首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim We used insular lizard communities to test the predictions of two hypotheses that attempt to explain patterns of species richness on small islands. We first address the subsidized island biogeography (SIB) hypothesis, which predicts that spatial subsidies may cause insular species richness to deviate from species–area predictions, especially on small islands. Next, we examine the small island effect (SIE), which suggests small islands may not fit the traditional log‐linear species–area curve. Location Islands with arthropodivorous lizard communities throughout the Gulf of California. Methods To evaluate the SIB hypothesis, we first identified subsidized and unsubsidized islands based on surrogate measures of allochthonous productivity (i.e. island size and bird presence). Subsequently, we created species–area curves from previously published lizard species richness and island area data. We used the residuals and slopes from these analyses to compare species richness on subsidized and unsubsidized islands. To test for an SIE, we used breakpoint regression to model the relationship between lizard species richness and island area. We compared results from this model to results from the log‐linear regression model. Results Subsidized islands had a lower slope than unsubsidized islands, and the difference between these groups was significant when small islands were defined as < 1 km2. In addition to comparing slopes, we tested for differences in the magnitude of the residuals (from the species–area regression of all islands) for subsidized vs. unsubsidized islands. We found no significant patterns in the residual values for small vs. large islands, or between islands with and without seabirds. The SIE was found to be a slightly better predictor of lizard species richness than the traditional log‐linear model. Main conclusions Predictions of the SIB hypothesis were partially supported by the data. The absence of a significant SIE may be a result of spatial subsidies as explained by the SIB hypothesis and data presented here. We conclude by suggesting potential scenarios to test for interactions between these two small island hypotheses. Future studies considering factors affecting species richness should examine the possible role of spatial subsidies, an SIE, or a synergistic effect of the two in data sets with small islands.  相似文献   

2.
屠鞠传礼  王建军 《生物信息学》2010,8(3):254-257,262
为了研究CpG岛产生和消失机制以及位于基因启动子区域外的CpG岛保守性等问题,我们通过序列比对和进化保守性分析等方法,分析在人类和小鼠中保守的基因上的CpG岛。结果显示已有保守序列的突变以及序列插入删除是CpG岛产生和消失的主要原因,进一步分析发现52%的在小鼠基因组上保守序列完全缺失的CpG岛位于两个转座子之间,提示转座子所介导的序列插入是CpG岛形成和消失的重要原因。人类基因组上在启动子区域外的CpG岛中约有79%为新产生的CpG岛,显著高于启动子区域内新产生的CpG岛比例(41%)。GO分析表明与这些CpG岛相关的部分基因与神经系统发育显著相关,提示新产生的CpG岛参与神经发育过程。  相似文献   

3.
4.
5.
海南和台湾蕨类植物多样性及其大陆性特征   总被引:10,自引:1,他引:10  
海南和台湾是我国南部和东部两个最重要的大陆性岛屿,具有极为丰富的蕨类植物多样性。特有现象揭示着植物区系和植物多样性的历史,间断分布揭示着与邻近或相关植物区系的联系;特别是在岛屿地区,这种现象和意义尤其明显。海南有蕨类植物区系55科、135属、466种,其中特有种有32种,台湾蕨类植物区系57科、142属、599种,其中特有种达66种。在海南与台湾两地,有共有属104属,共有种仅有176种。台湾海峡出现始于晚白垩世,持续至第四纪;琼州海峡出现于早第四纪,因此,两地的特有现象远少于种子植物(台湾有801种,海南有501种),原因与蕨类植物具有更广的散布性相关,而且在被子植物中起重要作用的物种生物学障碍(机制)在蕨类是缺乏的;形态学的、生殖生物学特征导致蕨类植物具有较缓慢的物种演化历史和较低的灭绝率(Smith,1972)。海南和台湾蕨类植物区系的比较还表明,地理位置和海拔高度对植物区系的物种分化和物种多样性产生了极大的影响。  相似文献   

6.

Aim

The island rule has been widely applied to a range of taxonomic groups, with some studies reporting supporting evidence but others questioning this hypothesis. To bring more clarity to this debate, we conducted a comparative analysis of the available literature, focussing on potential biases.

