首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel low-light (LL) adapted light-harvesting complex II has been isolated from Rhodopseudomonas palustris. Previous work has identified a LL B800-850 complex with a heterogeneous peptide composition and reduced absorption at 850 nm. The work presented here shows the 850 nm absorption to be contamination from a high-light B800-850 complex and that the true LL light-harvesting complex II is a novel B800 complex composed of eight alpha beta(d) peptide pairs that exhibits unique absorption and circular dichroism near infrared spectra. Biochemical analysis shows there to be four bacteriochlorophyll molecules per alpha beta peptide rather than the usual three. The electron density of the complex at 7.5 A resolution shows it to be an octamer with exact 8-fold rotational symmetry. A number of bacteriochlorophyll geometries have been investigated by simulation of the circular dichroism and absorption spectra and compared, for consistency, with the electron density. Modeling of the spectra suggests that the B850 bacteriochlorophylls may be arranged in a radial direction rather than the usual tangential arrangement found in B800-850 complexes.  相似文献   

2.
The chromatophore of a novel thermophilic purple photosynthetic bacterium, Chromatium tepidum, had light-harvesting BChl proteins which gave absorption maxima at 917, 855 and 800 nm at 20°C. These antenna complexes were found to have BChl of the a type [4]. This is, therefore, the first example of a BChl a antenna complex which shows a long-wavelength absorption up to 917 nm. Treatment by Triton X-100 and successive sodium dodecyl sulfate polyacrylamide gel electrophoresis separated these antenna complexes into two groups. One of them has one antenna component which absorbs around 917 nm (B917). The other contains at least an antennae which absorb maximally at 800 and 855 nm (B800–855). The temperature-dependent changes of absorption, circular dichroism and emission spectra were reversible up to 70°C in the intact chromatophore and in the isolated B800–855 complex. On the contrary, the isolated complex B917 lost its absorption irreversibly over the temperature of 50°C. These results suggest a membrane structure which is essential for the thermostability of chromatophores from C. tepidum.  相似文献   

3.
The pigment content of a B800-850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed. The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800-850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band. The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.  相似文献   

4.
The aim of this study was to investigate the spectral modifications of the LHII antenna complex from the purple bacterium Ectothiorhodospira sp. upon acid pH titration both in the presence and absence of urea. A blue shift specifically and reversibly affected the B850 band around pH 5.5-6.0 suggesting that a histidine residue most probably participated in the in vivo absorption red shifting mechanism. This transition was observed in the presence and absence of urea. Under strong chaotropic conditions, a second transition occurred around pH 2.0, affecting the B800 band irreversibly and the B850 reversibly. Under these conditions a blue shift from 856 to 842 nm occurred and a new and strong circular dichroism signal from the new 842 nm band was observed. Reverting to the original experimental conditions induced a red shift of the B850 band up to 856 nm but the circular dichroism signal remained mostly unaffected. Under the same experimental conditions, i.e. pH 2.1 in the presence of urea, part of the B800 band was irreversibly destroyed with concomitant appearance of a band around 770 nm due to monomeric bacteriochlorophyll from the disrupted B800. Furthermore, Gaussian deconvolution and second derivative of the reverted spectra at pH 8.0 after strong-acid treatment indicated that the new B850 band was actually composed of two bands centered at 843 and 858 nm. We ascribed the 858 nm band to bacteriochlorophylls that underwent reversible spectral shift and the 843 nm band to oligomeric bacteriopheophytin formed from a part of the B850 bacteriochlorophyll. This new oligomer would be responsible for the observed strong and mostly conservative circular dichroism signal. The presence of bacteriopheophytin in the reverted samples was definitively demonstrated by HPLC pigment analysis. The pheophytinization process progressed as the pH decreased below 2.1, and at a certain point (i.e. pH 1.5) all bacteriochlorophylls, including those from the B800 band, became converted to oligomeric bacteriopheophytin, as shown by the presence of a single absorption band around 843 nm and by the appearance of a single main elution peak in the HPLC chromatogram which corresponded to bacteriopheophytin.  相似文献   

5.
The pigment content of a B800–850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed.The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800–850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band.The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.  相似文献   

6.
Low-temperature heterogeneous absorption and circular dichroism spectra of the Rb. sphaeroides LH2 complexes are calculated within the framework of the mini-exciton theory and diagonal static random disorder for the pure electronic transitions of the monomeric Bchl molecules. The coupling of Bchl molecules with the surrounding amino acid residues has been shown to change both the exciton distribution between the pigment molecules in each of the exciton states. The value of the delocalization index depends on the excitation wavelength and varies between 2-6 Bchl molecules. The optical transitions occurring at 780-790 and 820 nm have been found to be strongly mixed so that all Bchl molecules of the LH2 complex predetermine absorption in these spectral regions. On the other hand, absorption at 800 and 850 nm is mainly determined by the cycles of 9 and 18 Bchl molecules, respectively. Thus, the light energy absorbed by the B800 molecules at 800 nm is transferred to the B850 molecules by the interlevel exciton relaxation processes due to the population of the heavily mixed 820-nm exciton levels. The width of the heterogeneous absorption band for the cyclic monomeric aggregate has been shown to decrease as compared with the monomeric absorption band by square root(Ndel) time, where Ndel is the mean number of pigments over which the exciton is delocalized within the excited absorption band.  相似文献   

