首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Danish anthropological collection of medieval human skeletons excavated in 1986 involves a mandible (No. 212) from an adult female born without the lower alveolar nerve and mandibular canal. It is believed that the defect has resulted in lack of tooth development on the affected side and that the mylohyoid nerve has partially compensated for this defect by development of teeth in localized areas. The defective mandibular dentition has caused a compensatory development of the alveolar process in the maxilla. The missing occlusal support has altered muscular traction on the mandible. This has caused an alteration in mandibular shape. Whether the asymmetric development of the mandible is caused by muscular dysfunction, by failure in angular growth apposition, or by a combination of these factors is discussed. The case presents valuable data in the ongoing discussion about the interaction between nerve tissue and tooth formation and about the interaction between occlusion, jaw morphology, and muscular traction. The study shows how archeological material in an interdisciplinary cooperation between archeological, embryological and orthodontic research can contribute to the clarification of current biological problems.  相似文献   

2.
Summary The cholinergic innervation of the mouse superior cervical ganglion was investigated by means of immunocytochemistry using a well-characterized monoclonal antibody against choline acetyltransferase (ChAT). Immunopositive nerve fibers entered the superior cervical ganglion from the cervical sympathetic trunk. Light-microscopically, these fibers appeared to be heterogeneously distributed among the principal ganglion cells. The rostral part of the ganglion contained more ChAT-positive fibers then the middle or the caudal one. The axons branched several times before forming numerous varicosities. Most of the ChAT-stained fibers and varicosities aggregated in glomerula-like neuropil structures that were surrounded by principal ganglion cell bodies, whereas others were isolated or formed little bundles among principal neurons. None of the neurons or other cell types in the ganglion exhibited ChAT-positivity. ChAT-immunoreactive fibers disappeared from the ganglion 5 or 13 days after transection of the cervical sympathetic trunk. At the ultrastructural level, most axon terminals and synapses showed ChAT-immunoreactivity. An ultrastructural analysis indicated that immunostained synapses occurred directly on the surface of neuronal soma (1.8%) and dendritic shafts (17.6%). Synapses were often seen on soma spines (18.4%) and on dendritic spines (62.2%). All immunoreactive synapses were of the asymmetric type. The results provide immunocytochemical evidence for a heterogeneous cholinergic innervation of the ganglion and the principal neurons.  相似文献   

3.
Abstract: In the present paper, we report an analysis of acetylcholinesterase molecular forms in the bovine caudate nucleus and superior cervical ganglion. We show that: (1) The superior cervical ganglion contains a significant proportion (~ 15%) of collagen-tailed forms (mostly A12 and A8), but these molecules are found only as traces (ca. 0.002%) in the caudate nucleus, even in favorable extraction conditions (i.e., in the presence of 1 m -NaCl, 5 mm -EDTA, 1% Triton X-100). (2) The bulk of acetylcholinesterase corresponds to globular forms, mostly the tetrameric G4 and the monomeric G1 forms, with a smaller proportion of the dimeric G2 form. (3) The tetrameric enzyme exists as a minor soluble component (GS4) that does not interact with Triton X-100, and a major hydrophobic component (GH4) that is partially solubilized in the absence of detergent in the caudate nucleus, but not in the superior cervical ganglion. (4) The monomeric G1 form presents a marked hydrophobic character, as indicated by its interaction with Triton X-100, although it may be solubilized in large part in the absence of detergent in both tissues. (5) The detergentsolubilized forms aggregate upon removal of detergent. This property disappears after partial purification of G4) that does not interact with Triton X-100, and a major hydrophobic component (GH4, but is restored upon addition of an inactivated crude extract, indicating that it is attributable to interactions with other hydrophobic components. (6) The proportions of molecular forms solubilized in detergent-free buffers vary with the ionic composition of the medium. Repeated extractions of caudate nucleus in Tris-HCl buffer produce a larger overall yield of G1 form (e.g., 40%) than appears in a single quantitative detergent solubilization (<15%). This G1 form apparently derives in part from a pool of GH4 form. (7) However, detergents that allow a quantitative solubilization of acetylcholinesterase yield the same proportions of forms (about 85% G4) independently of the ionic conditions. (8) Modifications of the molecular forms occur spontaneously during purification, or storage of the crude aqueous ex-tracts, in a manner that depends on the ionic conditions. In Tris-HCl buffer, G1 is converted into a well-defined 7.5S form. In Ringer, polydisperse components are formed. The effects observed in Ringer cannot be reproduced by addition of 5 mm -Ca2- to the Tris buffer either during or after extraction. (9) Proteases, such as pronase, convert the hydrophobic forms into molecules that do not appear to interact with Triton X-100, and do not aggregate in its absence. These results raise fundamental questions regarding the status of acetylcholinesterase in situ, the structure and interactions of its molecular forms. They are discussed with reference to previous publications.  相似文献   