Location

Worldwide.

Methods

We performed a systematic review to identify studies testing the island rule and translated these studies’ outcomes, so that they follow a consistent approach. The studies were assessed for differences in their analysis of the island rule. We created an authorship network showing who published studies with whom on the topic and weighted the data based on co‐authorship and number of publications.

Results

We identified 143 relevant studies, finding a significantly lower frequency of supporting studies according to our consistent approach (50%) than the authors’ own statements (59%). Two core‐author groups could be identified with a strong publication record on the island rule. The first group has predominately published studies supporting the rule, whereas the other group has mainly published studies questioning it. According to a subsequent analysis excluding studies with a high risk of HARKing (hypothesizing after the results are known), the frequency of studies supporting the rule further dropped to 42%.

Main conclusions

Empirical support for the island rule is low, especially for non‐mammalian taxa and when using a consistent evaluation approach. Differences among studies in supporting versus questioning this hypothesis seem to be partly due to author‐related biases. Methods to address potential biases in studying ecological hypotheses are urgently needed. We offer such a method here.  相似文献   

7.
Body size evolution in insular vertebrates: generality of the island rule   总被引:8,自引:1,他引:7  
Aim My goals here are to (1) assess the generality of the island rule – the graded trend from gigantism in small species to dwarfism in larger species – for mammals and other terrestrial vertebrates on islands and island‐like ecosystems; (2) explore some related patterns of body size variation in insular vertebrates, in particular variation in body size as a function of island area and isolation; (3) offer causal explanations for these patterns; and (4) identify promising areas for future studies on body size evolution in insular vertebrates. Location Oceanic and near‐shore archipelagos, and island‐like ecosystems world‐wide. Methods Body size measurements of insular vertebrates (non‐volant mammals, bats, birds, snakes and turtles) were obtained from the literature, and then regression analyses were conducted to test whether body size of insular populations varies as a function of body size of the species on the mainland (the island rule) and with characteristics of the islands (i.e. island isolation and area). Results The island rule appears to be a general phenomenon both with mammalian orders (and to some degree within families and particular subfamilies) as well as across the species groups studied, including non‐volant mammals, bats, passerine birds, snakes and turtles. In addition, body size of numerous species in these classes of vertebrates varies significantly with island isolation and island area. Main conclusions The patterns observed here – the island rule and the tendency for body size among populations of particular species to vary with characteristics of the islands – are actually distinct and scale‐dependent phenomena. Patterns within archipelagos reflect the influence of island isolation and area on selective pressures (immigration filters, resource limitation, and intra‐ and interspecific interactions) within particular species. These patterns contribute to variation about the general trend referred to as the island rule, not the signal for that more general, large‐scale pattern. The island rule itself is an emergent pattern resulting from a combination of selective forces whose importance and influence on insular populations vary in a predictable manner along a gradient from relatively small to large species. As a result, body size of insular species tends to converge on a size that is optimal, or fundamental, for a particular bau plan and ecological strategy.  相似文献   

8.
采用栅格采样法,于2006年4、5、8和10月对千岛湖库区50个不同大小岛屿中节肢动物的种类与数量进行了调查,分析了岛屿面积、海拔、形状和距离等因素对岛屿节肢动物物种丰富度的影响.结果表明:岛屿上节肢动物总物种丰富度、高扩散力物种丰富度和低扩散力物种丰富度均随岛屿面积的增大而增加,且岛屿面积与物种丰富度之间的关系符合经典岛屿生物地理学模型;节肢动物物种丰富度受岛屿面积、海拔和形状的综合影响,距离对岛屿上物种的丰富度没有显著影响;总的物种丰富度与岛屿形状指数和海拔呈显著正相关,岛屿面积和海拔与高扩散力物种的物种丰富度显著相关,而低扩散力物种与岛屿各地理因素之间的相关性均不显著.  相似文献   

