20.
In a periodically changing environment it is important for animals to properly time the major events of their life in order to maximise their lifetime fitness. For a non-migratory bird the timing of breeding and moult are thought to be the most crucial. We develop a state-dependent optimal annual routine model that incorporates explicit density dependence in the food supply. In the model the birds' decisions depend on the time of year, their energy reserves, breeding status, experience, and the quality of two types of feathers (outer and inner primaries). Our model predicts that, under a seasonal environment, feathers with large effects on flight ability, higher abrasion rate and lower energetic cost of moult should be moulted closer to the winter (i.e. later) than those with the opposite attributes. Therefore, we argue that the sequence of moult may be an adaptive response to the problem of optimal timing of moult of differing feathers within the same feather tract. The model also predicts that environmental seasonality greatly affects optimal annual routines. Under high seasonality birds breed first then immediately moult, whereas under low seasonality an alternation occurs between breeding and moulting some of the feathers in one year and having a complete moult but no breeding in the other year. Increasing food abundance has a similar effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号