首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large animals should have higher lifetime probabilities of cancer than small animals because each cell division carries an attendant risk of mutating towards a tumour lineage. However, this is not observed—a (Peto''s) paradox that suggests large and/or long-lived species have evolved effective cancer suppression mechanisms. Using the Euler–Lotka population model, we demonstrate the evolutionary value of cancer suppression as determined by the ‘cost’ (decreased fecundity) of suppression verses the ‘cost’ of cancer (reduced survivorship). Body size per se will not select for sufficient cancer suppression to explain the paradox. Rather, cancer suppression should be most extreme when the probability of non-cancer death decreases with age (e.g. alligators), maturation is delayed, fecundity rates are low and fecundity increases with age. Thus, the value of cancer suppression is predicted to be lowest in the vole (short lifespan, high fecundity) and highest in the naked mole rat (long lived with late female sexual maturity). The life history of pre-industrial humans likely selected for quite low levels of cancer suppression. In modern humans that live much longer, this level results in unusually high lifetime cancer risks. The model predicts a lifetime risk of 49% compared with the current empirical value of 43%.  相似文献   

2.
Lifetime reproductive success in female Japanese macaques   总被引:2,自引:0,他引:2  
Lifetime reproductive success, measured by the number of offspring surviving to age five, varied from 0 to 10 in a group of 33 provisioned female Japanese macaques. Of the three contributors to reproductive success, the number of reproductive years, fecundity per year and survivorship of offspring to reproductive age, the first accounted for two-thirds of the variation. Fecundity per year and survivorship were negatively correlated, indicating reproductive costs of reducing interbirth interval. No other demographic measure used, nor the behavioral measure 'dominance rank', significantly correlated with lifetime reproductive success or its components. Age-specific changes in fecundity and infant survival were not found for this sample, neither could cessation of reproduction, even in very old females, be demonstrated.  相似文献   

3.
Offspring of long-lived species should face costs of parental trade-offs that vary with overall energetic demands encountered by parents during breeding. If sex differences exist in how parents make the trade-off, sex-specific differences may exist in the contribution of each parent to those costs. Adaptations of offspring facing such costs are not well understood, but the hormone corticosterone probably plays a role. We manipulated breeding effort in Cory's shearwaters (Calonectris diomedea) to increase costs to offspring and used an integrated measure of corticosterone from chick feathers to investigate how experimental variation in parental investment influences offspring physiology. Average foraging trip duration and foraging efficiency (FE) of breeding pairs were not related to chick corticosterone, but sex biases in FE were. Adult male investment was more strongly related to chick corticosterone than was female investment. Importantly, we show for the first time suppression of adrenocortical activity in nestling Procellariiform seabirds, and explain how our results indicate an adaptive mechanism invoked by chicks facing increased costs of parental trade-offs.  相似文献   

4.
The evolutionary theory of senescence posits that as the probability of extrinsic mortality increases with age, selection should favour early‐life over late‐life reproduction. Studies on natural vertebrate populations show early reproduction may impair later‐life performance, but the consequences for lifetime fitness have rarely been determined, and little is known of whether similar patterns apply to mammals which typically live for several decades. We used a longitudinal dataset on Asian elephants (Elephas maximus) to investigate associations between early‐life reproduction and female age‐specific survival, fecundity and offspring survival to independence, as well as lifetime breeding success (lifetime number of calves produced). Females showed low fecundity following sexual maturity, followed by a rapid increase to a peak at age 19 and a subsequent decline. High early life reproductive output (before the peak of performance) was positively associated with subsequent age‐specific fecundity and offspring survival, but significantly impaired a female's own later‐life survival. Despite the negative effects of early reproduction on late‐life survival, early reproduction is under positive selection through a positive association with lifetime breeding success. Our results suggest a trade‐off between early reproduction and later survival which is maintained by strong selection for high early fecundity, and thus support the prediction from life history theory that high investment in reproductive success in early life is favoured by selection through lifetime fitness despite costs to later‐life survival. That maternal survival in elephants depends on previous reproductive investment also has implications for the success of (semi‐)captive breeding programmes of this endangered species.  相似文献   

