首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
3.
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three‐spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene‐based genome‐scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection—as determined with several outlier detection methods—was low (FST = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (FST = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.  相似文献   

4.
Marine medaka (Oryzias melastigma) is considered to be a useful fish model for marine and estuarine ecotoxicology studies and has good potential for field‐based population genomics because of its geographical distribution in Asian estuarine and coastal areas. In this study, we present the first whole‐genome draft of O. melastigma. The genome assembly consists of 8,602 scaffolds (N50 = 23.737 Mb) and a total genome length of 779.4 Mb. A total of 23,528 genes were predicted, and 12,670 gene families shared with three teleost species (Japanese medaka, mangrove killifish and zebrafish) were identified. Genome analyses revealed that the O. melastigma genome is highly heterozygous and contains a large number of repeat sequences. This assembly represents a useful genomic resource for fish scientists.  相似文献   

5.
A growing body of knowledge on the diversity and evolution of intertidal isopods across different regions worldwide has enhanced our understanding on biological diversification at the poorly studied, yet vast, sea–land interface. High genetic divergences among numerous allopatric lineages have been identified within presumed single broadly distributed species. Excirolana mayana is an intertidal isopod that is commonly found in sandy beaches throughout the Gulf of California. Its distribution in the Pacific extends from this basin to Colombia and in the Atlantic from Florida to Venezuela. Despite its broad distribution and ecological importance, its evolutionary history has been largely neglected. Herein, we examined phylogeographic patterns of E. mayana in the Gulf of California and the Caribbean, based on maximum‐likelihood and Bayesian phylogenetic analyses of DNA sequences from four mitochondrial genes (16S rDNA, 12S rDNA, cytochrome oxidase I gene, and cytochrome b gene). We compared the phylogeographic patterns of E. mayana with those of the coastal isopods Ligia and Excirolana braziliensis (Gulf of California and Caribbean) and Tylos (Gulf of California). We found highly divergent lineages in both, the Gulf of California and Caribbean, suggesting the presence of multiple species. We identified two instances of Atlantic–Pacific divergences. Some geographical structuring among the major clades found in the Caribbean is observed. Haplotypes from the Gulf of California form a monophyletic group sister to a lineage found in Venezuela. Phylogeographic patterns of E. mayana in the Gulf of California differ from those observed in Ligia and Tylos in this region. Nonetheless, several clades of E. mayana have similar distributions to clades of these two other isopod taxa. The high levels of cryptic diversity detected in E. mayana also pose challenges for the conservation of this isopod and its fragile environment, the sandy shores.  相似文献   

6.
Gregarines are a diverse group of apicomplexan parasites with a conspicuous extracellular feeding stage, called a “trophozoite”, that infects the intestines and other body cavities of invertebrate hosts. Although the morphology of trophozoites is very diverse in gregarines as a whole, high degrees of intraspecific variation combined with relatively low degrees of interspecific variation make the delimitation of different species based on trophozoite morphology observed with light microscopy difficult. The coupling of molecular phylogenetic data with comparative morphology has shed considerable light onto the boundaries and interrelationships of different gregarine species. In this study, we isolated a novel marine gregarine from the hepatic region of a Pacific representative of the hemichordate Glossobalanus minutus, and report the first ultrastructural and molecular data from any gregarine infecting this distinctive group of hosts. Molecular phylogenetic analyses of an SSU rDNA sequence derived from two single‐cell isolates of this marine gregarine demonstrated a strong and unexpected affiliation with a clade of terrestrial gregarines (e.g. Gregarina). This molecular phylogenetic data combined with a comparison of the morphological features in previous reports of gregarines collected from Atlantic representatives of G. minutus justified the establishment of a new binomial for the new isolate, namely Caliculium glossobalani n. gen. et sp. The molecular phylogenetic analyses demonstrated a clade of terrestrial gregarines associated with a sequence acquired from a marine species, which suggest that different groups of terrestrial/freshwater gregarines evolved independently from marine ancestors.  相似文献   

