首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
TAMpering with toll-like receptor signaling   总被引:1,自引:0,他引:1  
O'Neill LA 《Cell》2007,131(6):1039-1041
Toll-like receptors (TLRs) provoke a profound inflammatory response during host defense and must be controlled in order to avoid autoimmune and inflammatory diseases. In this issue, Rothlin et al. (2007) uncover a complex negative feedback mechanism to limit TLR signaling involving the Tyro3/Axl/Mer (TAM) family of receptor tyrosine kinases, which induce expression of the inhibitory proteins SOCS1 and SOCS3.  相似文献   

2.
Staphylococcus aureus (S. aureus)-induced mastitis is the most frequent, pathogenic, and prevalent infection of the mammary gland. The ligand growth arrest-specific 6 (Gas6) is a secretory protein that binds to and activates Tyro3, Axl, and MerTK receptors. This study explored the role of Gas6 in S. aureus-induced mastitis. Our results revealed that TLR receptors initiate the innate immune response in mammary gland tissues and epithelial cells and that introducing S. aureus activates TLR2 and TLR6 to drive multiple intracellular mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) pathways. Moreover, S. aureus also induces Gas6, which then activates the TAM receptor kinase pathway, which is related to the inhibition of TLR2- and TLR6-mediated inflammatory pathways through SOCS1 and SOCS3 induction. Gas6 absence alone was found to be involved in the downregulation of TAM receptor-mediated anti-inflammatory effects by inducing significantly prominent expression of TRAF6 and low protein and messenger RNA expression of SOCS1 and SOCS3. S. aureus-induced MAPK and NF-ĸB p65 phosphorylation were also dependent on Gas6, which negatively regulated the production of Pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in S. aureus-treated mammary tissues and mammary epithelial cells. Our in vivo and in vitro study uncovered the Gas6-mediated negative feedback mechanism, which inhibits TLR2- and TLR6-mediated MAPK and NF-ĸB signaling by activating TAM receptor kinase (MerTK, Axl, and Tyro3) through the induction of SOCS1/SOCS3 proteins.  相似文献   

3.
Influenza A virus (IAV) triggers a contagious respiratory disease that produces considerable lethality. Although this lethality is likely due to an excessive host inflammatory response, the negative feedback mechanisms aimed at regulating such a response are unknown. In this study, we investigated the role of the eight "suppressor of cytokine signaling" (SOCS) regulatory proteins in IAV-triggered cytokine expression in human respiratory epithelial cells. SOCS1 to SOCS7, but not cytokine-inducible Src homology 2-containing protein (CIS), are constitutively expressed in these cells and only SOCS1 and SOCS3 expressions are up-regulated upon IAV challenge. Using distinct approaches affecting the expression and/or the function of the IFNalphabeta receptor (IFNAR)1, the viral sensors TLR3 and retinoic acid-inducible gene I (RIG-I) as well as the mitochondrial antiviral signaling protein (MAVS, a RIG-I signaling intermediate), we demonstrated that SOCS1 and SOCS3 up-regulation requires a TLR3-independent, RIG-I/MAVS/IFNAR1-dependent pathway. Importantly, by using vectors overexpressing SOCS1 and SOCS3 we revealed that while both molecules inhibit antiviral responses, they differentially modulate inflammatory signaling pathways.  相似文献   

4.
Xu Z  Huang G  Gong W  Zhou P  Zhao Y  Zhang Y  Zeng Y  Gao M  Pan Z  He F 《Cellular signalling》2012,24(8):1658-1664
Because of the anti-inflammatory actions of farnesoid X receptor (FXR) agonists, FXR has received much attention as a potential therapeutic target. However, the molecular mechanisms of actions have not yet been elucidated. In the present study, we reported that in the animal model of LPS-induced liver injury, administration of the FXR natural ligand CDCA could attenuate hepatocyte inflammatory damage, reduce transaminase activities, suppress inflammation mediators (IL-6, TNF-α and ICAM-1) expression and inhibit STAT3 phosphorylation. These protective effects of FXR were accompanied by an increased expression of suppressor of cytokine signaling 3 (SOCS3), which is a negative feedback regulator of cytokine-STAT3 signaling. We then demonstrated that the beneficial effects of FXR agonist in STAT3 activation were weakened by small interfering RNA-mediated SOCS3 knockdown in hepacytes. Moreover we observed both natural ligand CDCA and synthetic ligand GW4064 could upregulate SOCS 3 expression by enhancing the promoter activity in hepatocytes. These results suggest modulation of SOCS3 expression may represent a novel mechanism through which FXR activation could selectively affect cytokine bioactivity in inflammation response. FXR ligands may be potentially therapeutic in the treatment of liver inflammatory diseases via SOCS3 induction.  相似文献   

