首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A molecular view on pluripotent stem cells   总被引:8,自引:0,他引:8  
Eiges R  Benvenisty N 《FEBS letters》2002,529(1):135-141
Pluripotent stem cells are undifferentiated cells that are capable of differentiating to all three embryonic germ layers and their differentiated derivatives. They are transiently found during embryogenesis, in preimplantation embryos and fetal gonads, or as established cell lines. These unique cell types are distinguished by their wide developmental potential and by their ability to be propagated in culture indefinitely, without loosing their undifferentiated phenotype. This short review intends to give a general overview on the pluripotent nature of embryo-derived stem cells with a focus on human embryonic stem cells.  相似文献   

2.
3.
Human parthenogenetic embryonic stem (pES) cells can be clinically used in the future to avoid immunological rejection. However, the developmental potential of human pES cells remains to be elucidated. In this study, we generated a human pES-enhanced green fluorescent protein (EGFP) cell line (chHES-32-EGFP), which shows pluripotency thus far and maintains stable and robust EGFP expression in the undifferentiated and differentiated states in vivo and in vitro. Using this pES-EGFP cell line, we found that when human pES-EGFP cells were injected into mice blastocysts, EGFP-positive cells progressively decreased with the development of blastocysts in vitro. Only 4 out of 23 embryos (17.4%) contained EGFP-positive cells and all of these embryos exhibited abnormal morphology or delayed development when the chimera blastocysts were implanted into the pseudopregnant recipient mouse uterus. These results raise serious questions regarding the feasibility of the generation of interspecific chimeras between mouse blastocysts and human pES cells.  相似文献   

4.
The unique pluripotential characteristic of human embryonic stem cells heralds their use in fields such as medicine, biotechnology, biopharmaceuticals, and developmental biology. However, the current availability of sufficient quantities of embryonic stem cells for such applications is limited, and generating sufficient numbers for downstream therapeutic applications is a key concern. In the absence of feeder layers or their conditioned media, human embryonic stem cells readily differentiate to form embryoid bodies, indicating that trophic factors secreted by the feeder layers are required for long-term proliferation and maintenance of pluripotency. Adding further complexity to the elucidation of the factors required for the maintenance of pluripotency is the variability of different fibroblast feeder layers (of mouse or human origin) to effectively support human embryonic stem cells. Currently, the deficiency of knowledge concerning the exact identity of factors within the pathways for self-renewal illustrates that a number of factors may be required to support pluripotent, undifferentiated growth of human embryonic stem cells. This study utilized a proteomic analysis (multidimensional chromatography coupled to tandem mass spectrometry) to isolate and identify proteins in the conditioned media of three mitotically inactivated fibroblast lines (human fetal, human neonatal, and mouse embryonic fibroblasts) used to support the undifferentiated growth of human embryonic stem cells. One-hundred seventy-five unique proteins were identified between the three cell lines using a 相似文献   

5.
Autophagy in human embryonic stem cells   总被引:2,自引:0,他引:2  
Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.  相似文献   

6.
Human embryonic stem cells are derived from the inner cell mass of pre-implantation embryos. The cells have unlimited proliferation potential and capacity to differentiate into the cells of the three germ layers. Human embryonic stem cells are used to study human embryogenesis and disease modeling and may in the future serve as cells for cell therapy and drug screening. Human embryonic stem cells are usually isolated from surplus normal frozen embryos and were suggested to be isolated from diseased embryos detected by pre-implantation genetic diagnosis. Here we report the isolation of 12 human embryonic stem cell lines and their thorough characterization. The lines were derived from embryos detected to have aneuploidy by pre-implantation genetic screening. Karyotype analysis of these cell lines showed that they are euploid, having 46 chromosomes. Our interpretation is that the euploid cells originated from mosaic embryos, and in vitro selection favored the euploid cells. The undifferentiated cells exhibited long-term proliferation and expressed markers typical for embryonic stem cells such as OCT4, NANOG, and TRA-1-60. The cells manifested pluripotent differentiation both in vivo and in vitro. To further characterize the different lines, we have analyzed their ethnic origin and the family relatedness among them. The above results led us to conclude that the aneuploid mosaic embryos that are destined to be discarded can serve as source for normal euploid human embryonic stem cell lines. These lines represent various ethnic groups; more lines are needed to represent all populations.  相似文献   