4.
VEGF-A and Semaphorin3A: Modulators of vascular sympathetic innervation   总被引:2,自引:0,他引:2  
Sympathetic nerve activity regulates blood pressure by altering peripheral vascular resistance. Variations in vascular sympathetic innervation suggest that vascular-derived cues promote selective innervation of particular vessels during development. As axons extend towards peripheral targets, they migrate along arterial networks following gradients of guidance cues. Collective ratios of these gradients may determine whether axons grow towards and innervate vessels or continue past non-innervated vessels towards peripheral targets. Utilizing directed neurite outgrowth in a three-dimensional (3D) co-culture, we observed increased axon growth from superior cervical ganglion explants (SCG) towards innervated compared to non-innervated vessels, mediated in part by vascular endothelial growth factor (VEGF-A) and Semaphorin3A (Sema3A) which both signal via neuropilin-1 (Nrp1). Exogenous VEGF-A, delivered by high-expressing VEGF-A-LacZ vessels or by rhVEGF-A/alginate spheres, increased sympathetic neurite outgrowth while exogenous rhSema3A/Fc decreased neurite outgrowth. VEGF-A expression is similar between the innervated and non-innervated vessels examined. Sema3A expression is higher in non-innervated vessels. Spatial gradients of Sema3A and VEGF-A may promote differential Nrp1 binding. Vessels expressing high levels of Sema3A favor Nrp1-PlexinA1 signaling, producing chemorepulsive cues limiting sympathetic neurite outgrowth and vascular innervation; while low Sema3A expressing vessels favor Nrp1-VEGFR2 signaling providing chemoattractive cues for sympathetic neurite outgrowth and vascular innervation.  相似文献   

5.
Calcium ions represent universal second messengers within neuronal cells integrating multiple cellular functions, such as release of neurotransmitters, gene expression, proliferation, excitability, and regulation of cell death or apoptotic pathways. The magnitude, duration and shape of stimulation-evoked intracellular calcium ([Ca2+]i) transients are determined by a complex interplay of mechanisms that modulate stimulation-evoked rises in [Ca2+]i that occur with normal neuronal function. Disruption of any of these mechanisms may have implications for the function and health of peripheral neurones during the aging process. This review focuses on the impact of advancing age on the overall function of peripheral adrenergic neurones and how these changes in function may be linked to age-related changes in modulation of [Ca2+]i regulation. The data in this review suggest that normal aging in peripheral autonomic neurones is a subtle process and does not always result in dramatic deterioration in their function. We present studies that support the idea that in order to maintain cell viability peripheral neurones are able to compensate for an age-related decline in the function of at least one of the neuronal calcium-buffering systems, smooth endoplasmic reticulum calcium ATPases, by increased function of other calcium-buffering systems, namely, the mitochondria and plasmalemma calcium extrusion. Increased mitochondrial calcium uptake may represent a 'weak point' in cellular compensation as this over time may contribute to cell death. In addition, we present more recent studies on [Ca2+]i regulation in the form of the modulation of release of calcium from smooth endoplasmic reticulum calcium stores. These studies suggest that the contribution of the release of calcium from smooth endoplasmic reticulum calcium stores is altered with age through a combination of altered ryanodine receptor levels and modulation of these receptors by neuronal nitric oxide containing neurones.  相似文献   

