共查询到20条相似文献,搜索用时 0 毫秒
1.
Joshua P. Owings Emily G. Kuiper Samantha M. Prezioso Jeffrey Meisner John J. Varga Natalia Zelinskaya Eric B. Dammer Duc M. Duong Nicholas T. Seyfried Sebastián Albertí Graeme L. Conn Joanna B. Goldberg 《The Journal of biological chemistry》2016,291(7):3280-3290
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that trimethylates elongation factor-thermo-unstable (EF-Tu) on lysine 5. Lysine 5 methylation occurs in a temperature-dependent manner and is generally only seen when P. aeruginosa is grown at temperatures close to ambient (25 °C) but not at higher temperatures (37 °C). We have previously identified the gene, eftM (for EF-Tu-modifying enzyme), responsible for this modification and shown its activity to be associated with increased bacterial adhesion to and invasion of respiratory epithelial cells. Bioinformatic analyses predicted EftM to be a Class I S-adenosyl-l-methionine (SAM)-dependent methyltransferase. An in vitro methyltransferase assay was employed to show that, in the presence of SAM, EftM directly trimethylates EF-Tu. A natural variant of EftM, with a glycine to arginine substitution at position 50 in the predicted SAM-binding domain, lacks both SAM binding and enzyme activity. Mass spectrometry analysis of the in vitro methyltransferase reaction products revealed that EftM exclusively methylates at lysine 5 of EF-Tu in a distributive manner. Consistent with the in vivo temperature dependence of methylation of EF-Tu, preincubation of EftM at 37 °C abolished methyltransferase activity, whereas this activity was retained when EftM was preincubated at 25 °C. Irreversible protein unfolding at 37 °C was observed, and we propose that this instability is the molecular basis for the temperature dependence of EftM activity. Collectively, our results show that EftM is a thermolabile, SAM-dependent methyltransferase that directly trimethylates lysine 5 of EF-Tu in P. aeruginosa. 相似文献
2.
John C. Whitney Gregory B. Whitfield Lindsey S. Marmont Patrick Yip A. Mirela Neculai Yuri D. Lobsanov Howard Robinson Dennis E. Ohman P. Lynne Howell 《The Journal of biological chemistry》2015,290(20):12451-12462
Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa. 相似文献
3.
介绍了冷冻干燥技术的原理、抗绿脓杆菌(Pseudomonas aeruginosa,简称PA)鸡卵黄免疫球蛋白(Immunoglobulin of Yolk,IgY)的冷冻干燥工艺过程及其参数.通过实验,获得了抗-PA IgY的冻干曲线;经间接血球凝集实验检测,抗-PAIgY的冻干品的活性为1128;在4℃和25℃下,抗-PAIgY的冻干品保存6个月,其活性不变. 相似文献
4.
Christian Schwarzer Zhu Fu Takeshi Morita Aaron G. Whitt Aaron M. Neely Chi Li Terry E. Machen 《The Journal of biological chemistry》2015,290(11):7247-7258
Pseudomonas aeruginosa use quorum-sensing molecules, including N-(3-oxododecanoyl)-homoserine lactone (C12), for intercellular communication. C12 activated apoptosis in mouse embryo fibroblasts (MEF) from both wild type (WT) and Bax/Bak double knock-out mice (WT MEF and DKO MEF that were responsive to C12, DKOR MEF): nuclei fragmented; mitochondrial membrane potential (Δψmito) depolarized; Ca2+ was released from the endoplasmic reticulum (ER), increasing cytosolic [Ca2+] (Cacyto); and caspase 3/7 was activated. DKOR MEF had been isolated from a nonclonal pool of DKO MEF that were non-responsive to C12 (DKONR MEF). RNAseq analysis, quantitative PCR, and Western blots showed that WT and DKOR MEF both expressed genes associated with cancer, including paraoxonase 2 (PON2), whereas DKONR MEF expressed little PON2. Adenovirus-mediated expression of human PON2 in DKONR MEF rendered them responsive to C12: Δψmito depolarized, Cacyto increased, and caspase 3/7 activated. Human embryonic kidney 293T (HEK293T) cells expressed low levels of endogenous PON2, and these cells were also less responsive to C12. Overexpression of PON2, but not PON2-H114Q (no lactonase activity) in HEK293T cells caused them to become sensitive to C12. Because [C12] may reach high levels in biofilms in lungs of cystic fibrosis (CF) patients, PON2 lactonase activity may control Δψmito, Ca2+ release from the ER, and apoptosis in CF airway epithelia. Coupled with previous data, these results also indicate that PON2 uses its lactonase activity to prevent Bax- and Bak-dependent apoptosis in response to common proapoptotic drugs like doxorubicin and staurosporine, but activates Bax- and Bak-independent apoptosis in response to C12. 相似文献
5.