5.
1. In cooperative societies with high reproductive skew, selection on females is likely to operate principally through variation in the probability of acquiring dominant status and variation in reproductive success while dominant. Despite this, few studies of cooperative societies have investigated the factors that influence which females become dominant, and/or their reproductive output while in the dominant position. 2. Here we use long-term data from a wild meerkats population to describe variation in the breeding success of dominant female meerkats Suricata suricatta and investigate its causes. 3. Female meerkats compete intensely for breeding positions, and the probability of acquiring the breeding role depends upon a female's age in relation to competitors and her weight, both at the time of dominance acquisition and early in life. 4. Once dominant, individual differences in breeding success depend principally on the duration of dominance tenure. Females remain for longer in the dominant position if they are heavier than their competitors at the start of dominance, and if the number of adult female competitors at the start is low. 5. Female breeding success is also affected by variation in fecundity and pup survival, both of which increase with group size. After controlling for these effects, female body weight has a positive influence on breeding rate and litter size, while the number of adult female competitors reduces litter survival. 6. These findings suggest that selection for body weight and competitive ability will be high in female meerkats, which may moderate their investment in cooperative activities. We suggest that similar consequences of competition may occur among females in other cooperative societies where the benefits of attaining dominance status are high.  相似文献   

6.
Summary Most species of woodlice in temperate habitats have discrete breeding seasons. It is hypothesised that breeding synchronises with favourable environmental conditions to maximise offspring growth and survivorship (Willows 1984). We measured the breeding phenology of a species introduced to a tropical environment, primarily to consider the assumption that life histories in the tropics will differ fundamentally from those in temperate habitats. In addition to breeding phenology we considered variation in reproductive effort between individual females and the division of this effort between the size and number of young.A continuous breeding phenology was observed in a synanthropic population of Porcellionides pruinosus within the tropics. Reproductive effort varied between months, showed a weak relationship with female size and was independent of female fecundity. Female sizefecundity relationships varied between samples and when the proportion of reproductive females was high size-fecundity slopes were steeper than at other times. Mean offspring size varied between months and there was a wide range in offspring size within broods. Offspring size was not related to female body mass, reproductive effort or fecundity; consequently brood mass increased linearly with an increase in fecundity. Increased reproductive effort goes into more rather than larger offspring.We propose that the continuous breeding in this population was the result of the constant presence of an environmental cue to reproduction evolved in temperate habitats. Continuous breeding is not necessarily equivocal to high individual reproductive success even though overall population growth may be rapid. However, variation in reproductive effort suggests that individuals respond to current environmental conditions on short time scales.  相似文献   

7.
In many species, males can influence the amount of resources their mates invest in reproduction. Two favoured hypotheses for this observation are that females assess male quality during courtship or copulation and alter their investment in offspring accordingly, or that males manipulate females to invest heavily in offspring produced soon after mating. Here, we examined whether there is genetic variation for males to influence female short-term reproductive investment in Drosophila melanogaster, a species with strong sexual selection and substantial sexual conflict. We measured the fecundity and egg size of females mated to males from multiple isofemale lines collected from populations around the globe. Although these traits were not strongly influenced by the male's population of origin, we found that 22 per cent of the variation in female short-term reproductive investment was attributable to the genotype of her mate. This is the first direct evidence that male D. melanogaster vary genetically in their proximate influence on female fecundity, egg size and overall reproductive investment.  相似文献   

8.
Within-individual plasticity for reproductive investment was examined in a clonal fish (Poeciliidae: Poeciliopsis) grown under six levels of resource stress. Growth, age at first reproduction, egg production, egg size, egg energetic content, and survivorship were measured from fish grown in three dietary and two density treatments. Growth and fecundity decreased with both increased density and food stress. Age at first reproduction increased with increased density, but was unaffected by the diet treatments. Reproductive effort (clutch size per female weight), offspring investment (egg size and egg energetic content), and survivorship were invariant across all treatment combinations. We compare these results with predictions based on theoretical treatments of optimal reproductive investment.  相似文献   