7.
The viviparous sea snakes (Hydrophiinae) are a young radiation of at least 62 species that display spectacular morphological diversity and high levels of local sympatry. To shed light on the mechanisms underlying sea snake diversification, we investigated recent speciation and eco‐morphological differentiation in a clade of four nominal species with overlapping ranges in Southeast Asia and Australia. Analyses of morphology and stomach contents identified the presence of two distinct ecomorphs: a ‘macrocephalic’ ecomorph that reaches >2 m in length, has a large head and feeds on crevice‐dwelling eels and gobies; and a ‘microcephalic’ ecomorph that rarely exceeds 1 m in length, has a small head and narrow fore‐body and hunts snake eels in burrows. Mitochondrial sequences show a lack of reciprocal monophyly between ecomorphs and among putative species. However, individual assignment based on newly developed microsatellites separated co‐distributed specimens into four significantly differentiated clusters corresponding to morphological species designations, indicating limited recent gene flow and progress towards speciation. A coalescent species tree (based on mitochondrial and nuclear sequences) and isolation‐migration model (mitochondrial and microsatellite markers) suggest between one and three transitions between ecomorphs within the last approximately 1.2 million to approximately 840 000 years. In particular, the macrocephalic ‘eastern’ population of Hydrophis cyanocinctus and microcephalic H. melanocephalus appear to have diverged very recently and rapidly, resulting in major phenotypic differences and restriction of gene flow in sympatry. These results highlight the viviparous sea snakes as a promising system for speciation studies in the marine environment.  相似文献   

8.
9.
A commercially available fisheries sonar was mounted on an icebreaker and evaluated during an environmental baseline study in the Canadian Beaufort Sea, to determine the applicability of active acoustic monitoring (AAM) for marine mammal detection by comparing marine mammal observer (MMO) visual sightings and active acoustic detections. During 170 h of simultaneous MMO and AAM, 115 bowhead whales (Balaena mysticetus) and four beluga whales (Delphinapterus leucas) were visually sighted by MMOs, while 59 sonar detections of bowhead whales occurred using AAM. The fisheries sonar detected 92% of the cetaceans observed within 2,000 m. Additional observations of ringed seals (Pusa hispida) and bearded seals (Erignathus barbatus) were recorded both by MMOs and AAM. Comparative results indicate that a commercially available active acoustic system can consistently detect marine mammals within varying ranges dictated by water column properties. Shallow environments and strong pycnoclines currently present challenges to AAM.  相似文献   

10.
Species richness and similarity in metazoan parasite communities of fishes can be influenced by several biotic (age, body size, vagility, feeding and social behavior, among others), and local abiotic (temperature, salinity, etc.) factors. The parasite communities of three species of Oligoplites, marine fishes from the Pacific coast of Mexico, were quantified and analyzed. Four hundred sixty‐eight leatherjackets (O. altus, n=94; O. saurus, n=260; and Orefulgens, n=114) were collected from February 2016 to June 2017 from five locations. Twenty‐eight species of metazoan parasites were recovered and identified: four species of Monogenea (adults), nine of Digenea (seven adults and two metacercariae); two of Cestoda (larvae); four of Nematoda (two adults and two larvae); four of Acanthocephala (two adults, one juvenile, and one cystacanth); four of Copepoda; and one Pentastomida (larvae). At the component community level, species richness ranged from 9 in O. saurus to 19 in O. altus. Different species of helminth dominated the component communities of each species of host. Community composition and species richness of parasites differed among the three species of host, locations, and sampling years. Host feeding behavior, body size, and vagility had the most influence on these differences.  相似文献   

11.
In an effort to broaden our understanding of the biodiversity and distribution of gregarines infecting crustaceans, this study describes two new species of gregarines, Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp., parasitizing a deep sea amphipod (Oradarea sp.). Amphipods were collected using the ROV Hyper‐Dolphin at a depth of 855 m while on a cruise in Sagami Bay, Japan. Gregarine trophozoites and gamonts were isolated from the gut of the amphipod and studied with light and scanning electron microscopy, and phylogenetic analysis of 18S rDNA. Thiriotia hyperdolphinae n. sp. was distinguished from existing species based on morphology, phylogenetic position, as well as host niche and geographic locality. Cephaloidophora oradareae n. sp. distinguished itself from existing Cephaloidophora, based on a difference in host (Oradarea sp.), geographic location, and to a certain extent morphology. We established this latter new species with the understanding that a more comprehensive examination of diversity at the molecular level is necessary within Cephaloidophora. Results from the 18S rDNA molecular phylogeny showed that T. hyperdolphinae n. sp. was positioned within a clade consisting of Thiriotia spp., while C. oradareae n. sp. grouped within the Cephaloidophoridae. Still, supplemental genetic information from gregarines infecting crustaceans will be needed to better understand relationships within this group of apicomplexans.  相似文献   