5.
Toll-like receptor (TLR) pathways signal through microbial components stimulation to induce innate immune responses. Herein, we demonstrate that BCL10, a critical molecule that signals between the T cell receptor and IkappaB kinase complexes, is involved in the innate immune system and is required for appropriate TLR4 pathway and nuclear factor-kappaB (NF-kappaB) activation. In response to lipopolysaccharide (LPS) stimulation, BCL10 was recruited to TLR4 signaling complexes and associated with Pellino2, an essential component down-stream of BCL10 in the TLR4 pathway. In a BCL10-deficient macrophage cell line, LPS-induced NF-kappaB activation was consistently defective, whereas activator protein-1 and Elk-1 signaling was intact. In addition, we found that BCL10 was targeted by SOCS3 for negative regulation in LPS signaling. The recruitment of BCL10 to TLR4 signaling complexes was attenuated by induced expression of SOCS3 in a feedback loop. Furthermore, ectopic SOCS3 expression blocked the interaction between BCL10 and Pellino2 together with BCL10-generated NF-kappaB activation and inducible nitric-oxide synthase expression. Together, these data define an important role of BCL10 in the innate immune system.  相似文献   

6.
7.
Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS sig-nal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.  相似文献   

8.
9.
10.
11.
Suppressor of cytokine signaling 1 (SOCS1) is an obligate negative regulator of cytokine signaling and most importantly in vivo, signaling via the interferon-gamma (IFN-gamma) receptor. SOCS1, via its Src homology 2 domain, binds to phosphotyrosine residues in its targets, reducing the amplitude of signaling from cytokine receptors. SOCS1 is also implicated in blocking Toll-like receptor (TLR) signaling in macrophages activated by TLR agonists such as lipopolysaccharide (LPS), thus regulating multiple steps in the activation of innate immune responses. To rigorously test this, we isolated macrophages from Socs1-/- mice on multiple genetic backgrounds. We found no evidence that SOCS1 blocked TLR-activated pathways, endotoxin tolerance, or nitric oxide production. However, Socs1-/-;IFN-gamma-/- mice were extremely susceptible to LPS challenge, confirming previous findings. Because LPS induces IFN-beta production from macrophages, we tested whether SOCS1 regulates IFN-alpha/beta receptor signaling. We find that SOCS1 is required to inhibit IFN-alpha/beta receptor signaling in vitro. Furthermore, the absence of a single allele encoding TYK2, a JAK (Janus kinase) family member essential IFN-alpha/beta receptor signaling, rescued Socs1-/- mice from early lethality, even in the presence of IFN-gamma. We conclude that previous reports linking SOCS1 to TLR signaling are most likely due to effects on IFN-alpha/beta receptor signaling.  相似文献   

12.
13.
NLRC5, the largest member of the Nod-like receptor (NLR) family, has been reported to play a pivotal role in regulating inflammatory responses. Recent evidence suggests that NLRC5 participates in Toll-like receptor (TLR) signaling pathways and negatively modulates nuclear factor-κB (NF-κB) activation. In this study, we investigated the interaction between NLRC5 and TLR2 in the NF-κB inflammatory signaling pathway and the involvement of NLRC5 in TLR2-mediated allergic airway inflammation. We knocked down TLR2 and NLRC5, respectively in the RAW264.7 macrophage cell line by small interfering RNA (siRNA) and then stimulated the knockdown cells with lipoteichoic acid (LTA). In comparison with the negative siRNA group, the level of NLRC5 expression was lower in the TLR2 siRNA group, with a reduction in the NF-κB-related inflammatory response. Conversely, in the NLRC5 knockdown cells, after LTA-treated the level of TLR2 expression did not change but the expression levels of both NF-κB pp65 and NLRP3 increased remarkably. Thus, we hypothesize that NLRC5 participates in the LTA-induced inflammatory signaling pathway and regulates the inflammation via TLR2/NF-κB. Similarly, in subsequent in vivo experiments, we demonstrated that the expression level of NLRC5 was significantly increased in the ovalbumin-induced allergic airway inflammation. However, this effect disappeared in TLR2-deficient (TLR2 −/−) mice and was accompanied by reduced levels of NF-κB expression and airway inflammation. In conclusion, NLRC5 negatively regulates LTA-induced inflammatory response via a TLR2/NF-κB pathway in macrophages and also participates in TLR2-mediated allergic airway inflammation.  相似文献   