9.
Elevational gradients provide powerful natural systems for testing hypotheses regarding the role of environmental variation in the evolution of life‐history strategies. Case studies have revealed shifts towards slower life histories in organisms living at high elevations yet no synthetic analyses exist of elevational variation in life‐history traits for major vertebrate clades. We examined (i) how life‐history traits change with elevation in paired populations of bird species worldwide, and (ii) which biotic and abiotic factors drive elevational shifts in life history. Using three analytical methods, we found that fecundity declined at higher elevations due to smaller clutches and fewer reproductive attempts per year. By contrast, elevational differences in traits associated with parental investment or survival varied among studies. High‐elevation populations had shorter and later breeding seasons, but longer developmental periods implying that temporal constraints contribute to reduced fecundity. Analyses of clutch size data, the trait for which we had the largest number of population comparisons, indicated no evidence that phylogenetic history constrained species‐level plasticity in trait variation associated with elevational gradients. The magnitude of elevational shifts in life‐history traits were largely unrelated to geographic (altitude, latitude), intrinsic (body mass, migratory status), or habitat covariates. Meta‐population structure, methodological issues associated with estimating survival, or processes shaping range boundaries could potentially explain the nature of elevational shifts in life‐history traits evident in this data set. We identify a new risk factor for montane populations in changing climates: low fecundity will result in lower reproductive potential to recover from perturbations, especially as fewer than half of the species experienced higher survival at higher elevations.  相似文献   

10.
Evolutionary conflict between parents and offspring over parental resource investment is a significant selective force on the traits of both parents and offspring. Empirical studies have shown that for some species, the amount of parental investment is controlled by the parents, whereas in other species, it is controlled by the offspring. The main difference between these two strategies is the residual reproductive value of the parents or opportunities for future reproduction. Therefore, this could explain the patterns of control of parental investment at the species level. However, the residual reproductive value of the parents will change during their lifetime; therefore, parental influence on the amount of investment can be expected to change plastically. Here, we investigated control of parental investment when parents were young and had a high residual reproductive value, compared to when they were old and had a low residual reproductive value using a cross‐fostering experiment in the burying beetle Nicrophorus quadripunctatus. We found that parents exert greater control over parental investment when they are young, but parental control is weakened as the parents age. Our results demonstrate that control of parental investment is not fixed, but changes plastically during the parent's lifetime.  相似文献   

11.
Is sociality associated with high longevity in North American birds?   总被引:1,自引:0,他引:1  
Sociality, as a life-history trait, should be associated with high longevity because complex sociality is characterized by reproductive suppression, delayed breeding, increased care and survival, and some of these traits select for high longevity. We studied the relationship between cooperative parental care (a proxy of complex sociality) and relative maximum lifespan in 257 North American bird species. After controlling for variation in maximum lifespan explained by body mass, sampling effort, latitude, mortality rate, migration distance and age at first reproduction, we found no significant effect of cooperative care on longevity in analyses of species-specific data or phylogenetically independent standardized linear contrasts. Thus, sociality itself is not associated with high longevity. Rather, longevity is correlated with increased body size, survival rate and age of first reproduction.  相似文献   

