首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multilamellar liposomes can be stained with such fluorochromes as acridine orange, eosin Y, neutral red, and thiazine red. The liposomes are brought into a 1% solution of the fluorochrome; 5-10 minutes later they are centrifuged and washed by resuspending in water or phosphate buffered saline three times. The last pellet is resuspended and a drop studied with the fluorescence microscope (1000 × magnification). The fluorochrome is seen to be accumulated in the liposomal membranes.

Acridine orange could also be trapped in the aqueous compartments of the liposomes but the trapped fluorochrome was gradually lost from the liposomes. Part of the fluorochrome, however, remained associated with the liposomal membranes for a long time.

Additional experiments justify the conclusion that an equilibrium is maintained between fluorochromes in the aqueous and lipid phases.  相似文献   

2.
We have developed a new fluorescence method for the histochemical localization of alkaline phosphatase activity. Calcium phosphate deposited at the sites of alkaline phosphatase activity in a Gomori-type reaction are identified by calcium binding fluorochromes. The calcium binding fluorochromes calcein, calcein blue, and xylenol orange were investigated, with each fluorochrome being included in the alkaline phosphatase incubating medium and used in a single-step procedure. Alkaline phosphatase activity was studied in freeze-substituted, resin-embedded human liver and jejunal biopsies, and each fluorochrome produced intense fluorescence of different colors at sites of alkaline phosphatase activity. Calcein, calcein blue, and xylenol orange produced green, blue, and red fluorescence, respectively. Sites of enzyme activity were accurately localized without evidence of diffusion, and there was an absence of non-enzyme-catalyzed binding of any of the fluorochromes to tissue. This fluorescence method, which is particularly suited to investigating the localization and distribution of the activity of different enzymes in the same section, was used to investigate the distribution and co-localization of alkaline phosphatase and aminopeptidase M in human liver and jejunum.  相似文献   

3.
The formation of age pigment-like fluorescent substances during the lipid peroxidation of model membranes has been studied. Ferrous ion and ascorbate-induced lipid peroxidation of liposomal membranes containing phosphatidylethanolamine led to the formation of fluorescent substances which have characteristics similar to those of compounds derived from the reaction of phosphatidylethanolamine with purified fatty acid hydroperoxides. The fluorescent substances were accumulated in liposomal membranes, whereas thiobarbituric acid-reactive substances formed during lipid preoxidation were immediately released from the liposomal membranes. The thiobarbituric acid-reactive substances free from the membranes were not reactive with amino compounds such as phosphatidylethanolamine in liposomes or glycine in aqueous phase. It was suggested that the products reacting with amino compounds are short-lived, and may be rapidly inactivated after released into aqueous phase. The formation of fluorescent products was inefficient when phosphatidylethanolamine incorporated into the liposomes insensitive to lipid preoxidation was incubated with ferrous ion and ascorbate in the presence of liposomes sensitive to the peroxidation. The results suggest that some products generated from peroxidation-sensitive lipids react with the amino group of phosphatidylethanolamine molecules which are located on the same membranes, forming fluorescent substances. The presence of phosphatidylethanolamine in the membrane suppressed the formation of thiobarbituric acid-reactive substances, suggesting that phosphatidylethanolamine may react with radicals formed and terminate the propagation.  相似文献   

4.
The interaction of sheep erythrocyte membranes with phosphatidylcholine vesicles (liposomes) or human plasma lipoproteins is described. Isolated sheep red cell membranes were incubated with liposomes containing [14C]phosphatidylcholine or [3H]phosphatidylcholine in the presence of EDTA. A time-dependent uptake of phosphatidylcholine into the membranes could be observed. The content of this phospholipid was increased from 2 to 5%. The rate of transfer was dependent on temperature, the amount of phosphatidylcholine present in the incubation mixture and on the fatty acid composition of the liposomal phosphatidylcholine. A possible adsorption of lipid vesicles to the membranes could be monitored by adding cholesteryl [14C]oleate to the liposomal preparation. As cholesterylesters are not transferred between membranes [1], it was possible to differentiate between transfer of phosphatidylcholine molecules from the liposomes into the membranes and adsorption of liposomes to the membranes. The phosphatidylcholine incorporated in the membranes was isolated, and its fatty acids were analysed by gas chromatography. It could be shown that there was a preferential transfer of phosphatidylcholine molecules containing two unsaturated fatty acids.  相似文献   