14.
Suppressor of cytokine signaling (SOCS) 3 is a critical negative regulator of cytokine signaling and is induced by Mycobacterium bovis Bacille Calmette-Guérin (M. bovis BCG) in mouse macrophages. However, little is known about the early receptor proximal signaling mechanisms underlying mycobacteria-mediated induction of SOCS3. We demonstrate here for the first time that M. bovis BCG up-regulates NOTCH1 and activates the NOTCH1 signaling pathway, leading to the expression of SOCS3. We show that perturbing Notch signaling in infected macrophages results in the marked reduction in the expression of SOCS3. Furthermore, enforced expression of the Notch1 intracellular domain in RAW 264.7 macrophages induces the expression of SOCS3, which can be further potentiated by M. bovis BCG. The perturbation of Toll-like receptor (TLR) 2 signaling resulted in marked reduction in SOCS3 levels and expression of the NOTCH1 target gene, Hes1. The down-regulation of MyD88 resulted in a significant decrease in SOCS3 expression, implicating the role of the TLR2-MyD88 axis in M. bovis BCG-triggered signaling. However, the SOCS3 inducing ability of M. bovis BCG remains unaltered also upon infection of macrophages from TLR4-defective C3H/HeJ mice. More importantly, signaling perturbation data suggest the involvement of cross-talk among members of the phosphoinositide 3-kinase and mitogen-activated protein kinase cascades with NOTCH1 signaling in SOCS3 expression. Furthermore, SOCS3 expression requires the NOTCH1-mediated recruitment of Suppressor of Hairless (CSL) and nuclear factor-kappaB to the Socs3 promoter. Overall, these results implicate NOTCH1 signaling during inducible expression of SOCS3 following infection of macrophages with an intracellular bacillus-like M. bovis BCG.  相似文献   

15.
Suppressor of cytokine signaling (SOCS) proteins serve as negative regulators of cytokine receptor signaling. However, SOCS proteins are not only induced via the JAK/STAT pathway, but are also transcribed on triggering of pattern recognition receptors such as TLRs. We now show that SOCS1 can also be induced by the non-TLR pattern recognition receptor Dectin-1 in murine bone marrow-derived dendritic cells and macrophages (BMMs). The C-type lectin Dectin-1 binds to yeasts and signals either in an autonomous manner or can be triggered in combination with TLRs. In our study, SOCS1 was expressed independently of any TLR engagement as a direct target gene of the Dectin-1 ligand Zymosan. Induction of SOCS1 was mediated by a novel pathway encompassing the tyrosine kinases Src and Syk that activated the downstream kinase proline-rich tyrosine kinase 2. Proline-rich tyrosine kinase 2, in turn, caused activation of the MAPK ERK, thereby triggering SOCS1 induction. SOCS1 did not modulate Dectin-1 signaling but affected TLR signaling, leading to decreased and abbreviated NF-κB activation in BMMs triggered by TLR9. Furthermore, IL-12 and IL-10 secretion were inhibited by SOCS1. We additionally observed that IL-17-producing Th cells were clearly increased by SOCS1 in BMMs. Our results show that SOCS1 is expressed via a new, NF-κB-independent pathway in Dectin-1-triggered murine BMMs and influences TLR cross talk and T cell priming.  相似文献   

16.
Toll-like receptor (TLR) signaling is an important part of the innate immune response. One of the downstream responses to TLR4 signaling upon lipopolysaccharide (LPS) stimulation is the induction of autophagy, which is a key response to multiple stressors. An additional adaptive signaling molecule that is involved in the response to stress is heme oxygenase-1 (HO-1). HO-1 signaling is essential to limit inflammation and restore homeostasis. We found that LPS induced autophagic signaling in macrophages via a TLR4, HO-1 dependent pathway in macrophages. These data add to the developing contribution of autophagic signaling as part of the inflammatory response.  相似文献   