12.
1.?We assessed the relative influence of variability in recruitment age, dynamic reproductive investment (time-specific reproductive states) and frailty (unobserved differences in survival abilities across individuals) on survival in the black-legged kittiwake. Furthermore, we examined whether observed variability in survival trajectories was best explained by immediate reproductive investment, cumulative investment, or both. 2.?Individuals that delayed recruitment (≥ age 7) suffered a higher mortality risk than early recruits (age 3), especially later in life, suggesting that recruitment age may be an indicator of individual quality. Although recruitment age helped explain variation in survival, time-varying reproductive investment had a more substantial influence. 3.?The dichotomy of attempting to breed or not explained variability in survival across life better than other parameterizations of reproductive states such as clutch size, brood size or breeding success. In the kittiwake, the sinequanon condition to initiate reproduction is to hold a nest site, which is considered a very competitive activity. This might explain why attempting to breed is the key level of investment that affects survival, independent of the outcome (failure or success). 4.?Interestingly, the more individuals cumulate reproductive attempts over life, the lower their mortality risk, indicating that breeding experience may be a good indicator of parental quality as well. In contrast, attempting to breed at time t increased the risk of mortality between t and t + 1. We thus detected an immediate trade-off between attempting to breed and survival in this population; however, the earlier individuals recruited, and the more breeding experience they accumulated, the smaller the cost. 5.?Lastly, unobserved heterogeneity across individuals improved model fit more (1·3 times) than fixed and dynamic sources of observed heterogeneity in reproductive investment, demonstrating that it is critical to account for both sources of individual heterogeneity when studying survival trajectories. Only after simultaneously accounting for both sources of heterogeneity were we able to detect the 'cost' of immediate reproductive investment on survival and the 'benefit' of cumulative breeding attempts (experience), a proxy to individual quality.  相似文献   

13.
Intraspecific cooperation and interspecific mutualisms can be promoted by mechanisms that reduce the frequency with which cooperative organisms are exploited by unhelpful partners. One such mechanism consists of changing partners after interacting with an uncooperative individual. I used McNamara et al.'s (Nature, 451, 2008, 189) partner switching model as a framework to examine whether this mechanism can select for increased cooperative investment by house sparrows (Passer domesticus) collaborating to rear offspring; previous research on this species has shown that substantial cooperative investments by both pair members are required to achieve high pay‐offs from collaborating. I found that the poorer the outcome of a breeding attempt relative to the number of eggs the female invested, the greater the likelihood of partner switching. The incidence of partner switching changed seasonally, with peak switching coinciding with an increase in the number of alternative partners available to females. After females switched partners, their breeding outcomes rose to match those of females that remained with the same partner; this was not the case for males that switched partners. Consistent with the model's prediction, males in stable partnerships achieved over 25% higher than average reproductive success, which was attributable to both persistently good breeding outcomes and their older partners' high fecundity. These results provide empirical support for the hypothesis that partner switching favours increased cooperative investment levels, and they demonstrate that variation in the relative value of by‐product benefits can enhance that process.  相似文献   

14.
In numerous iteroparous species, mean fecundity increases with age. Such improvement has been explained by: a) progressive removal of inferior breeders from the breeding population (selection‐hypothesis); b) delayed breeding of higher‐quality phenotypes (delayed‐breeder‐hypothesis); c) longitudinal enhancement of skills associated with age per se (age‐hypothesis); d) progressive improvement in the capability to conduct specific tasks facilitated by accumulated experience (breeding‐experience‐hypothesis); and e) increasing parental investment promoted by declining residual reproductive values (restraint‐hypothesis). To date, there have been few comprehensive tests of these hypotheses. Here, we provide such a study using a long‐term dataset on a long‐lived raptor, the black kite Milvus migrans (maximum lifespan 23 yr). Kites delayed breeding for 1–7 yr and all measures of breeding performance increased linearly or quadratically up to 11 yr of age. There was no support for the delayed‐breeder‐hypothesis: superior phenotypes did not delay breeding longer. Superior breeders were retained longer in the breeding population, consistent with the selection‐hypothesis. All measures of breeding performance increased longitudinally within individuals, supporting the age‐hypothesis, while some of them increased with accumulated previous experience, supporting the breeding‐experience‐hypothesis. Some analyses suggested the existence of trade‐offs between reproduction in the early years of life and subsequent survival, partially supporting the restraint‐hypothesis. The pattern of age‐related improvements in breeding rates observed at the population‐level could be ascribed to the combined effect of the progressive removal of inferior phenotypes from the breeding population and the individual‐level lack of specific skills which are progressively acquired with time and experience. It was also compatible with a longitudinal increase in reproductive investment. Results from previous studies suggest that different mechanisms may operate in different species and that age‐related improvements in reproduction may be frequently promoted by the complex interplay between longitudinal improvements and changes in the relative frequency of productive phenotypes in the breeding population.  相似文献   