5.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule. The absorption and fluorescene excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca-2+ stongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes. With mitochondrial membranes an effect of Ca-2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochrondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it. From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholiped moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   

6.
Liposomal drugs are a useful alternative to conventional drugs and hold great promise for targeted delivery in the treatment of many diseases. Most of the liposomal drugs on the market or under clinical trials include cholesterol as a membrane stabilizing agent. Here, we used liposomal CA4P, an antivascular drug, to demonstrate that cholesterol content can actually modulate the release and cytotoxicity of liposomal drugs in a delicate and predictable manner. We found that both the rate of the CA4P release from the interior aqueous compartment of the liposomes to the bulk aqueous phase and the extent of the drug's cytotoxicity undergo a biphasic variation, as large as 50%, with liposomal cholesterol content at the theoretically predicted C(r), e.g., 22.0, 22.2, 25.0, 33.3, 40.0, and 50.0 mol % cholesterol for maximal superlattice formation. It appears that at C(r), CA4P can be released from the liposomes more readily than at non-C(r), probably due to the increased domain boundaries between superlattice and nonsuperlattice regions, which consequently results in increased cytotoxicity. The idea that the increased domain boundaries at C(r) would facilitate the escape of molecules from membranes was further supported by the data of dehydroergosterol transfer from liposomes to MβCD. These results together show that the functional importance of sterol superlattice formation in liposomes can be propagated to distal targeted cells and reveal a new, to our knowledge, mechanism for how sterol content and membrane lateral organization can control the release of entrapped or embedded molecules in membranes.  相似文献   

7.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule.

The absorption and fluorescence excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca2+ strongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes.

With mitochondrial membranes an effect of Ca2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it.

From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholipid moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   


8.
Purified cytochrome P-450(17)alpha,lyase from guinea-pig adrenal microsomes, which catalyzes progesterone 17 alpha-hydroxylation and sequentially C17-C20 bond cleavage of the 17 alpha-hydroxyprogesterone, was successfully incorporated into liposomal membranes composed of only phosphatidylcholine or of a phospholipid mixture of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine at a molar ratio of 5:3:1. Although the purified P-450(17)alpha,lyase was readily converted into P-420 in the detergent-solubilized system without substrates, the P-450 embedded in the liposomal membranes was found to be quite stable without the substrates. Using the P-450(17)alpha,lyase-proteoliposomes, the interaction of steroids with P-450(17)alpha,lyase was studied for progesterone, 17 alpha-hydroxyprogesterone and androstenedione in the liposomal system by optical difference spectroscopy and by equilibrium dialysis. The partition coefficients of steroids between the aqueous phase and the liposomal membranes were determined by the equilibrium dialysis. They were about 1.4-1.6-times higher in phosphatidylcholine liposomes than in the liposomes of the lipid mixture. The dissociation constants of the P-450-steroid complexes were calculated from the apparent dissociation constants using the partition coefficients for the situation where the substrate-binding site faces the lipid phase of the membranes or where it faces the aqueous phase. The dissociation constant in the former case was not affected by the lipid composition. These results suggest that P-450(17)alpha,lyase might interact only with the substrates in the lipid phase of the liposomal membranes.  相似文献   

9.
This study demonstrates rapid and pH-sensitive release of a highly water-soluble fluorescent aqueous content marker, pyranine, from egg phosphatidylcholine liposomes following incorporation of N-isopropylacrylamide (NIPA) copolymers in liposomal membranes. The pH-sensitivity of this system correlates with the precipitation of the copolymers at acidic pH. In vitro release can be significantly improved by increasing the percentage of anchor in the copolymer and thus favoring its binding to the liposomal bilayer. In the case of liposomes containing a poly(ethylene glycol)-phospholipid conjugate, the insertion of the pH-sensitive copolymer in the liposomal membrane appears to be sterically inhibited. Dye release from these formulations at acidic pH can still be achieved by varying the anchor molar ratio and/or molecular mass of the polymers or by including the latter during the liposome preparation procedure. Removal of unbound polymer results in decreased leakage only when the copolymer is inserted by incubation with preformed liposomes, but can be overcome by preparing liposomes in the presence of polymer. Aqueous content and lipid mixing assays suggest contents release can occur without membrane fusion. The results of this study indicate that the addition of pH-sensitive copolymers of NIPA represents promising strategy for improving liposomal drug delivery.  相似文献   