7.
Pluripotential competence of cells associated with Nanog activity   总被引:20,自引:0,他引:20  
Nanog is a novel pluripotential cell-specific gene that plays a crucial role in maintaining the undifferentiated state of early postimplantation embryos and embryonic stem (ES) cells. We have explored the expression pattern and function of Nanog and a Nanog-homologue, Nanog-ps1.Nanog-ps1 was mapped on Chromosome 7 and shown to be a pseudogene. Immunocytochemical analysis in vivo showed that the NANOG protein was absent in unfertilized oocytes, and was detected in cells of morula-stage embryos, the inner cell mass of blastocysts and the epiblast of E6.5 and E7.5 embryos, but not in primordial germ cells of early postimplantation embryos. In monkey and human ES cells, NANOG expression was restricted to undifferentiated cells. Furthermore, reactivation of the somatic cell-derived Nanog was tightly linked with nuclear reprogramming induced by cell hybridization with ES cells and by nuclear transplantation into enucleated oocytes. Notably, mouse Nanog (+/-) ES cells, which produced approximately half the amount of NANOG produced by wild-type ES cells, readily differentiated to multi-lineage cells in culture medium including LIF. The labile undifferentiated state was fully rescued by constitutive expression of exogenous Nanog. Thus, the activity of Nanog is tightly correlated with an undifferentiated state of cells even in nuclear reprogrammed somatic cells. Nanog may function as a key regulator for sustaining pluripotency in a dose-dependent manner.  相似文献   

8.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

9.
Borealin/DasraB is a member of the chromosomal passenger protein complex (CPC) required for proper segregation of chromosomes during mitosis. In Drosophila melanogaster, inactivation of Borealin/DasraB results in polyploidy, delayed mitosis and abnormal tissue development, indicating its critical role for cell proliferation. However, the in vivo role of mammalian Borealin/DasraB remains unclear. Here, we analyzed the expression of Borealin/DasraB and found that borealin is widely expressed in embryonic tissues and later restricted to adult tissues which relies on rapid cell proliferation. To determine the role of borealin during mouse development, we generated borealin-null mice through targeted disruption. While heterozygous mice developed normally, disruption of both borealin alleles resulted in early embryonic lethality by 5.5 dpc (days postcoitus) due to mitotic defects and apoptosis in blastocyst cells that showed microtubule disorganization and no CPC enrichment. At 5.5 dpc, borealin-null embryos exhibited excessive apoptosis and elevated expression of p53. However, loss of p53 did not abrogate or delay embryonic lethality, revealing that Borealin/DasraB inactivation triggered impaired mitosis and apoptosis though p53-independent mechanisms. Our data show that Borealin/DasraB is essential for cell proliferation during early embryonic development, and its early embryonic lethality cannot be rescued by the loss of p53.  相似文献   

10.
11.
Cyclin E supports pre-replication complex (pre-RC) assembly, while cyclin A-associated kinase activates DNA synthesis. We show that cyclin E, but not A, is mounted upon the nuclear matrix in sub-nuclear foci in differentiated vertebrate cells, but not in undifferentiated cells or cancer cells. In murine embryonic stem cells, Xenopus embryos and human urothelial cells, cyclin E is recruited to the nuclear matrix as cells differentiate and this can be manipulated in vitro. This suggests that pre-RC assembly becomes spatially restricted as template usage is defined. Furthermore, failure to become restricted may contribute to the plasticity of cancer cells.  相似文献   

12.
13.
14.
Pluripotent stem cells are able to proliferate indefinitely and differentiate in vitro into various cell types. However, in most cases in vitro differentiation of the pluripotent stem cells is asynchronous and incomplete, and the residual undifferentiated cells can initiate teratoma development after transplantation into recipients. These features of the pluripotent stem cells are the major issue for development of safe cell therapy technologies based on pluripotent stem cells. Considering significant resemblance of growth rates of pluripotent stem and cancer cells we investigated antiproliferative and cytotoxic effects of different type cytostatics (mitomycin C, etoposide, vinblastine and cycloheximide) on the undifferentiated and differentiating mouse embryonic stem cells, embryonic germ cells, blastocyst and on mouse embryonal teratocarcinoma cells and mouse embryonic fibroblasts. The findings showed that all cytostatics used induced both antiproliferative effects and acute toxic processes in undifferentiated pluripotent stem cells and embryonal teratocarcinoma cells whereas these effects were less in differentiating embryonic stem cells and embryonic fibroblast. Moreover, the trophoblast cells of mouse blastocysts were less sensitive to damaging effects of cytostatics than inner cell mass cells. The examination of deferred effects of cytostatics revealed that the effects of mitomycin C, etoposide and vinblastine, but not cycloheximide, were irreversible because survived cells were not able to proliferate. Nevertheless, the numbers of embryonic fibroblasts exposed to etoposide or vinblastine remained unchanged while vast majority of undifferentiated pluripotent cells treated underwent apoptosis. Thus, diverse effects of etoposide and vinblastine on the undifferentiated pluripotent stem cells and differentiated embryonic cells allow us to consider these cytostatics and their analogs as drug-candidates for selective elimination of the residual undifferentiated pluripotent stem cells from population of differentiating cells. These findings demonstrate for the first time the possibility of selective elimination of undifferentiated pluripotent stem cells using cytostatic drugs approved for clinic practice. However, to improve effectiveness and safety of this approach and to prevent mutagenic, carcinogenic and teratogenic effects on undifferentiated pluripotent stem cells and their differentiated cell derivatives large-scale studies of cytostatic effects using different experimental design and active doses must be performed.  相似文献   

15.