【目的】二氢硫辛酸酰胺脱氢酶(Dihydrolipoamide dehydrogenase,Lpd)是铜绿假单胞菌(Pseudomonas aeruginosa)表面的一种纤溶酶原(Plasminogen,Plg)受体,旨在研究Lpd与脂蛋白(a)[Lipoprotein(a),Lp(a)]以及Plg之间的相互作用。【方法】用大肠杆菌表达rLpd及其突变分子(rLpd K476A、rLpd K477A、rLpdΔKKR),用酶联免疫吸附实验(ELISA)、亲和色谱层析及Western blot等技术检测rLpd及其突变分子与Lp(a)、Plg的相互作用。【结果】ELISA及亲和色谱层析实验结果表明,rLpd可以与Lp(a)结合但不与LDL结合,Lp(a)与rLpdΔKKR的结合能力显著低于其与rLpd的结合能力。1 mmol/L的赖氨酸类似物6-氨基己酸(EACA)对rLpd与Lp(a)的结合有显著的抑制作用。1 000μg/L的Lp(a)对rLpd与Plg的结合起到显著的抑制作用。【结论】Lpd能够与Lp(a)特异性结合,其476和477两个相邻的赖氨酸残基是与Lp(a)结合的主要位点,Lp(a)可以竞争性地抑制rLpd与Plg的结合。 相似文献
6.
Porphobilinogen synthase (PBGS) synthesizes porphobilinogen 2 (PBG), the common precursor of all natural tetrapyrroles, through an asymmetric condensation of two molecules of 5-aminolevulinic acid 1 (ALA). Symmetrically linked dimers 7-11 derived from levulinic acid 3 (gamma-oxovaleric acid) have been synthesized to mimic the assumed bisubstrate bound to the active site of the enzyme. Their inhibition potential was characterized by determination of the IC(50) and K(i) values using PBGS from Pseudomonas aeruginosa. The polarity and the size of the functional group linking the two levulinic acid 3 units have a strong influence on the inhibition behavior. 相似文献
7.
Tsuge T Taguchi K Seiichi T Doi Y 《International journal of biological macromolecules》2003,31(4-5):195-205
The use of (R)-specific enoyl-coenzyme A (CoA) hydratase (PhaJ) provides a powerful tool for polyhydroxyalkanoate (PHA) synthesis from fatty acids or plant oils in recombinant bacteria. PhaJ provides monomer units for PHA synthesis from the fatty acid ß-oxidation cycle. Previously, two phaJ genes (phaJ1Pa and phaJ2Pa) were identified in Pseudomonas aeruginosa. This report identifies two new phaJ genes (phaJ3Pa and phaJ4Pa) in P. aeruginosa through a genomic database search. The abilities of the four PhaJPa proteins and the (R)-3-hydroxyacyl-acyl carrier protein [(R)-3HA-ACP] dehydrases, FabAPa and FabZPa, to supply monomers from enoyl-CoA substrates for PHA synthesis were determined. The presence of either PhaJ1Pa or PhaJ4Pa in recombinant Escherichia coli led to the high levels of PHA accumulation (as high as 36–41 wt.% in dry cells) consisting of mainly short- (C4–C6) and medium-chain-length (C6–C10) 3HA units, respectively. Furthermore, detailed characterizations of PhaJ1Pa and PhaJ4Pa were performed using purified samples. Kinetic analysis revealed that only PhaJ4Pa exhibits almost constant maximum reaction rates (Vmax) irrespective of the chain length of the substrates. The assay for stereospecific hydration revealed that, unlike PhaJ1Pa, PhaJ4Pa has relatively low (R)-specificity. These hydratases may be very useful as monomer-suppliers for the synthesis of designed PHAs in recombinant bacteria. 相似文献
8.
9.
Tsuge T Fukui T Matsusaki H Taguchi S Kobayashi G Ishizaki A Doi Y 《FEMS microbiology letters》2000,185(2):193-198
Two Pseudomonas aeruginosa genes, termed phaJ1(Pa) and phaJ2(Pa), homologous to the Aeromonas caviae (R)-specific enoyl-CoA hydratase gene (phaJ(Ac)) were cloned using a PCR technique to investigate the monomer-supplying ability for polyhydroxyalkanoate (PHA) synthesis from beta-oxidation cycle. Two expression plasmids for phaJ1(Pa) and phaJ2(Pa) were constructed and introduced into Escherichia coli DH5alpha strain. The recombinants harboring phaJ1(Pa) or phaJ2(Pa) showed high (R)-specific enoyl-CoA hydratase activity with different substrate specificities, that is, specific for short chain-length enoyl-CoA or medium chain-length enoyl-CoA, respectively. In addition, co-expression of these two hydratase genes with PHA synthase gene in E. coli LS5218 resulted in the accumulation of PHA up to 14-29 wt% of cell dry weight from dodecanoate as a sole carbon source. It has been suggested that phaJ1(Pa) and phaJ2(Pa) products have the monomer-supplying ability for PHA synthesis from beta-oxidation cycle. 相似文献
10.