9.
10.
Many studies have demonstrated the changes in the spatial patterns of plant and animal communities with respect to habitat fragmentation.Insular communities tend to exhibit some special patterns in connection with the characteristics of island habitats.In this paper,the relationships between richness,assemblage,and abundance of bird communities with respect to island features were analyzed in 20 urban woodlots in Hangzhou,China.Field investigations of bird communities,using the line transect method,were conducted from January to December,1997.Each woodlot was surveyed 16 times during the year.Results indicated that bird richness was higher,per unit area,in the smaller woodlots than the larger ones,and overall bird density decreased with the increase in the size of woodlot.However,the evenness of species abundance increased with the area,and small woodlots were usually dominated by higher density species and large woodlots by medium density species.Most species occurring in the small woodlots also occurred in larger woodlots.Also,bird communities among urban woodlots showed a nestedness pattern in assemblage.These patterns implied that the main impacts of woodland habitat fragmentation are:(1) species are constricted and thus species number will increase at a given sample size;(2) as surface area decreases,the proportion of forest edge species as to interior species will increase;(3)community abundance will therefore increase per unit area but most individuals will be from a few dominant species;and (4) overall species diversity will decrease at a habitat level as well as at a region level.These patterns of community in response to the island features were therefore summarized as "island effects in community".The underlying processes of such observations were also examined in this paper.Woodlot area,edge ratio,isolation,and habitat nestedness were considered as the important factors forming the island effects in community.High heterogeneity between habitats usually contributed most to the maintenance of regional biodiversity,especially in urban woodlots.  相似文献   

11.
园林鸟类群落的岛屿性格局   总被引:7,自引:1,他引:7  
岛屿群落由于受岛屿栖息地特征结构的影响而产生一系列特殊的格局。通过对杭州市园林鸟类群落的研究,分析了园林鸟类群落的物种数、组成和多度与园林岛屿性状的关系,从而确定了园林鸟类群落存在如下与园林的岛屿性状有关的格局:(1)在物种数方面,在相同的取样面积下,园林的物种数随园林面积的增大而减少;(2 )在群落组成上,园林鸟类群落呈现出不完全的嵌套格局,分布于物种数较少的园林中的物种多数也分布在物种数较多的园林中;(3)在物种多度方面,园林鸟类的总密度随面积的增大而减少,园林鸟类多度的均匀度随着面积的增大而提高。群落的岛屿性格局反映了栖息地的岛屿化对群落的影响,总称之为群落的岛屿效应。通过比较全年、繁殖季节、越冬季节和迁徙季节群落岛屿性格局的显著性,分析群落的稳定性与群落岛屿效应之间的关系,认为两者之间没有必然的联系,相对非稳定的群落也可导致显著岛屿效应  相似文献   

12.
Many studies have demonstrated the changes in the spatial patterns of plant and animal communities with respect to habitat fragmentation. Insular communities tend to exhibit some special patterns in connection with the characteristics of island habitats. In this paper, the relationships between richness, assemblage, and abundance of bird communities with respect to island features were analyzed in 20 urban woodlots in Hangzhou, China. Field investigations of bird communities, using the line transect method, were conducted from January to December, 1997. Each woodlot was surveyed 16 times during the year. Results indicated that bird richness was higher, per unit area, in the smaller woodlots than the larger ones, and overall bird density decreased with the increase in the size of woodlot. However, the evenness of species abundance increased with the area, and small woodlots were usually dominated by higher density species and large woodlots by medium density species. Most species occurring in the small woodlots also occurred in larger woodlots. Also, bird communities among urban woodlots showed a nestedness pattern in assemblage. These patterns implied that the main impacts of woodland habitat fragmentation are: (1) species are constricted and thus species number will increase at a given sample size; (2) as surface area decreases, the proportion of forest edge species as to interior species will increase; (3) community abundance will therefore increase per unit area but most individuals will be from a few dominant species; and (4) overall species diversity will decrease at a habitat level as well as at a region level. These patterns of community in response to the island features were therefore summarized as “island effects in community”. The underlying processes of such observations were also examined in this paper. Woodlot area, edge ratio, isolation, and habitat nestedness were considered as the important factors forming the island effects in community. High heterogeneity between habitats usually contributed most to the maintenance of regional biodiversity, especially in urban woodlots. __________ Translated from Acta Ecologica Sinica, 2005, 25(4): 657–663 [译自: 生态学报, 2005, 25(4): 657–663]  相似文献   