12.
Tubastraea tagusensis, a coral native to the Galapagos Archipelago, has successfully established and invaded the Brazilian coast where it modifies native tropical rocky shore and coral reef communities. In order to understand the processes underlying the establishment of T. tagusensis, we tested whether Maxent, a tool for species distribution modeling, based on the native range of T. tagusensis correctly forecasted the invasion range of this species in Brazil. The Maxent algorithm was unable to predict the Brazilian coast as a suitable environment for the establishment of T. tagusensis. A comparison between these models and a principal component analysis (PCA) allowed us to examine the environmental dissimilarity between the two occupied regions (native and invaded) and to assess the species' occupied niche breadth. According to the PCA results, lower levels of chlorophyll‐a and nitrate on the Atlantic coast segregate the Brazilian and Galapagos environments, implying that T. tagusensis may have expanded its realized niche during the invasion process. We tested the possible realized niche expansion in T. tagusensis by assuming that Tubastraea spp. have similar fundamental niches, which was supported by exploring the environmental space of T. coccinea, a tropical‐cosmopolitan congener of T. tagusensis. We believe that the usage of Maxent should be treated with caution, especially when applied to biological invasion (or climate change) scenarios where the target species has a highly localized native (original) distribution, which may represent only a small portion of its fundamental niche, and therefore a violation of a SDM assumption.  相似文献   

13.
The parasitic nematode Crassicauda sp. was initially described in kogiid whales from specimens collected within cervical tissues, uncommon sites of infection for this parasite. Crassicauda sp. has only been reported in Kogia breviceps to date, but no study has yet investigated a large sample of both kogiid species. A 15 yr record of 104 kogiid strandings (K. sima, n = 40; K. breviceps, n = 64) in North Carolina and Virginia, U.S.A. was used to determine the prevalence of Crassicauda sp. across species, within species across sex, and within sex across length and life history categories. Crassicauda sp. was confirmed to be a species‐specific parasite among kogiids infecting only K. breviceps (prevalence = 45%). Within K. breviceps, prevalence was similar (45%) in both immature and mature males, but increased from 10% in immature to 76% in mature females. This study confirmed the cervico‐thoracic distribution of the parasite, and identified a novel site of infection in a previously undescribed exocrine gland associated with the pigmented “false gill slit.” The species‐specific nature of Crassicauda sp. infection, the exocrine gland, and the distinct features of the false gill slit pigmentation associated with the gland, are all useful characters to identify kogiid species in the field.  相似文献   

14.
In Arabidopsis, AUXIN RESPONSE FACTOR 3 (ARF3) belongs to the auxin response factor (ARF) family that regulates the expression of auxin‐responsive genes. ARF3 is known to function in leaf polarity specification and gynoecium patterning. In this study, we discovered a previously unknown role for ARF3 in floral meristem (FM) determinacy through the isolation and characterization of a mutant of ARF3 that enhanced the FM determinacy defects of agamous (ag)‐10, a weak ag allele. Central players in FM determinacy include WUSCHEL (WUS), a gene critical for FM maintenance, and AG and APETALA2 (AP2), which regulate FM determinacy by repression and promotion of WUS expression, respectively. We showed that ARF3 confers FM determinacy through repression of WUS expression, and associates with the WUS locus in part in an AG‐dependent manner. We demonstrated that ARF3 is a direct target of AP2 and partially mediates AP2's function in FM determinacy. ARF3 exhibits dynamic and complex expression patterns in floral organ primordia; altering the patterns spatially compromised FM determinacy. This study uncovered a role for ARF3 in FM determinacy and revealed relationships among genes in the genetic network governing FM determinacy.  相似文献   

15.
Dynein heavy chains are motor proteins that comprise a large gene family found across eukaryotes. We have investigated this gene family in four ciliate species: Ichthyophthirius, Oxytricha, Paramecium, and Tetrahymena. Ciliates appear to encode more dynein heavy chain genes than most eukaryotes. Phylogenetic comparisons demonstrated that the last common ancestor of the ciliates that were examined expressed at least 14 types of dynein heavy chains with most of the expansion coming from the single‐headed inner arm dyneins. Each of the dyneins most likely performed different functions within the cell.  相似文献   