铁摄取调节子 (Ferric uptake regulator,Fur) 是细菌控制细胞内铁平衡的一类重要的调节子。铜绿假单胞菌Pseudomonas aeruginosa的fur为必需基因,不能直接敲除。文中通过构建诱导型缺失突变株Δfur/attB::PBAD-fur,来研究该基因对铜绿假单胞菌的生长、生物被膜形成、运动能力和抗氧应激能力等方面的影响。结果表明,当Fur低表达时,铜绿假单胞菌在高铁和低铁环境中出现了生长阻滞的现象;低表达Fur的铜绿假单胞菌抵抗H2O2的能力降低,形成生物被膜的能力减弱,游动、颤动 (Twitching) 和丛集 (Swarming) 运动能力也出现了减弱的现象。Fur的表达直接影响铜绿假单胞菌荧光嗜铁素的产量。在铜绿假单胞菌体内表达来自格瑞菲斯瓦尔德磁螺菌Fur超级家族中的蛋白,可以部分恢复铜绿假单胞菌荧光嗜铁素的产量。由此说明,Fur对铜绿假单胞菌的生长、生物被膜形成、抗氧应激能力和运动能力方面都起着至关重要的作用。本研究为铜绿假单胞菌的防治提供理论指导。 相似文献
11.
The lipopolysaccharide (LPS) of a galU mutant of Pseudomonas aeruginosa PA103, a serogroup O11 strain, was sequentially extracted with phenol–chloroform–petroleum ether (PCP) followed by hot phenol–water extraction of the bacterial pellet remaining after PCP extraction. LPS was found in both the PCP extract as well as in the water phase of the hot phenol–water extract. Analysis of the carbohydrate portion released by mild acid hydrolysis of both LPS preparations, both before and after removal of all phosphate groups by treatment with aqueous HF, was performed by glycosyl composition and linkage analyses as well as by NMR and mass spectrometric analyses. The results showed that the carbohydrate portion of these two LPS extracts contained the same structure: namely, -GalN(Ala)-(1→3)--(7-Cm)HepII-(1→3)--HepI-(1→5)--Kdo-(2→. The oligosaccharide preparation from PCP-extracted LPS consisted of a variety of structures containing up to six phosphate groups present as mono-, pyro-, and possibly triphosphate, primarily located on the HepI residue with some molecules having a monophosphate on HepII. The oligosaccharide preparation from the hot phenol–water-extracted LPS contained a similar variety of structures, but with an additional structure in which HepI contained a PPEA group at O-2. In addition, PAGE immunoblot analysis of the crude cellular extract with anti-A-antibodies revealed the presence of A-band material in both PA103 and the galU mutant. The A-band material was purified and characterized by glycosyl composition and linkage analyses, as well as by NMR spectroscopy, which confirmed that the A-band rhamnan polysaccharide was present but not as typical LPS since lipid-A or LPS core oligosaccharide components were not detected. 相似文献
12.
The Structure of a Type 3 Secretion System (T3SS) Ruler Protein Suggests a Molecular Mechanism for Needle Length Sensing 总被引:1,自引:0,他引:1
Julien R. C. Bergeron Lucia Fernández Gregory A. Wasney Marija Vuckovic Fany Reffuveille Robert E. W. Hancock Natalie C. J. Strynadka 《The Journal of biological chemistry》2016,291(4):1676-1691
The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed “ruler” protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a “ball-and-chain” architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein''s N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems. 相似文献
13.