6.
The ability of organisms to adapt to fluctuating food conditions is essential for their survival and reproduction. Accumulating energy reserves, such as lipids, in anticipation of harsh conditions, will reduce negative effects of a low food supply. For Hymenoptera and Diptera, several parasitoid species lack adult lipogenesis, and are unable to store excess energy in the form of lipid reserves. The aim of this review is to provide a synthesis of current knowledge regarding the inability to accumulate lipids in parasitoids, leading to new insights and prospects for further research. We will emphasize physiological mechanisms underlying lack of lipogenesis, the evolution of this adaptation in parasitoids and its biological implications with regard to life history traits. We suggest the occurrence of lack of lipogenesis in parasitoids to be dependent on the extent of host exploitation through metabolic manipulation. Currently available data shows lack of lipogenesis to have evolved independently at least twice, in parasitic Hymenoptera and Diptera. The underlying genetic mechanism, however, remains to be solved. Furthermore, due to the inability to replenish adult fat reserves, parasitoids are severely constrained in resource allocation strategies, in particular the trade-off between survival and reproduction.  相似文献   

7.
Strontium in archaeological human bones is widely, almost paradigmatically, used as a measure of the relative dietary abundances of plants and meat. Quantitative modeling reveals, however, that there is not a simple proportional relationship between bone strontium and the dietary plant/meat ratio. While knowledge of specific foods and their compositions may permit accurate calculation of average bone strontium levels, knowledge of bone strontium does not inversely allow accurate calculation of specific foods. Although bone strontium quantitatively reflects the average dietary Sr/Ca ratio, it is disproportionately sensitive to high-calcium foods and can be easily affected by minor dietary constituents and culinary practices. Bone strontium, and by analogy, barium, should be seen as a reflection of the high-mineral dietary components rather than a quantitative index of trophic position. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Noggin is a glycosylated-secreted protein known so far for its inhibitory effects on bone morphogenetic protein (BMP) signaling by sequestering the BMP ligand. We report here for the first time a novel mechanism by which noggin directly induces adipogenesis of mesenchymal stem cells independently of major human adipogenic signals through C/EBPδ, C/EBPα and peroxisome proliferator-activated receptor-γ. Evaluation of a possible mechanism for noggin-induced adipogenesis of mesenchymal stem cells identified the role of Pax-1 in mediating such differentiation. The relevance of elevated noggin levels in obesity was confirmed in a preclinical, immunocompetent mouse model of spontaneous obesity and in human patients with higher body mass index. These data clearly provide a novel role for noggin in inducing adipogenesis and possibly obesity and further indicates the potential of noggin as a therapeutic target to control obesity.  相似文献   

9.

Objectives

To determine the relationship of serum resistin concentrations to biochemical determinants of bone metabolism, comorbidity and outcomes in patients with hip fracture (HF).

Methods

In 256 consecutive patients (mean age 81.9 ± 7.8 years; 71.1% women) serum levels of resistin (determined by ELISA), biochemical parameters of bone turnover and mineral metabolism as well as routine haematological and biochemical parameters were measured. Clinical data were recorded prospectively.

Results

In multivariate analysis cervical HF (OR = 1.81; 95% CI 1.05–3.11), diabetes (OR = 2.60; 95% CI 1.23–5.51) and history of stroke (OR = 2.67; 95% CI 1.17–6.13) were significant independent predictors of higher resistin levels (?16.26 ng/ml, median value). The independent correlates of serum resistin levels in patients with cervical HF were serum osteocalcin and magnesium (both negatively associated) and in patients with trochanteric HF, serum PTH, calcium and age (all positively associated). Resistin and glomerular filtration rate were the only independent (inverse) predictors of serum osteocalcin. Resistin levels on admission did not predict short-term outcomes.