15.
We analysed the influence of ecological factors, phylogenetic history and trade-offs between traits on the life-history variation among 10 loricariid species of the middle Paraná River. We measured eight life-history variables and classified the life-history strategies following the equilibrium–periodic–opportunistic (EPO) model. Principal-component analysis of life-history traits segregated species along a gradient from small opportunistic (low fecundity, low parental investment) to large equilibrium (low-medium fecundity, high parental investment) species. A clear periodic strategist was absent in the analysed assemblage. Variation partitioning by canonical phylogenetic ordination analysis showed both a component of variation uniquely explained by phylogenetic history (PH; 32.2%) and a component shared between PH and ecological factors (EF; 37%). The EPO model is a useful tool for predicting correlations among life-history traits and understanding potential demographic responses of species to environmental variation. Life-history patterns observed throughout Loricariidae suggests that this family has diversified across all three endpoint strategies of the EPO model. Our study indicates that evolutionary lineage affiliation at the level of subfamily can be a strong predictor of the life-history strategy used by each species.  相似文献   

16.
KAREN L. WIEBE  KATHY MARTIN 《Ibis》1998,140(1):14-24
Although many studies report a difference in reproductive success between old and young birds, little is known about how, why and when productivity changes as individuals age. We examined age-dependent reproduction in two bird species that inhabit harsh tundra environments: White-tailed Ptarmigan Lagopus leucurus in alpine areas and Willow Ptarmigan Lagopus lagopus in subarctic Canada. We evaluated reproductive performance in the light of three hypotheses: constraint, restraint and selection. Using cross-sectional and longitudinal data, we observed significant age effects in seven of the eight life history and behavioural traits examined for the two species. However, the pattern of age effects variedconsiderably across life history stages; younger birds generally had smaller clutches, later laying dates and poorer spring body condition, but the nesting success did not vary with age. Brood-rearing and renesting abilities were greater for older parents. The oldest age class of White-tailed Ptarmigan showed reproductive senescence for laying date and clutch size but fledged such a large proportion of the brood that they had the highest overall production of any class. It thus appears that parental experience can compensate for reduced physical ability to produce eggs. Annual mortality rates for breeding females were U-shaped for White-tailed Ptarmigan, with higher rates for young and old birds, but mortality did not change with age in Willow Ptarmigan. Overall, the two species differed in the presence of age dependence for only two traits (renesting ability and annual survival). Age-dependent effects were generally greater for White-tailed Ptarmigan than for Willow Ptarmigan. The patterns of mortality and fecundity we observed in ptarmigan provide general support for the constraint hypothesis of reproductive performance. By examining discrete stages of reproduction, we identified the life history stages where age effects occur and propose proximate mechanisms responsible for these effects.  相似文献   

17.
The selective pressures involved in the evolution of semelparity and its associated life-history traits are largely unknown. We used species-level analyses, independent contrasts, and reconstruction of ancestral states to study the evolution of body length, fecundity, egg weight, gonadosomatic index, and parity (semelparity vs. degree of iteroparity) in females of 12 species of salmonid fishes. According to both species-level analysis and independent contrasts analysis, body length was positively correlated with fecundity, egg weight, and gonadosomatic index, and semelparous species exhibited a significantly steeper slope for the regression of egg weight on body length than did iteroparous species. Percent repeat breeding (degree of iteroparity) was negatively correlated with gonadosomatic index using independent contrasts analysis. Semelparous species had significantly larger eggs by species-level analysis, and the egg weight contrast for the branch on which semelparity was inferred to have originated was significantly larger than the other egg weight contrasts, corresponding to a remarkable increase in egg weight. Reconstruction of ancestral states showed that egg weight and body length apparently increased with the origin of semelparity, but fecundity and gonadosomatic index remained more or less constant or decreased. Thus, the strong evolutionary linkages between body size, fecundity, and gonadosomatic index were broken during the transition from iteroparity to semelparity. These findings suggest that long-distance migrations, which increase adult mortality between breeding episodes, may have been necessary for the origin of semelparity in Pacific salmon, but that increased egg weight, leading to increased juvenile survivorship, was crucial in driving the transition. Our analyses support the life-history hypotheses that a lower degree of repeat breeding is linked to higher reproductive investment per breeding episode, and that semelparity evolves under a combination of relatively high juvenile survivorship and relatively low adult survivorship.  相似文献   