Ylan Nguyen Seiji Sugiman-Marangos Hanjeong Harvey Stephanie D. Bell Carmen L. Charlton Murray S. Junop Lori L. Burrows 《The Journal of biological chemistry》2015,290(1):601-611
Type IV pili (T4P) contain hundreds of major subunits, but minor subunits are also required for assembly and function. Here we show that Pseudomonas aeruginosa minor pilins prime pilus assembly and traffic the pilus-associated adhesin and anti-retraction protein, PilY1, to the cell surface. PilV, PilW, and PilX require PilY1 for inclusion in surface pili and vice versa, suggestive of complex formation. PilE requires PilVWXY1 for inclusion, suggesting that it binds a novel interface created by two or more components. FimU is incorporated independently of the others and is proposed to couple the putative minor pilin-PilY1 complex to the major subunit. The production of small amounts of T4P by a mutant lacking the minor pilin operon was traced to expression of minor pseudopilins from the P. aeruginosa type II secretion (T2S) system, showing that under retraction-deficient conditions, T2S minor subunits can prime T4P assembly. Deletion of all minor subunits abrogated pilus assembly. In a strain lacking the minor pseudopilins, PilVWXY1 and either FimU or PilE comprised the minimal set of components required for pilus assembly. Supporting functional conservation of T2S and T4P minor components, our 1.4 Å crystal structure of FimU revealed striking architectural similarity to its T2S ortholog GspH, despite minimal sequence identity. We propose that PilVWXY1 form a priming complex for assembly and that PilE and FimU together stably couple the complex to the major subunit. Trafficking of the anti-retraction factor PilY1 to the cell surface allows for production of pili of sufficient length to support adherence and motility. 相似文献
14.
Yu-Min Lin Shih-Jung Wu Ting-Wei Chang Chiu-Feng Wang Ching-Shu Suen Ming-Jing Hwang Margaret Dah-Tsyr Chang Yuan-Tsong Chen You-Di Liao 《The Journal of biological chemistry》2010,285(12):8985-8994
Cationic antimicrobial peptides/proteins (AMPs) are important components of the host innate defense mechanisms against invading microorganisms. Here we demonstrate that OprI (outer membrane protein I) of Pseudomonas aeruginosa is responsible for its susceptibility to human ribonuclease 7 (hRNase 7) and α-helical cationic AMPs, instead of surface lipopolysaccharide, which is the initial binding site of cationic AMPs. The antimicrobial activities of hRNase 7 and α-helical cationic AMPs against P. aeruginosa were inhibited by the addition of exogenous OprI or anti-OprI antibody. On modification and internalization of OprI by hRNase 7 into cytosol, the bacterial membrane became permeable to metabolites. The lipoprotein was predicted to consist of an extended loop at the N terminus for hRNase 7/lipopolysaccharide binding, a trimeric α-helix, and a lysine residue at the C terminus for cell wall anchoring. Our findings highlight a novel mechanism of antimicrobial activity and document a previously unexplored target of α-helical cationic AMPs, which may be used for screening drugs to treat antibiotic-resistant bacterial infection. 相似文献
15.
Sang-Hoon Kim Sangyun Park Eunyoung Park Jeong-Han Kim Sunil Ghatge Hor-Gil Hur Sangkee Rhee 《The Journal of biological chemistry》2021,297(4)
Nitroreductases are emerging as attractive bioremediation enzymes, with substrate promiscuity toward both natural and synthetic compounds. Recently, the nitroreductase NfnB from Sphingopyxis sp. strain HMH exhibited metabolic activity for dinitroaniline herbicides including butralin and pendimethalin, triggering the initial steps of their degradation and detoxification. However, the determinants of the specificity of NfnB for these herbicides are unknown. In this study, we performed structural and biochemical analyses of NfnB to decipher its substrate specificity. The homodimer NfnB is a member of the PnbA subgroup of the nitroreductase family. Each monomer displays a central α + β fold for the core domain, with a protruding middle region and an extended C-terminal region. The protruding middle region of Val75–Tyr129 represents a structural extension that is a common feature to members of the PnbA subgroup and functions as an opening wall connecting the coenzyme FMN-binding site to the surface, therefore serving as a substrate binding site. We performed mutational, kinetic, and structural analyses of mutant enzymes and found that Tyr88 in the middle region plays a pivotal role in substrate specificity by determining the dimensions of the wall opening. The mutation of Tyr88 to phenylalanine or alanine caused significant changes in substrate selectivity toward bulkier dinitroaniline herbicides such as oryzalin and isopropalin without compromising its activity. These results provide a framework to modify the substrate specificity of nitroreductase in the PnbA subgroup, which has been a challenging issue for its biotechnological and bioremediation applications. 相似文献
16.
T. Elangovan Rani P. George P. Kuppusami D. Mangalaraj Santanu Bera E. Mohandas 《Biofouling》2013,29(8):779-787
A relatively simple method was developed to fabricate CrN/Cu nanocomposite coatings using pulsed DC magnetron sputtering for application in antibacterial activity. These nanocomposite coatings were applied on titanium (Ti)-modified stainless steel substrata (D-9 alloy) and the antibacterial activity of these coating with respect to the Gram-negative bacterium Pseudomonas aeruginosa was investigated qualitatively and quantitatively. Scanning electron microscopy, epifluorescence microscope analyses, and total viable counts confirmed that inclusion of copper in the CrN/Cu nanocomposite coatings provided antibacterial activity against P. aeruginosa. The quantitative examination of the bacterial activity of P. aeruginosa was estimated by the survival ratio as calculated from the number of viable cells which formed colonies on nutrient agar plates. 相似文献
17.
