首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
固定化微生物对多环芳烃污染土壤的降解   总被引:3,自引:0,他引:3  
利用微生物固定化技术,研究了微生物固定化菌剂对土壤中菲、蒽、芘、(艹屈)和苯并(a)芘的降解动态,并且采用Michaelis-Menton和Monod动力学模型对结果进行拟合.结果显示,4种处理(TB02、TB07、TBB03、TBB08)均有降解菲、蒽、芘、(艹屈)和苯并(a)芘的能力.其中,处理TB02的降解能力强、降解速率快、半衰期短且处理成本低,而处理TB07则需要较长时间作用于PAHs污染土壤,其降解能力才能充分发挥出来.当菲、蒽、芘、(艹屈)和苯并(a)芘的初始浓度均为20 mg·kg-1时,42 d后,TB02对菲、蒽、芘、(艹屈)和苯并(a)芘的降解率分别为84.32%、85.24%、82.59%、43.75%和62.25%; 133 d后,TB07对5种污染物的降解率分别为95.00%、95.24%、90.93%、74.82%和72.20%.通过比较5种污染物半衰期,其可降解性由大到小依次为菲、蒽、芘、苯并(a)芘、(艹屈).  相似文献   

2.
3.
The mixed bacterial culture MK1 was capable of degrading a wide spectrum of aromatic compounds both as free and as immobilized cells. By offering anthracene oil or a defined mixture of phenol, naphthalene, phenanthrene, anthracene and pyrene (in concentrations of 0.1–0.2 mm, respectively) as sources of carbon and energy, a specific degradation pattern correlating with the condensation degree was observed. Regarding the defined mixture of aromatic hydrocarbons, complete metabolism was reached for phenol (0.1 mm) after 1 day, for naphthalene (0.1 mm) after 2 days and for phenanthrene (0.1 mm) after 15 days of cultivation. The conversion of anthracene (0.1 mm) and pyrene (0.1 mm) resulted in minimal residual concentrations, analogous to fluoranthene and pyrene of the anthracene oil (0.1%). Maximal total degradation for the tricyclic compounds dibenzofurane, fluorene, dibenzothiophene, phenanthrene and anthracene of the anthracene oil (0.1%) occurred after 5 days. In general, a significant metabolisation of the tetracyclic aromatic hydrocarbons fluoranthene and pyrene was observed after the degradation of phenol, naphthalene and most of the tricyclic compounds. Doubling the start concentrations of the polycyclic aromatic hydrocarbons effected higher degradation rates. Cell growth occurred simultaneously with the conversion of phenol, naphthalene and the tricyclic compounds. The immobilized cells showed stable growth and, compared to freely suspended cells, the same degradation sequence as well as an equivalent degradation potential — even in a model soil system. Correspondence to: I. Wiesel  相似文献   

4.
Summary When inoculated at high cell densities, three strains of Pseudomonas cepacia degraded the polycyclic aromatic hydrocarbons (PAHs) benzo[a]pyrene, dibenz[a,h]anthracene and coronene as sole carbon and energy sources. After 63 days incubation, there was a 20 to 30% decrease in the concentration of benzo[a]pyrene and dibenz[a,h]anthracene and a 65 to 70% decrease in coronene concentration. The three strains were also able to degrade all the PAHs simultaneously in a PAH substrate mixture containing three-, four-, five- and seven-benzene ring compounds. Furthermore, improved degradation of the five- and seven-ring PAHs was observed when low molecular weight PAHs were present.  相似文献   

5.
6.
This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10, 201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO(2) by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization (53% of added [(14)C]benzo[a]pyrene was recovered as (14)CO(2) in 100 days), and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula.  相似文献   

7.
The objectives of this work were to isolate the microorganisms responsible for a previously observed degradation of polycyclic aromatic hydrocarbons (PAH) in soil and to test a method for cleaning a PAH-contaminated soil. An efficient PAH degrader was isolated from an agricultural soil and designated as Mycobacterium LP1. In liquid culture, it degraded phenanthrene (58%), pyrene (24%), anthracene (21%) and benzo(a)pyrene (10%) present in mixture (initial concentration 50 μg ml−1 each) and phenanthrene (92%) and pyrene (94%) as sole carbon sources after 14 days of incubation at 30°C. In soil, Mycobacterium LP1 mineralised 14C-phenanthrene (45%) and 14C-pyrene (65%) after 10 days. The good ability of this Mycobacterium was combined with the benzo(a)pyrene oxidation effect obtained by 1% w/w rapeseed oil in a sequential treatment of a PAH-spiked soil (total PAH concentration 200 mg kg−1). The first step was incubation with the bacterium for 12 days and the second step was the addition of the rapeseed oil after this time and a further incubation of 22 days. Phenanthrene (99%), pyrene (95%) and anthracene (99%) were mainly degraded in the first 12 days and a total of 85% of benzo(a)pyrene was transformed during the whole process. The feasibility of the method is discussed.  相似文献   