13.
基于源汇指数的沈阳热岛效应   总被引:1,自引:1,他引:1  
基于2001和2010年Landsat 遥感影像,利用GIS技术识别沈阳城市热岛源区和汇区,利用地表温度(LST)、源区和汇区面积比率指数(CI)和热岛强度指数(LI),评价分析了沈阳土地利用发展布局模式对热岛效应的影响.结果表明: 2001-2010年,沈阳三环内土地利用类型变化较大,导致热岛源、汇区面积变化明显,且主要发生在二环和三环.2001年,一环内热岛源、汇区面积比例分别为94.3%和5.7%,三环内分别为64.0%和36.0%;2010年,其比例在一环内分别为93.4%和6.6%,三环内分别为70.2%和29.8%,说明10年来“摊饼式”土地利用布局决定了沈阳热岛效应的“摊饼式”布局.研究期间,沈阳地表温度从一环至三环均呈递减趋势,热岛效应强度在2001年以单一中心为主,至2010年发展为多中心态势,热岛效应强度等级有所降低.从一环至三环,CI绝对值均呈增加趋势,LI值均小于1,说明期间研究区土地利用布局变化对改善区域热岛效应没有明显作用.  相似文献   

14.
海岛生态保护红线划定技术方法   总被引:3,自引:2,他引:3  
刘超  崔旺来  朱正涛  叶芳  俞仙炯 《生态学报》2018,38(23):8564-8573
划定海岛生态保护红线是维护海岛生态安全,协调海岛开发与保护之间矛盾的重要方法。目前,海岛生态保护红线在概念内涵、划定内容、划定方法等方面尚未统一定性,且极易与海洋生态红线的概念混淆,不同类型和形态的海岛红线划定的方法及原则要求也有所区分,例如,单岛、列岛、群岛、有居民和无居民海岛等。论述了海岛生态保护红线概念、海岛生态保护红线与海洋生态红线的区别和联系;结合生态科学、地理科学和管理科学属性,基于发展观点和底线思维阐述了海岛生态保护红线划定原则;海岛生态保护红线类型主要包括:海岛重点生态功能区、海岛生态敏感区/脆弱区和海岛禁止开发区;筛选出海岛生态保护红线划定需要重点考量的指标,提出海岛生态保护红线划定的技术路线,同时针对海岛生态保护红线区划面临的若干问题进行探讨;最后对今后海岛生态保护红线划定研究进行了展望。  相似文献   

15.
Aim To propose a new approach to the small island effect (SIE) and a simple mathematical procedure for the estimation of its upper limit. The main feature of the SIE is that below an upper size threshold an increase of species number with increase of area in small islands is not observed. Location Species richness patterns from different taxa and insular systems are analysed. Methods Sixteen different data sets from 12 studies are analysed. Path analysis was used for the estimation of the upper limit of the SIE. We studied each data set in order to detect whether there was a certain island size under which the direct effects of area were eliminated. This detection was carried out through the sequential exclusion of islands from the largest to the smallest. For the cases where an SIE was detected, a log‐log plot of species number against area is presented. The relationships between habitat diversity, species number and area are studied within the limits of the SIE. In previous studies only area was used for the detection of the SIE, whereas we also encompass habitat diversity, a parameter with well documented influence on species richness, especially at small scales. Results An SIE was detected in six out of the 16 studied cases. The upper limit of the SIE varies, depending on the characteristics of the taxon and the archipelago under study. In general, the values of the upper limit of the SIE calculated according to the approach undertaken in our study differ from the values calculated in previous studies. Main conclusions Although the classical species–area models have been used to estimate the upper limit of the SIE, we propose that the detection of this phenomenon should be undertaken independently from the species–area relationship, so that the net effects of area are calculated excluding the surrogate action of area on other variables, such as environmental heterogeneity. The SIE appears when and where area ceases to influence species richness directly. There are two distinct SIE patterns: (1) the classical SIE where both the direct and indirect effects of area are eliminated and (2) the cryptic SIE where area affects species richness indirectly. Our approach offers the opportunity of studying the different factors influencing biodiversity on small scales more accurately. The SIE cannot be considered a general pattern with fixed behaviour that can be described by the same model for different island groups and taxa. The SIE should be recognized as a genuine but idiosyncratic phenomenon.  相似文献   