Steffen Lorenz Drees Chan Li Fajar Prasetya Muhammad Saleem Ingrid Dreveny Paul Williams Ulrich Hennecke Jonas Emsley Susanne Fetzner 《The Journal of biological chemistry》2016,291(13):6610-6624
Pseudomonas aeruginosa produces a number of alkylquinolone-type secondary metabolites best known for their antimicrobial effects and involvement in cell-cell communication. In the alkylquinolone biosynthetic pathway, the β-ketoacyl-(acyl carrier protein) synthase III (FabH)-like enzyme PqsBC catalyzes the condensation of octanoyl-coenzyme A and 2-aminobenzoylacetate (2-ABA) to form the signal molecule 2-heptyl-4(1H)-quinolone. PqsBC, a potential drug target, is unique for its heterodimeric arrangement and an active site different from that of canonical FabH-like enzymes. Considering the sequence dissimilarity between the subunits, a key question was how the two subunits are organized with respect to the active site. In this study, the PqsBC structure was determined to a 2 Å resolution, revealing that PqsB and PqsC have a pseudo-2-fold symmetry that unexpectedly mimics the FabH homodimer. PqsC has an active site composed of Cys-129 and His-269, and the surrounding active site cleft is hydrophobic in character and approximately twice the volume of related FabH enzymes that may be a requirement to accommodate the aromatic substrate 2-ABA. From physiological and kinetic studies, we identified 2-aminoacetophenone as a pathway-inherent competitive inhibitor of PqsBC, whose fluorescence properties could be used for in vitro binding studies. In a time-resolved setup, we demonstrated that the catalytic histidine is not involved in acyl-enzyme formation, but contributes to an acylation-dependent increase in affinity for the second substrate 2-ABA. Introduction of Asn into the PqsC active site led to significant activity toward the desamino substrate analog benzoylacetate, suggesting that the substrate 2-ABA itself supplies the asparagine-equivalent amino function that assists in catalysis. 相似文献
18.
19.
Andreea A. Gheorghita Francis Wolfram Gregory B. Whitfield Holly M. Jacobs Roland Pfoh Steven S.Y. Wong Allison K. Guitor Mara C. Goodyear Alison M. Berezuk Cezar M. Khursigara Matthew R. Parsek P. Lynne Howell 《The Journal of biological chemistry》2022,298(2)
Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein’s role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme. 相似文献
20.
Stephen J. Wood Josef W. Goldufsky Daniella Bello Sara Masood Sasha H. Shafikhani 《The Journal of biological chemistry》2015,290(48):29063-29073
Pseudomonas aeruginosa is the most common cause of hospital-acquired pneumonia and a killer of immunocompromised patients. We and others have demonstrated that the type III secretion system (T3SS) effector protein ExoT plays a pivotal role in facilitating P. aeruginosa pathogenesis. ExoT possesses an N-terminal GTPase-activating protein (GAP) domain and a C-terminal ADP-ribosyltransferase (ADPRT) domain. Because it targets multiple non-overlapping cellular targets, ExoT performs several distinct virulence functions for P. aeruginosa, including induction of apoptosis in a variety of target host cells. Both the ADPRT and the GAP domain activities contribute to ExoT-induced apoptosis. The ADPRT domain of ExoT induces atypical anoikis by transforming an innocuous cellular protein, Crk, into a cytotoxin, which interferes with integrin survival signaling. However, the mechanism underlying the GAP-induced apoptosis remains unknown. In this study, we demonstrate that the GAP domain activity is both necessary and sufficient to induce mitochondrial (intrinsic) apoptosis. We show that intoxication with GAP domain results in: (i) JNK1/2 activation; (ii) substantial increases in the mitochondrial levels of activated pro-apoptotic proteins Bax and Bid, and to a lesser extent Bim; (iii) loss of mitochondrial membrane potential and cytochrome c release; and (iv) activation of initiator caspase-9 and executioner caspase-3. Further, GAP-induced apoptosis is partially mediated by JNK1/2, but it is completely dependent on caspase-9 activity. Together, the ADPRT and the GAP domains make ExoT into a highly versatile and potent cytotoxin, capable of inducing multiple forms of apoptosis in target host cells. 相似文献