17.
Extensive soft tissue injury and bone fracture are significant contributors to the initial systemic inflammatory response in multiply injured patients. Systemic inflammation can lead to organ dysfunction remote from the site of traumatic injury. The mechanisms underlying the recognition of peripheral injury and the subsequent activation of the immune response are unknown. Toll-like receptors (TLRs) recognize microbial products but also may recognize danger signals released from damaged tissues. Here we report that peripheral tissue trauma initiates systemic inflammation and remote organ dysfunction. Moreover, this systemic response to a sterile local injury requires toll-like receptor 4 (TLR4). Compared with wild-type (C3H/HeOuJ) mice, TLR4 mutant (C3H/HeJ) mice demonstrated reduced systemic and hepatic inflammatory responses to bilateral femur fracture. Trauma-induced nuclear factor (NF)-kappaB activation in the liver required functional TLR4 signaling. CD14-/- mice failed to demonstrate protection from fracture-induced systemic inflammation and hepatocellular injury. Therefore, our results also argue against a contribution of intestine-derived LPS to this process. These findings identify a critical role for TLR4 in the rapid recognition and response pathway to severe traumatic injury. Application of these findings in an evolutionary context suggests that multicellular organisms have evolved to use the same pattern recognition receptor for surviving traumatic and infectious challenges.  相似文献   

18.
19.
Type I IFNs are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure appropriate immune responses as imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand how type I IFN signaling is regulated. Here we have investigated the mechanism by which suppressor of cytokine signaling 1 (SOCS1) inhibits type I IFN signaling. We have found that SOCS1 inhibits type I IFN signaling not via a direct interaction with the IFN α receptor 1 (IFNAR1) receptor component but through an interaction with the IFNAR1-associated kinase Tyk2. We have characterized the residues/regions involved in the interaction between SOCS1 and Tyk2 and found that SOCS1 associates via its SH2 domain with conserved phosphotyrosines 1054 and 1055 of Tyk2. The kinase inhibitory region of SOCS1 is also essential for its interaction with Tyk2 and inhibition of IFN signaling. We also found that Tyk2 is preferentially Lys-63 polyubiquitinated and that this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of Tyk2 not only results in a reduced IFN response because of inhibition of Tyk2 kinase-mediated STAT signaling but also negatively impacts IFNAR1 surface expression, which is stabilized by Tyk2.  相似文献   

20.
Interactions between proinflammatory and cell maturation signals, and the pathways that regulate leukocyte migration, are of fundamental importance in controlling trafficking and recruitment of leukocytes during the processes of innate and adaptive immunity. We have investigated the molecular mechanisms by which selective Toll-like receptor (TLR)2 and TLR4 agonists regulate expression of CCR1 and CCR2 on primary human monocytes and THP-1 cells, a human monocytic cell line. We found that activation of either TLR2 (by Pam(3)CysSerLys(4)) or TLR4 (by purified LPS) resulted in down-modulation of both CCR1 and CCR2. Further investigation of TLR-induced down-modulation of CCR1 revealed differences in the signaling pathways activated, and chemokines generated, via the two TLR agonists. TLR2 activation caused slower induction of the NF-kappa B and mitogen-activated protein kinase signaling pathways and yet a much enhanced and prolonged macrophage-inflammatory protein 1 alpha (CC chemokine ligand 3) protein production, when compared with TLR4 stimulation. Enhanced macrophage-inflammatory protein 1 alpha production may contribute to the prolonged down-regulation of CCR1 cell surface expression observed in response to the TLR2 agonist, as preventing chemokine generation with the protein synthesis inhibitor cycloheximide, or CCR1 signaling with the receptor antagonist UCB35625, abolished TLR2- and TLR4-induced CCR1 down-modulation. This result suggests an autocrine pathway, whereby TLR activation can induce chemokine production, which then leads to homologous down-regulation of the cognate receptors. This work provides further insights into the mechanisms that regulate leukocyte recruitment and trafficking during TLR-induced inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号