16.
郑州市热岛效应研究与人体舒适度评价   总被引:7,自引:0,他引:7  
采用网格式布点法设置观测点,监测导致郑州市热岛效应的关键因子,揭示了郑州市热岛效应的日变化、季节变化与空间分布状况,并对不同类型的绿化区域进行了人体舒适度评价.结果表明,郑州市热岛效应的日变化大体上呈单峰型;不同季节的热岛效应强度相差很大,热岛强度的强弱顺序为:冬季>春季>秋季>夏季;热岛中心的空间分布与其附近有无工业热源密切相关.就人体舒适度而言,以乔木绿化为主的人民公园的舒适度最好;而以草坪绿化为主的西流湖公园,其改善小气候的能力较乔木为差;火车站广场由于其空间开阔,空气流动性强,故最舒适的频率也有16%.  相似文献   

17.
We analyzed the butterfly communities in the newly designed city parks (area C), “newly opened habitat islands”, of Tsukuba City, central Japan. The area constituted a natural ecological experiment on the mainland for clarifying the pattern and process of faunal immigration. We compared butterfly communities in area C with those in two other areas in the light of the theory of island biogeography and the concept of generalist/specialist. Our results showed the following: (1) Fewer species were found in area C than in other areas, due largely to the absence of many specialist types, restricted and habitat specialists, and/or low density species in the area. Generalist types, widespread and habitat generalists, and/or high density species predominated in area C. (2) The difference in the species numbers among the three sections within area C could be explained by the habitat structure in and around the respective sections. (3) The densities of many species were low in area C, probably due to its man-modified habitat structure. In particular, several species occurred at extremely low densities in area C, but at high densities in other areas. (4) The internal structure of the habitat island butterfly community in area C was almost perfectly consistent with that of “quasi-equilibrium” communities that appear during the colonization of an island. Our results demonstrate that the synergetic application of the generalist/specialist concept and the island biogeography theory is effective for the understanding of the patterns and structures of habitat island communities.  相似文献   

18.
19.
曾瑾  王玉炯  邓光存 《生物学杂志》2010,27(1):80-83,96
毒力岛作为细菌染色体上一段具有典型结构特征的基因簇,与多种致病茵毒力因子的产生和细菌的进化有密切的关系,研究毒力岛对于认识致病细菌的变异,阐述病原菌的致病机理,预测新病原茵的出现有着十分重要的意义。  相似文献   

20.
Anagenetic evolution in island plants   总被引:3,自引:2,他引:1  
Aim  Plants in islands have often evolved through adaptive radiation, providing the classical model of evolution of closely related species each with strikingly different morphological and ecological features and with low levels of genetic divergence. We emphasize the importance of an alternative (anagenetic) model of evolution, whereby a single island endemic evolves from a progenitor and slowly builds up genetic variation through time.
Location  Continental and oceanic islands.
Methods  We surveyed 2640 endemic angiosperm species in 13 island systems of the world, both oceanic and continental, for anagenetic and cladogenetic patterns of speciation. Genetic data were evaluated from a progenitor and derivative species pair in Ullung Island, Korea, and Japan.
Results  We show that the anagenetic model of evolution is much more important in oceanic islands than previously believed, accounting for levels of endemic specific diversity from 7% in the Hawaiian Islands to 88% in Ullung Island, Korea, with a mean for all islands of 25%. Examination of an anagenetically derived endemic species in Ullung Island reveals genetic (amplified fragment length polymorphism) variation equal or nearly equal to that of its continental progenitor.
Main conclusions  We hypothesize that, during anagenetic speciation, initial founder populations proliferate, and then accumulate genetic variation slowly through time by mutation and recombination in a relatively uniform environment, with drift and/or selection yielding genetic and morphological divergence sufficient for the recognition of new species. Low-elevation islands with low habitat heterogeneity are highly correlated with high levels of anagenetic evolution, allowing prediction of levels of the two models of evolution from these data alone. Both anagenetic and adaptive radiation models of speciation are needed to explain the observed levels of specific and genetic diversity in oceanic islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号