共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Robert W. Jackman Mary G. Rhoads Evangeline Cornwell Susan C. Kandarian 《Experimental cell research》2009,315(19):3242-2413
The microtubule cytoskeleton is known to play a role in cell structure and serve as a scaffold for a variety of active molecules in processes as diverse as motility and cell division. The literature on the role of microtubules in signal transduction, however, is marked by inconsistencies. We have investigated a well-studied signaling pathway, TNF-α-induced NF-κB activation, and found a connection between the stability of microtubules and the regulation of NF-κB signaling in C2C12 myotubes. When microtubules are stabilized by paclitaxel (taxol), there is a strong induction of NF-κB even in the absence of TNF-α . Although there was no additive effect of taxol and TNF-α on NF-κB activity suggesting a shared mechanism of activation, taxol strongly induced the NF-κB reporter in the presence of a TNF receptor (TNFR) blocking antibody while TNF-α did not. Both TNF-α and taxol induce the degradation of endogenous IκBα and either taxol or TNF-α induction of NF-κB activity was blocked by inhibitors of NF-κB acting at different sites in the signaling pathway. Both TNF-α and taxol strongly induce known NF-κB chemokine target genes. On the other hand, if microtubules are destabilized by colchicine, then the induction of NF-κB by TNF-α or taxol is greatly reduced. Taken together, we surmise that the activity of microtubules is at the level of the TNFR intracellular domain. This phenomenon may indicate a new level of signaling organization in cell biology, actively created by the state of the cytoskeleton, and has ramifications for therapies where microtubule regulating drugs are used. 相似文献
3.
4.
Background
Induction of apoptosis by endoplasmic reticulum (ER) stress is implicated as the major factor in the development of multiple diseases. ER stress also appears to be a potentially useful major response to many chemotherapeutic drugs and environmental chemical compounds. A previous study has indicated that one major apoptotic regulator, p53, is significantly increased in response to ER stress, and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood.Principal Findings
In this report, we demonstrate that induction of p53 expression is mediated through NF-κB signaling pathways during ER stress in MCF-7 cells. Tunicamycin or brefeldin A, two ER stress inducers, increased p53 expression in MCF-7 and Hela cells. We found p53 nuclear localization, activity, and phosphorylation at serine 15 on p53 increased during ER stress. Nuclear translocation of NF-κB and activity of NF-κB were also observed during ER stress. ER stress-induced p53 expression was significantly inhibited by coincubation with the NF-κB inhibitor, Bay 11-7082 and downregulation of NF-κB p65 expression. The role of p53 in mediating Brefeldin A-induced apoptosis was also investigated. Induction of p53 expression by Brefeldin A was correlated to Brefeldin A-induced apoptosis. Furthermore, downregulation of p53 expression by p53 siRNA significantly reduced Brefeldin A-induced apoptosis in MCF-7 cells.Significance
Taken together, NF-κB activation and induction of p53 expression is essential for ER stress-induced cell death which is important for therapeutic effects of clinical cancer drugs. Our results may provide insight into the mechanism of cancer chemotherapy efficacy that is associated with induction of ER stress. 相似文献5.
Persistently elevated level of TNF-α has been implicated in several inflammatory disorders, however, its autocrine production through TNF-α receptors signaling is poorly understood. Here we report that simultaneous silencing of TNF-receptors, R1 and R2 by DNAzyme or siRNA suppressed TNF-α expression more efficiently than silencing them individually in lipopolysaccharides (LPS) stimulated THP-1 macrophages. Co-silencing of TNF-receptors also inhibited TNF-α induced NF-κB activation to a higher extent. It was further observed that NF-κB inhibitor but not c-Jun N-terminal kinase inhibitor (SP600125) suppressed TNF-α expression. All these results suggest that TNF-α expression is regulated by synergistic signaling of TNF receptors through downstream NF-κB activation. 相似文献
6.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway. 相似文献
7.
8.
9.
Sandra Malynn Antonio Campos-Torres Paul Moynagh Jana Haase 《Neurochemical research》2013,38(4):694-704
Pro-inflammatory cytokines have been implicated in the precipitation of depression and related disorders, and the antidepressant sensitive serotonin transporter (SERT) may be a major target for immune regulation in these disorders. Here, we focus on astrocytes, a major class of immune competent cells in the brain, to examine the effects of pro-longed treatment with tumor necrosis factor-alpha (TNF-α) on SERT activity. We first established that high-affinity serotonin uptake into C6 glioma cells occurs through a SERT-dependent mechanism. Functional SERT expression is also confirmed for primary astrocytes. In both cell types, exposure to TNF-α resulted in a dose- and time-dependent increase in SERT-mediated 5-HT uptake, which was sustained for at least 48 h post-stimulation. Further analysis in primary astrocytes revealed that TNF-α enhanced the transport capacity (Vmax) of SERT-specific 5-HT uptake, suggesting enhanced transporter expression, consistent with our observation of an increase in SERT mRNA levels. We confirmed that in both, primary astrocytes and C6 glioma cells, treatment with TNF-α activates the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Pre-treatment with the p38 MAPK inhibitor SB203580 attenuated the TNF-α mediated stimulation of 5-HT transport in both, C6 glioma and primary astrocytes. In summary, we show that SERT gene expression and activity in astrocytes is subject to regulation by TNF-α, an effect that is at least in part dependent on p38 MAPK activation. 相似文献
10.