Conclusions

In older patients with HF there is a significant association of higher resistin levels with cervical fracture, type 2 diabetes and history of stroke, which is partly influenced by the reciprocal interaction between resistin and osteocalcin. However, the design of the study does not prove causality and further prospective studies are needed to clarify these relationships.  相似文献   

10.
Invertebrate neuroscience has provided a number of very informative model systems that have been extensively utilized in order to define the neurobiological bases of animal behaviours (Sattelle and Buckingham in Invert Neurosci 6:1–3, 2006). Most eminent among these are a number of molluscs, including Aplysia californica, Lymnaea stagnalis and Helix aspersa, crustacean systems such as the crab stomatogastric ganglion and a wide-range of other arthropods. All of these have been elegantly exploited to shed light on the very important phenomenon of the molecular and cellular basis for synaptic regulation that underpins behavioural plasticity. Key to the successful use of these systems has been the ability to study well-defined, relatively simple neuronal circuits that direct and regulate a quantifiable animal behaviour. Here we describe the pharyngeal system of the nematode C. elegans and its utility as a model for defining the genetic basis of behaviour. The circuitry of the nervous system in this animal is uniquely well-defined. Furthermore, the feeding behaviour of the worm is controlled by the activity of the pharynx and this in turn is regulated in a context-dependent manner by a simple nervous system that integrates external signals, e.g. presence or absence of food, and internal signals, e.g. the nutritional status of the animal to direct an appropriate response. The genetics of C. elegans is being effectively exploited to provide novel insight into genes that function to regulate the neuronal network that controls the pharynx. Here we summarise the progress to date and highlight topics for future research. Two main themes emerge. First, although the anatomy of the pharyngeal system is very well-defined, there is a much poorer understanding of its neurochemistry. Second, it is evident that the neurochemistry is remarkably complex for such a simple circuit/behaviour. This suggests that the pharyngeal activity may be subject to exquisitely precise regulation depending on the animal’s environment and status. This therefore provides a very tractable genetic model to investigate neural mechanisms for signal integration and synaptic plasticity in a well-defined neuronal network that directs a quantifiable behaviour, feeding.  相似文献   

11.
Life history theory integrates ecological, physiological, and molecular layers within an evolutionary framework to understand organisms’ strategies to optimize survival and reproduction. Two life history hypotheses and their implications for child growth, development, and health (illustrated in the South African context) are reviewed here. One hypothesis suggests that there is an energy trade‐off between linear growth and brain growth. Undernutrition in infancy and childhood may trigger adaptive physiological mechanisms prioritizing the brain at the expense of body growth. Another hypothesis is that the period from conception to infancy is a critical window of developmental plasticity of linear growth, the duration of which may vary between and within populations. The transition from infancy to childhood may mark the end of a critical window of opportunity for improving child growth. Both hypotheses emphasize the developmental plasticity of linear growth and the potential determinants of growth variability (including the role of parent–offspring conflict in maternal resources allocation). Implications of these hypotheses in populations with high burdens of undernutrition and infections are discussed. In South Africa, HIV/AIDS during pregnancy (associated with adverse birth outcomes, short duration of breastfeeding, and social consequences) may lead to a shortened window of developmental plasticity of growth. Furthermore, undernutrition and infectious diseases in children living in South Africa, a country undergoing a rapid nutrition transition, may have adverse consequences on individuals’ cognitive abilities and risks of cardio‐metabolic diseases. Studies are needed to identify physiological mechanisms underlying energy allocation between biological functions and their potential impacts on health.  相似文献   

12.
13.
Chemokines are a family of proinflammatory cytokines that attract and activate specific types of leukocytes. Chemokines mediate their effects via interaction with seven transmembrane G protein-coupled receptors (GPCR). Using CCR5-transfected HEK-293 cells, we show that both the CCR5 ligand, RANTES, as well as its derivative, aminooxypentane (AOP)- RANTES, trigger immediate responses such as Ca2+ influx, receptor dimerization, tyrosine phosphorylation, and Galphai as well as JAK/STAT association to the receptor. In contrast to RANTES, (AOP)-RANTES is unable to trigger late responses, as measured by the association of focal adhesion kinase (FAK) to the chemokine receptor complex, impaired cell polarization required for migration, or chemotaxis. The results are discussed in the context of the dissociation of the late signals, provoked by the chemokines required for cell migration, from early signals.  相似文献   