Background  

Pooled human embryonic stem cells (hESC) cell lines were profiled to obtain a comprehensive list of genes common to undifferentiated human embryonic stem cells.  相似文献   

16.
Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of preimplantation human blastocysts obtained on days 5–6 following fertilization. Based on their derivation, they were once thought to be the equivalent of the ICM. Recently, however, studies in mice reported the derivation of mouse embryonic stem cell lines from the epiblast; these epiblast lines bear significant resemblance to human embryonic stem cell lines in terms of culture, differentiation potential and gene expression. In this study, we compared gene expression in human ICM cells isolated from the blastocyst and embryonic stem cells. We demonstrate that expression profiles of ICM clusters from single embryos and hESC populations were highly reproducible. Moreover, comparison of global gene expression between individual ICM clusters and human embryonic stem cells indicated that these two cell types are significantly different in regards to gene expression, with fewer than one half of all genes expressed in both cell types. Genes of the isolated human inner cell mass that are upregulated and downregulated are involved in numerous cellular pathways and processes; a subset of these genes may impart unique characteristics to hESCs such as proliferative and self-renewal properties.  相似文献   

17.
18.
19.
Human feeder layers for human embryonic stem cells   总被引:39,自引:0,他引:39  
Human embryonic stem (hES) cells hold great promise for future use in various research areas, such as human developmental biology and cell-based therapies. Traditionally, these cells have been cultured on mouse embryonic fibroblast (MEF) feeder layers, which permit continuous growth in an undifferentiated stage. To use these unique cells in human therapy, an animal-free culture system must be used, which will prevent exposure to mouse retroviruses. Animal-free culture systems for hES cells enjoy three major advantages in the basic culture conditions: 1). the ability to grow these cells under serum-free conditions, 2). maintenance of the cells in an undifferentiated state on Matrigel matrix with 100% MEF-conditioned medium, and 3). the use of either human embryonic fibroblasts or adult fallopian tube epithelial cells as feeder layers. In the present study, we describe an additional animal-free culture system for hES cells, based on a feeder layer derived from foreskin and a serum-free medium. In this culture condition, hES cells maintain all embryonic stem cell features (i.e., pluripotency, immortality, unlimited undifferentiated proliferation capability, and maintenance of normal karyotypes) after prolonged culture of 70 passages (>250 doublings). The major advantage of foreskin feeders is their ability to be continuously cultured for more than 42 passages, thus enabling proper analysis for foreign agents, genetic modification such as antibiotic resistance, and reduction of the enormous workload involved in the continuous preparation of new feeder lines.  相似文献   

20.
Inner cell masses (ICM) and embryonic discs from bovine and porcine blastocysts of various ages were transplanted under the kidney capsule of athymic (nude) mice to evaluate growth of teratocarcinomas containing both differentiated tissues and undifferentiated stem cells. Inner cell masses were isolated immunosurgically from Day 8, Day 9 and Day 10 porcine blastocysts and from Day 8, Day 10 and Day 12 bovine blastocysts. Embryonic discs were mechanically dissected from Day 11 and Day 12 porcine embryos and from Day 14 bovine embryos. Day 6 egg cylinders were dissected from embryos and from hybrid embryos of a cross between BALB/C and an outbred strain of mouse. Two to four ICM, embryonic discs or egg cylinders were transplanted under the kidney capsule of each athymic host. After 8 weeks, graft hosts were killed and their tumors removed, fixed and prepared for histological and immunohistochemical examination. Embryonic teratomas developed at high frequency from murine egg cylinders and from Day 11 and Day 12 porcine and Day 14 bovine embryos. Tumors were observed only infrequently from younger bovine and porcine blastocysts. Murine embryonic tumors were composed of numerous differentiated cell types of ectodermal, mesodermal and endodermal origins, but representation of the three embryonic germ layers was somewhat more restricted in bovine and porcine embryonic tumors. No undifferentiated stem cells were detected in tumors of any of the three species. These results demonstrate that teratomas will develop from bovine and porcine embryos when grafted to an immunocompromised host, but the presence of undifferentiated teratocarcinoma stem cells from these species has yet to be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号