8.
The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation was exponential, indicating a high bioavailability of the solubilized hydrocarbons. Nonionic surfactants of the alkylethoxylate type and the alkylphenolethoxylate type with an average ethoxylate chain length of 9 to 12 monomers were toxic to a PAH-degrading Mycobacterium sp. and to several PAH-degrading mixed cultures. Toxicity of the surfactants decreased with increasing hydrophilicity, i.e., with increasing ethoxylate chain length. Nontoxic surfactants enhanced the degradation of fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.  相似文献   

9.
Soil fungi were studied regarding their ability to degrade polycyclic aromatic hydrocarbons (PAHs) and produce ligninolytic enzymes under microaerobic and very-low-oxygen conditions. Several PAHs were used as substrates for soil fungi under microaerobic and very-low-oxygen conditions. Activities of lignin-peroxidase, manganese-peroxidase, and laccase were monitored over a 30-day period. PAH degradations were analyzed using C18 reversed-phase HPLC. Low-molecular-weight PAHs (LMW-PAHs, 2–3 rings) were degraded most extensively by Aspergillus sp., Trichocladium canadense, and Fusarium oxysporum. When growing on high-molecular-weight PAHs (HMW-PAHS, 4–7 rings), the highest degradations were reached by T. canadense, Aspergillus sp., Verticillium sp., and Achremonium sp. In this study, these fungi revealed a great capability to degrade a broad range of PAHs under low-oxygen conditions. In addition, lignolytic enzyme activities were observed during fungal growth on these compounds. These results suggest fungi have the ability to bioremediate PAH-contaminated soils and that they use these compounds as carbon sources for growth.  相似文献   

10.
土壤-植物系统中多环芳烃和重金属的行为研究   总被引:14,自引:0,他引:14  
对土壤中多环芳烃和重金属的行为研究表明,与对照相比,0—20cm以上表土层存在多环芳烃和重金属积累,20cm以下土层未发现积累;与春、秋两次采样结果相比,土壤中多环芳烃的含量有所下降,表明土壤微生物对多环芳烃有一定降解作用,且其降解程度与土壤-植物系统的生态结构有关.菲在地下水中检出浓度较高,表明这一污染物有向下迁移的可能性.此外,柳树对土壤中重金属Cd的积累有明显的削减与净化作用.本研究表明,严格限制污水中多环芳烃和重金属的污染负荷以及设计合理的生态结构是避免多环芳烃和重金属在土壤中积累的关键.  相似文献   

11.
Detoxification of polycyclic aromatic hydrocarbons by fungi   总被引:8,自引:0,他引:8  
Summary The polycyclic aromatic hydrocarbons (PAHs) are a group of hazardous environmental pollutants, many of which are acutely toxic, mutagenic, or carcinogenic. A diverse group of fungi, includingAspergillus ochraceus, Cunninghamella elegans, Phanerochaete chrysosporium, Saccharomyces cerevisiae, andSyncephalastrum racemosum, have the ability to oxidize PAHs. The PAHs anthracene, benz[a]anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, as well as several methyl-, nitro-, and fluoro-substituted PAHs, are metabolized by one or more of these fungi. Unsubstituted PAHs are oxidized initially to arene oxides,trans-dihydrodiols, phenols, quinones, and tetralones. Phenols andtrans-dihydrodiols may be further metabolized, and thus detoxified, by conjugation with sulfate, glucuronic acid, glucose, or xylose. Although dihydrodiol epoxides and other mutagenic and carcinogenic compounds have been detected as minor fungal metabolites of a few PAHs, most transformations performed by fungi reduce the mutagenicity and thus detoxify the PAHs.  相似文献   

12.
The growth of Pseudomonas fluorescens 16N2 on naphthalene was accompanied with accumulation of salicylate in the culture medium and induction of gentisate 1,2-dioxygenase and catechol 1,2-dioxygenase. The transformation of anthracene by the cells growing on hexadecane led to the formation of 3-hydroxy-2-naphthoate and salicylate. Pathways for naphthalene and anthracene degradation are proposed.  相似文献   