14.
Bone grafting is used to enhance healing in osteotomies, arthrodesis, and multifragmentary fractures and to replace bony loss resulting from neoplasia or cysts. They are source of osteoprogenitor cells and induce bone formation and provide mechanical support for vascular and bone ingrowth. Autografts are used commonly but quantity of retrieved bone is limit. This study was designed to evaluate autograft and new xenograft (Bovine fetal growth plate) effects on bone healing process. Twenty male White New Zealand rabbits were used in this study. In autograft group the defect was filled by fresh autogenous cortical graft, in xenograft group the defect was filled by a segment of bovine fetal growth plate and was fixed by cercelage wire. Radiological, histopathological and biomechanical evaluations were performed blindly and results scored and analyzed statistically. Statistical tests did not support significant differences between two groups at the 14th and 28th postoperative day radiographically (P > 0.05). There was a significant difference for remodeling at the 42nd postoperative radiologically (P < 0.05). Xenograft was superior to autograft at the 56th postoperative day for radiological bone formation (P < 0.03). Histopathological and biomechanical evaluation revealed no significant differences between two groups. The results of this study indicate that satisfactory healing occurred in rabbit radius defect filled with calf fetal growth plate. Complications were not identified and healing was faster than cortical autogenous grafting. It was concluded that the use of calf fetal growth plate as a new xenograft is an acceptable alternative to cortical autogenous graft and could reduce the morbidity associated with harvesting autogenous graft during surgery.  相似文献   

15.
The Fto gene locus has been linked to increased body weight and obesity in human population studies, but the role of the actual FTO protein in adiposity has remained controversial. Complete loss of FTO protein in mouse and of FTO function in human patients has multiple and variable effects. To determine which effects are due to the ability of FTO to demethylate mRNA, we genetically engineered a mouse with a catalytically inactive form of FTO. Our results demonstrate that FTO catalytic activity is not required for normal body composition although it is required for normal body size and viability. Strikingly, it is also essential for normal bone growth and mineralization, a previously unreported FTO function.  相似文献   

16.
The catabolic pathway of l -tryptophan ( l -trp), known as the kynurenine pathway (KP), has been implicated in the pathogenesis of a wide range of brain diseases through its ability to lead to immune tolerance and neurotoxicity. As endothelial cells (ECs) and pericytes of the blood–brain–barrier (BBB) are among the first brain-associated cells that a blood-borne pathogen would encounter, we sought to determine their expression of the KP. Using RT-PCR and HPLC/GC-MS, we show that BBB ECs and pericytes constitutively express components of the KP. BBB ECs constitutively synthesized kynurenic acid, and after immune activation, kynurenine (KYN), which is secreted basolaterally. BBB pericytes produced small amounts of picolinic acid and after immune activation, KYN. These results have significant implications for the pathogenesis of inflammatory brain diseases in general, particularly human immunodeficiency virus (HIV)-related brain disease. Kynurenine pathway activation at the BBB results in local immune tolerance and neurotoxicity: the basolateral secretion of excess KYN can be further metabolized by perivascular macrophages and microglia with synthesis of quinolinic acid. The results point to a mechanism whereby a systemic inflammatory signal can be transduced across an intact BBB to cause local neurotoxicity.  相似文献   

17.
Recently several conflicting hypotheses concerning the basal phylogenetic relationships within the Phasmatodea (stick and leaf insects) have emerged. In previous studies, musculature of the abdomen proved to be quite informative for identifying basal taxa among Phasmatodea and led to conclusions regarding the basal splitting events within the group. However, this character complex was not studied thoroughly for a representative number of species, and usually muscle innervation was omitted. In the present study the musculature and nerve topography of mid-abdominal segments in both sexes of seven phasmid species are described and compared in detail for the first time including all putative basal taxa, e.g. members of Timema, Agathemera, Phylliinae, Aschiphasmatinae and Heteropteryginae. The ground pattern of the muscle and nerve arrangement of mid-abdominal segments, i.e. of those not modified due to association with the thorax or genitalia, is reconstructed. In Timema, the inner ventral longitudinal muscles are present, whereas they are lost in all remaining Phasmatodea (Euphasmatodea). The ventral longitudinal muscles in the abdomen of Agathemera, which span the whole length of each segment, do not represent the plesiomorphic condition as previously assumed, but might be a result of secondary elongation of the external ventral longitudinal muscles. Sexual dimorphism, common within the Phasmatodea, also applies to the muscle arrangement in the abdomen of some species. Only in the females of Haaniella dehaanii (Heteropteryginae) and Phyllium celebicum (Phylliinae) the ventral external longitudinal muscles are elongated and span the length of the whole segment, possibly as a result of convergent evolution.  相似文献   