10.
A Truneh  P Machy 《Cytometry》1987,8(6):562-567
We describe a staining method for flow cytometry that resolves with a high degree of sensitivity very low numbers of cell surface molecules, which are normally too few to detect using the conventional fluorescein-conjugated reagents. We took advantage of the fact that liposomes can be constructed to contain hundreds of thousands of fluorochrome molecules per vesicle; antigen specificity can be conferred by covalently conjugating them to antibodies or protein A. Unlike fluorochromes such as fluorescein isothiocyanate (FITC) that are directly conjugated to protein ligands with a fluorochrome to protein ratio of about 2 to 1 on the average, their large encapsulating capacity gives liposomes a tremendous potential for signal amplification. In an indirect immunofluorescence study using liposomes that contained the fluorochrome carboxyfluorescein (CF) and that were covalently conjugated to protein A, we were able to obtain up to 50 times the fluorescence signal over background that could be detected with FITC-conjugated protein A. Scatchard analysis showed that the thymoma cell line RDM4 expresses 23,000 and 2,600 binding sites for monoclonal antibodies (mAb) against H-2K and H-2D, respectively. When RDM4 cells were treated with anti-H-2K mAb followed by FITC-conjugated protein A, at best we were able to obtain a fluorescence signal that was only 7 times above background. However, when these cells were treated with the same antibody followed by protein A conjugated to small unilamellar liposomes or large unilamellar liposomes, the fluorescence signals were 110 and 335 times above background, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A new method is described for determining the volume of the aqueous compartment of liposomes. Liposomes are prepared in a solution of the fluorescent dye, calcein. The fraction of the total volume that is within the liposomes is obtained as the fraction of the fluorescence that remains after adding cobalt(II) ions which, when chelated by calcein, quench its fluorescence. The method is rapid, simple and accurate. Separation of the liposomes from the medium is not required. The procedure is equally well suited to the assay of permeability characteristics of liposomal membranes.  相似文献   

12.
DNA stainability by different fluorochromes has been compared in exponentially dividing and stationary Euglena cells. With the intercalating fluorochromes, ethidium bromide, acridine orange and DAPI, a decrease of fluorescence intensity of the G1 cells is observed when cells enter stationary stage. However this decrease of fluorescence is not obtained with the nonintercalating fluorochrome Hoechst 33258. If nuclear basic proteins are extracted, however, the intensity of staining by either Hoechst 33258 or ethidium-bromide is comparable in stationary and dividing cells. Therefore, the decrease of fluorescence intensity of the G1 cells observed during the transition from exponential to stationary phase is not due to a loss of DNA but is related to the exposure of chromatin binding sites for ethidium bromide. In Euglena cells, DNA accessibility for intercalating fluorochromes depends upon chromatin structure and consequently upon cell age.  相似文献   

13.
BACKGROUND: Phycobiliproteins play an important role in fluorescent labeling, particularly for flow cytometry. The spectral properties of R-phycoerythrin (R-PE) and allophycocyanin (APC) have made them the dominant reagents in this class of fluorochromes. In this study, we evaluate a lesser-known but potentially important series of low-molecular weight cryptomonad-derived phycobiliproteins (commercially termed the CryptoFluortrade mark dyes) for their applicability to flow cytometry, both in extracellular and intracellular labeling applications. METHODS: Several cell lines were labeled with biotin-conjugated antibodies against expressed extracellular surface proteins, followed by streptavidin conjugates of three cryptomonad phycobiliproteins (CryptoFluor-2, CryptoFluor-4, and CryptoFluor-5). Cells were then analyzed by flow cytometry using a variety of laser lines and emission filters to establish the optimal excitation/emission characteristics for each fluorochrome. Some cells were permeabilized and labeled for intracellular antigens, also using the cryptomonad fluorochromes. Where appropriate, parallel samples were labeled with other fluorochromes (including R-PE, APC, the cyanin dyes Cy3 and Cy5, and others) to gauge the performance of the cryptomonad fluorochromes against fluorescent labels previously evaluated for flow cytometry. RESULTS: CryptoFluor-2 possessed excitation/emission maxima similar to those of APC and Cy5, with good excitation in the red (HeNe laser 632 nm) and strong emission in the far red (660 nm). CryptoFluor-4 possessed excitation/emission maxima similar to those of Cy3, with optimal excitation in the green (Kr 530 nm) and strong emission in the yellow/orange (585 nm). CryptoFluor-5 possessed excitation/emission maxima similar to those of lissamine rhodamine, with optimal excitation in the yellow (Kr 568 nm) and emission in the orange (610 nm). All cryptomonad fluorochromes gave satisfactory results for both intracellular and extracellular labeling, with detection sensitivities that were comparable or better than traditional phycobiliproteins and low- molecular weight synthetic fluorochromes such as the cyanin dyes. CONCLUSIONS: The CryptoFluor fluorochromes were applicable to flow cytometric immunodetection, with excitation and emission conditions commonly found on multilaser instruments. Performance of several of these dyes was at least comparable to existing fluorescent labels. The low molecular weights (30-60 kd) of phycobiliproteins may make them particularly useful in intracellular antigen detection. Cytometry 44:16-23, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