11.
NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex, is an essential adaptor both for inflammation stimuli and TCR-induced NF-κB activation. However, the exact mechanism of its function has not been fully understood. Here, we report that knockdown of NEMO by RNA interference in Jurkat E6.1 cells enhanced TCR-induced NF-κB report gene activity and IL-2 production by promotion of IκBα degradation and p65 nuclear translocation, whereas inhibited TNF-α and LPS-induced IκBα degradation without influencing the phosphorylation of MAPKs. In human primary T and Jurkat E6.1 cells, both CD3/CD28 and PMA/Ionomycin induced NF-κB activation showed a para-curve correlation with the dosage of small interfering RNA targeting NEMO (siNEMO): the NF-κB report gene activity was increased along with ascending doses of transfected siNEMO and reached the highest activity when knockdown about 70% of NEMO, then turned to decline and gradually be blocked once almost thoroughly knockdown of NEMO. Meanwhile, TNF-α induced NF-κB was always inhibited no matter how much NEMO was knockdown. Subcellular fractionation results suggested that upon CD3/CD28 costimulation, NEMO and IKKβ may not cotranslocate to cytoskeleton fraction as a conventional NEMO/IKK complex with a static stoichiometric ratio, instead the ratio of NEMO: IKKβ continuously shift from high to low. Depletion of NEMO accelerated TCR-induced cytoskeleton translocation of IKKβ. Altogether, this study suggests that NEMO may function as a rheostat exerting a negative action on TCR-induced NF-κB activation and differentially regulates TNF-α and TCR-induced NF-κB pathways. 相似文献
12.
13.
14.
15.
Ana Sofia Cacha?o Tania Carvalho Ana Cristina Santos Cátia Igreja Rita Fragoso Catarina Osório Manuela Ferreira Jacinta Serpa Sofia Correia Perpétua Pinto-do-ó Sérgio Dias 《PloS one》2010,5(2)
Background
Secondary bone marrow (BM) myelodysplastic syndromes (MDS) are increasingly common, as a result of radio or chemotherapy administered to a majority of cancer patients. Patients with secondary MDS have increased BM cell apoptosis, which results in BM dysfunction (cytopenias), and an increased risk of developing fatal acute leukemias. In the present study we asked whether TNF-α, known to regulate cell apoptosis, could modulate the onset of secondary MDS.Principal Findings
We show that TNF-α is induced by irradiation and regulates BM cells apoptosis in vitro and in vivo. In contrast to irradiated wild type (WT) mice, TNF-α deficient (TNF-α KO) mice or WT mice treated with a TNF-α-neutralizing antibody were partially protected from the apoptotic effects of irradiation. Next we established a 3-cycle irradiation protocol, in which mice were sub-lethally irradiated once monthly over a 3 month period. In this model, irradiated WT mice presented loss of microsatellite markers on BM cells, low white blood cell (WBC) counts, reduced megakaryocyte (MK) and platelet levels (thrombocytopenia) and macrocytic anemia, phenoypes that suggest the irradiation protocol resulted in BM dysfunction with clinical features of MDS. In contrast, TNF-α KO mice were protected from the irradiation effects: BM cell apoptosis following irradiation was significantly reduced, concomitant with sustained BM MK numbers and absence of other cytopenias. Moreover, irradiated WT mice with long term (≥5 months) BM dysfunction had increased BM angiogenesis, MMPs and VEGF and NFkB p65, suggestive of disease progression.Conclusion
Taken together, our data shows that TNF-α induction following irradiation modulates BM cell apoptosis and is a crucial event in BM dysfunction, secondary MDS onset and progression. 相似文献16.
17.
It is becoming clear that inflammation plays a significant role in a number of neurological and psychiatric conditions. Post mortem brain samples in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia and most recently autism spectrum condition, all exhibit neuroglial activation and inflammatory markers within the CSF. Many questions remain about the underlying molecular mechanisms. By adding the pro-inflammatory cytokine, TNF-α, to mouse brain tissue we demonstrated that the frontal lobes and temporal region, areas involved in higher functions such as memory and learning, are most susceptible to cytokine-induced inflammation via the NF-κB signalling pathway. We observed direct correlations between the volumetric increase and molecular expression indicating that therapeutic targets in these lobes may require different approaches when treating conditions with a central neuroinflammatory component. 相似文献
18.