18.
Diazoaminobenzene (DAAB), a manufacturing intermediate metabolized primarily to the known carcinogens benzene and aniline, has been identified as an impurity in a number of dyes and coloring agents that are components of cosmetics, food products, and pharmaceuticals. Several structural analogs of DAAB are carcinogenic as well. DAAB was selected for metabolism and toxicity studies by the National Toxicology Program (NTP) based on the potential for human exposure, positive Salmonella data, and lack of adequate toxicological data. In the toxicology studies in mice, DAAB exhibited properties similar to benzene and aniline. Because both these metabolites induce micronuclei (MN) in rodent bone marrow erythrocytes, DAAB was tested for induction of micronuclei in male B6C3F1 mice. DAAB was administered twice by corn oil gavage at 24 h intervals, at doses of 25, 50, and 100 mg/kg per day. In addition, comparative micronucleus tests were conducted with benzene, aniline, and a mixture of benzene plus aniline; doses were based on the respective molar equivalents of each metabolite to DAAB. It was hypothesized that any observed increase in micronuclei seen in DAAB-treated mice would be due primarily to the effects of the benzene metabolite, as benzene is a more potent inducer of chromosomal damage than aniline. Results of this study showed that DAAB and benzene were effective inducers of micronuclei, with stronger responses noted for DAAB at higher doses. Positive results were also obtained with the mixture of benzene and aniline, although the magnitude of the response was lower than for DAAB. Aniline gave a weak positive response at doses exceeding its molar equivalent to 100 mg/kg DAAB. Overall, the data indicated that DAAB is a potent inducer of micronuclei in mice, and its activity appears to be closely related to the activity of benzene, one of its primary metabolites. The results are consistent with a prediction of carcinogenicity for DAAB.  相似文献   

19.
Correlated responses to artificial selection for stress tolerance can provide insight into underlying genetic variation and the physiological basis of stress resistance . Lines of Drosophila melanogaster held in the absence of food or with an unsuitable resource, specifically decomposing lemon, responded to selection by becoming starvation resistant. The lemon-selected lines also adapted by evolving a resource-based induction response. Compared to control lines, the selected lines tended to store more lipid, develop slower and have a larger body size. Additional responses included resistance to desiccation and acetone fumes, suggesting multiple stress resistance is a correlated result of selection for starvation resistance. The specific metabolic rate was lower in the starvation selected lines and enzyme activities changed in response to selection. In particular, enzyme activities indirectly associated with lipid biogenesis increased in both types of selected lines. The correlated responses to the two selection regimes were sufficiently consistent to indicate a common basis for starvation resistance. Specific responses to starvation selection appeared to oppose the short-term phenotypic responses to starvation. Thus, a common response to stress selection may be to ameliorate the immediate physiological impact of the stress factor.  相似文献   

20.
Transforming growth factor beta receptor II (TGFβR-II) interacting protein 1 (TRIP-1) is a WD-40 protein that binds to the cytoplasmic domain of the TGF-β type II receptor in a kinase-dependent manner. To investigate the role of TRIP-1 in mineralized tissues, we examined its pattern of expression in cartilage, bone, and teeth and analyzed the relationship between TRIP-1 overexpression and mineralized matrix formation. Results demonstrate that TRIP-1 was predominantly expressed by osteoblasts, odontoblasts, and chondrocytes in these tissues. Interestingly, TRIP-1 was also localized in the extracellular matrix of bone and at the mineralization front in dentin, suggesting that TRIP-1 is secreted by nonclassical secretory mechanisms, as it is devoid of a signal peptide. In vitro nucleation studies demonstrate a role for TRIP-1 in nucleating calcium phosphate polymorphs. Overexpression of TRIP-1 favored osteoblast differentiation of undifferentiated mesenchymal cells with an increase in mineralized matrix formation. These data indicate an unexpected role for TRIP-1 during development of bone, teeth, and cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号