14.
The effect of temperature on the permeability of nonelectrolytes across liposomal membranes above and below their transition temperature has been studied by using an osmotic method. Below their transition temperature, liposomes are osmotically insensitive structures but, on addition of gramicidin A, the water permeability so increased that the permeability of solutes could be studied. The measured activation energies for permeation of a variety of nonelectrolytes has been found to increase when a) there is an increase in the capability of the solutes to form hydrogen bonds in water, b) the cholesterol concentration in the membranes increases and c) the membranes pass from a liquid-crystalline to a solid-crystalline state. The change in the activation energy for permeation per hydrogen bond is about 1.8 kcal/mole for all the different liposome systems investigated; the only solute tested that deviated from this correlation was urea, whose activation energy for permeation across a gramicidin-containing system was much lower than expected from its hydrogen-bonding capacity. This finding suggests that urea is permeating across the gramicidin pore. Although the literature contains only incomplete data relating the activation energies for permeation of nonelectrolytes across biological membranes to their hydrogen-bonding capacity, the available evidence suggests that there is a similar correlation to that found in liposomes. Thus, the average increase in the activation energy per hydrogen bond for permeation across ox red cell membranes (Jacobs, Glassman & Parpart, J. Cell. Comp. Physiol. 7:197, 1935) is 2.2 plus or minus 0.4 kcal/mole, a value that is similar to that obtained in liposomes. However, the activation energies for water and urea are - in such a system - very much lower than expected, suggesting that they, too, are permeating by some parallel route such as an aqueous pore.  相似文献   

15.
The relation between the in vitro immunogenicity of phosphatidylcholine liposomes containing 2,4-dinitrophenyl-6-N-aminocaproylphosphatidylethanolamine (DNP-Cap-PE) as a hapten and the topographical distribution of the haptens on lipid membranes was studied. In distearoylphosphatidylcholine liposomes, the immunogenicity increased with increase of cholesterol content in the liposomal membranes. The electron spin resonance spectra of spin-labeled DNP-Cap-PE in distearoylphosphatidylcholine liposomes indicated that cholesterol affected the topographical distribution of spin-labeled DNP-Cap-PE on the membranes. In the absence of cholesterol, a considerable amount of haptens was clustered on the distearoylphosphatidylcholine membranes, but with increase of cholesterol, random distribution of the haptens on the membranes increased. The cholesterol-dependent change in the topographical distribution of the haptens on the membranes paralleled the change of immunogenicity, i.e., the immunogenicity was low when haptens were clustered on the liposomal membranes. Haptens arranged at a proper distance on the membranes may be required for optimum immune response.  相似文献   

16.
The dual functions of alpha-tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron were studied, aiming specifically at elucidating the effect of interaction between alpha-tocopherol and iron. Ferrous ion decomposed hydroperoxide rapidly and induced the free radical chain oxidation of soybean phosphatidylcholine liposomes. alpha-Tocopherol acted primarily as a radical scavenger in the oxidation induced by ferrous ion and acted as an antioxidant. Ferric ion decomposed hydroperoxide much more slowly than ferrous ion, but it also induced the oxidation of liposomal membranes. alpha-Tocopherol incorporated into artificial liposomal membranes reduced ferric ion rapidly to give more reactive ferrous ion, and alpha-tocopherol acted either as an antioxidant or as a prooxidant depending on the experimental conditions. When alpha-tocopherol was depleted by the interaction with ferric ion, it acted solely as a prooxidant, whereas if some alpha-tocopherol remained, it acted as an antioxidant. On the other hand, alpha-tocopherol residing in the intact erythrocyte membranes did not reduce ferric ion in the aqueous region.  相似文献   