16.
17.
Overlapping runs of homozygosity (ROH islands) shared by the majority of a population are hypothesized to be the result of selection around a target locus. In this study we investigated the impact of selection for coat color within the Noriker horse on autozygosity and ROH patterns. We analyzed overlapping homozygous regions (ROH islands) for gene content in fragments shared by more than 50% of horses. Long‐term assortative mating of chestnut horses and the small effective population size of leopard spotted and tobiano horses resulted in higher mean genome‐wide ROH coverage (SROH) within the range of 237.4–284.2 Mb, whereas for bay, black and roan horses, where rotation mating is commonly applied, lower autozygosity (SROH from 176.4–180.0 Mb) was determined. We identified seven common ROH islands considering all Noriker horses from our dataset. Specific islands were documented for chestnut, leopard spotted, roan and bay horses. The ROH islands contained, among others, genes associated with body size (ZFAT, LASP1 and LCORL/NCAPG), coat color (MC1R in chestnut and the factor PATN1 in leopard spotted horses) and morphogenesis (HOXB cluster in all color strains except leopard spotted horses). This study demonstrates that within a closed population sharing the same founders and ancestors, selection on a single phenotypic trait, in this case coat color, can result in genetic fragmentation affecting levels of autozygosity and distribution of ROH islands and enclosed gene content.  相似文献   

18.
Biogenic volatile organic compounds (BVOCs), in particular dimethyl sulphide (DMS) and isoprene, have fundamental ecological, physiological and climatic roles. Our current understanding of these roles is almost exclusively established from terrestrial or oceanic environments but signifies a potentially major, but largely unknown, role for BVOCs in tropical coastal marine ecosystems. The tropical coast is a transition zone between the land and ocean, characterized by highly productive and biodiverse coral reefs, seagrass beds and mangroves, which house primary producers that are amongst the greatest emitters of BVOCs on the planet. Here, we synthesize our existing understanding of BVOC emissions to produce a novel conceptual framework of the tropical marine coast as a continuum from DMS‐dominated reef producers to isoprene‐dominated mangroves. We use existing and previously unpublished data to consider how current environmental conditions shape BVOC production across the tropical coastal continuum, and in turn how BVOCs can regulate environmental stress tolerance or species interactions via infochemical networks. We use this as a framework to discuss how existing predictions of future tropical coastal BVOC emissions, and the roles they play, are effectively restricted to present day ‘baseline’ trends of BVOC production across species and environmental conditions; as such, there remains a critical need to focus research efforts on BVOC responses to rapidly accelerating anthropogenic impacts at local and regional scales. We highlight the complete lack of current knowledge required to understand the future ecological functioning of these important systems, and to predict whether feedback mechanisms are likely to regulate or exacerbate current climate change scenarios through environmentally and ecologically mediated changes to BVOC budgets at the ecosystem level.  相似文献   

19.
Many countries in Africa, and more generally those in the Global South with tropical areas, are plagued by illnesses that the wealthier parts of the world (mainly ‘the West’) neither suffer from nor put systematic effort into preventing, treating or curing. What does an ethic with a recognizably African pedigree entail for the ways various agents ought to respond to such neglected diseases? As many readers will know, a characteristically African ethic prescribes weighty duties to aid on the part of those in a position to do so, and it therefore entails that there should have been much more contribution from the Western, ‘developed’ world. However, what else does it prescribe, say, on the part of sub‐Saharan governments and the African Union, and are they in fact doing it? I particularly seek to answer these questions here, by using the 2013‐16 Ebola crisis in West Africa to illustrate what should have happened but what by and large did not.  相似文献   

20.
Maskrays of the genus Neotrygon (Dasyatidae) have dispersed widely in the Indo‐West Pacific being represented largely by an assemblage of narrow‐ranging coastal endemics. Phylogenetic reconstruction methods reproduced nearly identical and statistically robust topologies supporting the monophyly of the genus Neotrygon within the family Dasyatidae, the genus Taeniura being consistently basal to Neotrygon, and Dasyatis being polyphyletic to the genera Taeniurops and Pteroplatytrygon. The Neotrygon kuhlii complex, once considered to be an assemblage of color variants of the same biological species, is the most derived and widely dispersed subgroup of the genus. Mitochondrial (COI, 16S) and nuclear (RAG1) phylogenies used in synergy with molecular dating identified paleoclimatic fluctuations responsible for periods of vicariance and dispersal promoting population fragmentation and speciation in Neotrygon. Signatures of population differentiation exist in N. ningalooensis and N. annotata, yet a large‐scale geological event, such as the collision between the Australian and Eurasian Plates, coupled with subsequent sea‐level falls, appears to have separated a once homogeneous population of the ancestral form of N. kuhlii into southern Indian Ocean and northern Pacific taxa some 4–16 million years ago. Repeated climatic oscillations, and the subsequent establishment of land and shallow sea connections within and between Australia and parts of the Indo‐Malay Archipelago, have both promoted speciation and established zones of secondary contact within the Indian and Pacific Ocean basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号