18.
Many species of birds and insects engage in intraspecific brood parasitism (IBP), when a female lays eggs in the nest of a conspecific and leaves without providing parental care. These visiting females may also act to cooperate with a primary female, staying to provide parental care. Therefore, IBP and cooperative breeding can be considered extremes on a continuum of parental care provided by a secondary female. When a secondary female abandons a nest, she creates an asymmetry in parental care between herself and the host. While models of asymmetry in reproductive allocation have focused directly on relatedness between females, we lack an appropriate theoretical framework that addresses the effects of relatedness on parental care asymmetry. Here, I present an evolutionarily stable strategy (ESS) model that predicts the conditions under which IBP is favored over cooperation and solitary breeding. Intraspecific brood parasitism is less likely to evolve (relative to cooperation and solitary breeding) as the relatedness between a host and parasite increases. It can evolve, however, if parasites achieve a high overall fecundity relative to solitary females. Constraints on solitary breeding can further promote IBP under some circumstances. Cooperation is favored when relatedness is high and reproductive skew is low. This model makes several predictions regarding the conditions under which IBP may evolve, motivating a variety of experimental approaches.  相似文献   

19.
The processes driving age‐related variation in demographic rates are central to understanding population and evolutionary ecology. An increasing number of studies in wild vertebrates find evidence for improvements in reproductive performance traits in early adulthood, followed by senescent declines in later life. However, life history theory predicts that reproductive investment should increase with age as future survival prospects diminish, and that raised reproductive investment may have associated survival costs. These non‐mutually exclusive processes both predict an increase in breeding performance at the terminal breeding attempt. Here, we use a 30‐year study of wandering albatrosses (Diomedea exulans) to disentangle the processes underpinning age‐related variation in reproduction. Whilst highlighting the importance of breeding experience, we reveal senescent declines in performance are followed by a striking increase in breeding success and a key parental investment trait at the final breeding attempt.  相似文献   

20.
While an understanding of evolutionary processes in shifting environments is vital in the context of rapid ecological change, one of the most potent selective forces, sexual selection, remains curiously unexplored. Variation in sexual selection across a species range, especially across a gradient of temperature regimes, has the potential to provide a window into the possible impacts of climate change on the evolution of mating patterns. Here, we investigated some of the links between temperature and indicators of sexual selection, using a cold‐water pipefish as model. We found that populations differed with respect to body size, length of the breeding season, fecundity, and sexual dimorphism across a wide latitudinal gradient. We encountered two types of latitudinal patterns, either linear, when related to body size, or parabolic in shape when considering variables related to sexual selection intensity, such as sexual dimorphism and reproductive investment. Our results suggest that sexual selection intensity increases toward both edges of the distribution and that the large differences in temperature likely play a significant role. Shorter breeding seasons in the north and reduced periods for gamete production in the south certainly have the potential to alter mating systems, breeding synchrony, and mate monopolization rates. As latitude and water temperature are tightly coupled across the European coasts, the observed patterns in traits related to sexual selection can lead to predictions regarding how sexual selection should change in response to climate change. Based on data from extant populations, we can predict that as the worm pipefish moves northward, a wave of decreasing selection intensity will likely replace the strong sexual selection at the northern range margin. In contrast, the southern populations will be followed by heightened sexual selection, which may exacerbate the problem of local extinction at this retreating boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号