17.
A Ca(2+)-induced phase separation of palmitic acid (PA) in the membrane of azolectin unilamellar liposomes has been demonstrated with the fluorescent membrane probe nonyl acridine orange (NAO). It has been shown that NAO, whose fluorescence in liposomal membranes is quenched in a concentration-dependent way, can be used to monitor changes in the volume of lipid phase. The incorporation of PA into NAO-labeled liposomes increased fluorescence corresponding to the expansion of membrane. After subsequent addition of Ca(2+), fluorescence decreased, which indicated separation of PA/Ca(2+) complexes into distinct membrane domains. The Ca(2+)-induced phase separation of PA was further studied in relation to membrane permeabilization caused by Ca(2+) in the PA-containing liposomes. A supposition was made that the mechanism of PA/Ca(2+)-induced membrane permeabilization relates to the initial stage of Ca(2+)-induced phase separation of PA and can be considered as formation of fast-tightening lipid pores due to chemotropic phase transition in the lipid bilayer.  相似文献   

18.
The water-soluble probe carboxyfluorescein (CF), contained in the internal aqueous phase of liposomes, was used to investigate the interaction of phospholipid vesicles with isolated nuclei. Ultrastructural analysis indicated that adherent liposomes coated the nuclear surface, and fluorescence microscopy showed that they contained quenching concentrations of the dye. Flow cytometry revealed that the transfer of the entrapped dye from the adhering liposomes to nuclei was blocked by chilling at 0 degrees C. Chase experiments demonstrated that the most reliable mechanism of dye transfer involved fusion phenomena between the liposomal and the nuclear membranes. After the release of the fluorophore into the nucleus, empty liposomes could withdraw the intranuclear soluble fraction of the dye.  相似文献   

19.
Interaction of liposomes with human leukocytes in whole blood   总被引:1,自引:0,他引:1  
The uptake of multilamellar liposomes into human leukocytes in whole blood in vitro was evaluated on the basis of the cellular association of liposomal markers (3H-labelled cholesterol, lipid phase; [14C]inulin, aqueous phase). The entry of liposomes into human blood leukocytes was linear for 60 min and was mediated by a saturable mechanism displaying affinity constants of 0.28 +/- 0.17 and 0.16 +/- 0.05 mM liposomal lipid (means +/- S.E.) for liposomal lipid and aqueous phase markers, respectively. Amicon filtration analysis of incubation mixtures containing blood and liposomes (phosphatidylcholine:dicetyl phosphate:cholesterol, 70:20:10) showed that 34% of [14C]inulin was lost (neither liposome-associated nor cell-associated) after 60 min. By preincorporating sphingomyelin (35 mol%) into multilamellar liposomes, the leakage of the model aqueous phase marker inulin was reduced to 8% after 60 min, thus enhancing the drug carrier potential of liposomes in blood. As a consequence of their interaction with liposomes, the polymorphonuclear leukocytes in whole blood decreased in apparent buoyant density, while maintaining their viability. These results indicate that blood leukocytes in their natural milieu of whole blood are capable of interacting with, and taking up multilamellar liposomes.  相似文献   

20.
Antibody-complement dependent damage to liposomal model membranes has been previously investigated by measuring the release of low molecular weight markers such as glucose. To determine whether larger solutes are also released under these conditions, experiments have been performed using immunologically sensitive liposomes that contained not only trapped glucose, but also enzymes (hexokinase, glucose-6-phosphate dehydrogenase, β-galactosidase) as macromolecular markers. The largest of these enzymes (β-galactosidase) has dimensions which closely approximate the diameter of the lesions detected by negative staining in natural membranes after immune lysis. Liposomes prepared with lecithin, and either actively sensitized with globoside or passively sensitized with alkali-treated lipopolysaccharide, released the enzymes in parallel with glucose upon incubation with the appropriate antiserum and native guinea pig serum as source of complement. Immune damage to sphingomyelin liposomes was characterized by a significantly lower loss of the enzymes in comparison to the percentage of glucose released; a comparable response was manifested by liposomes prepared from sheep erythrocyte lipids. Electron microscopic examination of negatively stained lecithin liposomes, which had released the macromolecular markers, failed to reveal the characteristics lesions; these findings are consistent with evidence obtained by other laboratories suggesting that the lesions may not correspond to functional holes. Lesions were, however, consistently observed in liposome preparations that had been treated with the polyene antibiotics, filipin; this antibiotic causes appreciable loss of both glucose and enzymes from either lecithin or sphingomyelin liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号