13.
A bacterial strain, PS4040, capable of degrading polycyclic aromatic hydrocarbons for use as the sole carbon source was isolated from oily-sludge-contaminated soil. The 16S rRNA gene showed 98.8% homology to that of Leclercia adecarboxylata. Comparative molecular typing with the clinical strain of L. adecarboxylata revealed that there were few comigrating and few distinct amplimers among them.  相似文献   

14.
Biodegradation of polycyclic aromatic hydrocarbons   总被引:67,自引:0,他引:67  
The intent of this review is to provide an outline of the microbial degradation of polycyclic aromatic hydrocarbons. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons are examined in some detail. The pathways of polycyclic aromatic hydrocarbon catabolism are discussed. Studies are presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.  相似文献   

15.
微生物降解多环芳烃(PAHs)的研究进展   总被引:13,自引:0,他引:13  
从多环芳烃(PAHs)的降解菌株的筛选、降解机制以及PAHs污染的生物修复等方面介绍了微生物降解PAHs的最新研究进展。  相似文献   

16.
AIMS: Our goal was to characterize a newly isolated strain of Mycobacterium austroafricanum, obtained from manufactured gas plant (MGP) site soil and designated GTI-23, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs). METHODS AND RESULTS: GTI-23 is capable of growth on phenanthrene, fluoranthene, or pyrene as a sole source of carbon and energy; it also extensively mineralizes the latter two in liquid culture and is capable of extensive degradation of fluorene and benzo[a]pyrene, although this does not lead in either of these cases to mineralization. Supplementation of benzo[a]pyrene-containing cultures with phenanthrene had no significant effect on benzo[a]pyrene degradation; however, this process was substantially inhibited by the addition of pyrene. Extensive and rapid mineralization of pyrene by GTI-23 was also observed in pyrene-amended soil. CONCLUSIONS: Strain GTI-23 shows considerable ability to mineralize a range of polycyclic aromatic hydrocarbons, both in liquid and soil environments. In this regard, GTI-23 differs markedly from the type strain of Myco. austroafricanum (ATCC 33464); the latter isolate displayed no (or very limited) mineralization of any tested PAH (phenanthrene, fluoranthene or pyrene). When grown in liquid culture, GTI-23 was also found to be capable of growing on and mineralizing two aliphatic hydrocarbons (dodecane and hexadecane). SIGNIFICANCE AND IMPACT OF THE STUDY: These findings indicate that this isolate of Myco. austroafricanum may be useful for bioremediation of soils contaminated with complex mixtures of aromatic and aliphatic hydrocarbons.  相似文献   

17.
18.
Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala   总被引:3,自引:0,他引:3  
Pichia anomala 2.2540, isolated from soil contaminated by crude oil, degraded naphthalene, dibenzothiophene, phenanthrene and chrysene, both singly and in combination. The yeast degraded 4.5 mg naphthalene l(-1) within 24 h. Phenanthrene was degraded after a lag of 24 h. When a mixture of all four polycyclic aromatic hydrocarbons was treated at either 0.1-1.6 mg l(-1) or 3.1-5.3 mg l(-1), naphthalene was completely degraded first within 24 h, followed by phenanthrene and dibenzothiophene after 48 h. Chrysene, which remained in the mixture even after 96 h, could be degraded along with naphthalene. Chrysene at 0.7 and 1 mg l(-1), in the presence of 4.3 and 65 mg naphthalene l(-1), respectively, was removed within 96 h.  相似文献   

19.
20.
Many members of the sphingomonad genus isolated from different geological areas can degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs) and related compounds. These sphingomonads such as Sphingobium yanoikuyae strain B1, Novosphingobium aromaticivorans strain F199, and Sphingobium sp. strain P2 have been found to possess a unique group of genes for aromatic degradation, which are distantly related with those in pseudomonads and other genera reported so far both in sequence homology and gene organization. Genes for aromatics degradation in these sphingomonads are complexly arranged; the genes necessary for one degradation pathway are scattered through several clusters. These aromatic catabolic gene clusters seem to be conserved among many other sphingomonads such as Sphingobium yanoikuyae strain Q1, Sphingomonas paucimobilis strain TNE12, S. paucimobilis strain EPA505, Sphingobium agrestis strain HV3, and Sphingomonas chungbukensis strain DJ77. Furthermore, some genes for naphthalenesulfonate degradation found in Sphingomonas xenophaga strain BN6 also share a high sequence homology with their homologues found in these sphingomonads. On the other hand, protocatechuic catabolic gene clusters found in fluorene-degrading Sphingomonas sp. strain LB126 appear to be more closely related with those previously found in lignin-degrading S. paucimobilis SYK-6 than the genes in this group of sphingomonads. This review summarizes the information on the distribution of these strains and relationships among their aromatic catabolic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号