7.
P Braun  A Scherz 《Biochemistry》1991,30(21):5177-5184
The light-harvesting complex (LHC) B850 from Rhodobacter sphaeroides was dissociated into several fragments by treatment with sodium dodecyl sulfate. The molecular weight of each fragment was determined by using transverse polyacrylamide gel electrophoresis under nondenaturing conditions and gel filtration techniques. Four B850 LHCs were observed, having molecular weights of 60,000, 72,000-75,000, 105,000, and 125,000-145,000, and two small bacteriochlorophyll (Bchl)-polypeptide complexes having molecular weights of 6000-8000 and 12,000-14,000. Each of the B850 complexes contains ca. one Bchl a for each 6.5-kDa protein. The optical absorption and circular dichroism of the B850 LHCs recorded directly from the gels are similar to those measured previously for a 22-24-kDa B850 LHCs by Sauer and Austin [(1978) Biochemistry 17, 2011-2019]. These data, combined with studies of other groups, indicate that the smallest LHC in LH1 and LH2 is a Bchl-polypeptide tetramer. Each tetramer contains two Bchl dimers that probably have the structure of P-860, the primary electron donor in Rhodobacter sphaeroides, and two alpha-beta-polypeptide pairs. Interactions among the paired Bchls shift their individual Qy transitions from 780-800 to 850-860 nm, and interactions among two such pairs induce the circular dichroism signal of the LHCs. Three Bchl-polypeptide tetramers probably form a dodecamer having C3 symmetry, and six such dodecamers organize into a large hexagon that can accommodate one or two reaction center complexes.  相似文献   

8.
The light-harvesting complex (LHC) of higher plants isolated using Triton X-100 has been studied during its transformation into a monomeric form known as CPII. The change was accomplished by gradually increasing the concentration of the detergent, sodium dodecyl sulfate (SDS). Changes in the red spectral region of the absorption, circular dichroism (CD), and linear dichroism spectra occurring during this treatment have been observed at room temperature. According to a current hypothesis the main features of the visible region absorption and CD spectra of CPII can be explained reasonably successfully in terms of an exciton coupling among its chlorophyll (Chl) b molecules. We suggest that the spectral differences between the isolated LHC and the CPII may be understood basically in terms of an exciton coupling between the Chl b core of a given CPII unit and at least one of the Chla's of either the same or the adjacent CPII. We propose that this Chl a-Chl b coupling existing in LHC disappears upon segregation into CPII, probably as a result of a detergent-related overall rotation of the strongly coupled Chl b core which changes the relative orientations of the two types of pigments and thus the nature of their coupling.Abbreviations Chl Chlorophyll - CD Circular dichroism - LD Linear dichroism - LHC Light-harvesting complex - SDS Sodium dodecyl sulfate - CPII A solubilized form of LHC obtained with SDS polyacrylamide gel electrophoresis Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   

9.
B. Böddi  Katalin Kovács  F. Láng 《BBA》1983,722(2):320-326
Protochlorophyll (PChl) forms were performed in Triton X-100 detergent micelles. The concentration of Triton X-100 was 7·10?4 M (above the critical micellar concentration); the concentration of PChl varied between 1.6·10?5 and 1.8·10?4 M. Absorption, fluorescence and circular dichroism (CD) spectra were registered. The absorption spectra were resolved into Gaussian components by computer analysis. PChl forms with absorption bands at 632–634, 638, 652–654, 663–664, 668 and 676 nm and with fluorescence emission bands at 634–636, 640–644, 652–655, 677–678, 686 and 694–696 nm were observed in micellar solutions of different PChl concentrations. The CD spectra showed a strong dependence on the concentration of PChl: positive CD signals or positive Cotton effects were observed in the vicinity of 650 nm. The intensity of these signals increased in parallel with increasing concentration of PChl. No CD signals were found in the region of the longer wavelength absorption bands. These data show that the PChl exists in many different forms in this system, and the spectroscopic properties of these forms are determined by different molecular interactions viz., interactions of PChl with Triton X-100 or water molecules and/or by the aggregation of PChl.  相似文献   

10.
Absorption, linear dichroism and circular dichroism spectra of Rhodopseudomonas capsulata (wild-type-St. Louis strain, mutant Y5 and mutant Ala+) are particularly sensitive to the nature of the light-harvesting bacteriochlorophyll-carotenoid-protein complexes. Evidence for exciton-type interactions is seen near 855 nm in the membranes from the wild-type and from mutant Y5, as well as in an isolated B-800 + 850 light-harvesting complex from mutant Y5. The strong circular dichroism that reflects these interactions is attenuated more than 10-fold in membranes from the Ala+ mutant, which lacks both B-800 + 850 and colored carotenoids and contains only the B-875 light-harvesting complex. These results lead to the conclusion that these two light-harvesting complexes have significantly different chromophore arrangements or local environments.  相似文献   

11.
Changes in the relative content of pigment-protein complexes, RC-B880 and B800-850, were studied in membranes of Rhodobacter sphaeroides forma sp. denitrificans cultured under various anaerobic conditions. The content of each pigment-protein complex was determined by the decomposition of the absorption spectra of membranes in the near-infrared region into the spectra of RC-B880 and B800-850. The standard spectrum of each complex in the membranes was obtained using two absorption spectra of membranes with different ratios of the complexes by eliminating the spectrum of first one than the other complex. Spectra composed from the two standard spectra were in good agreement with original membrane spectra after subtraction of the contribution of scattering in various membrane samples. Bacteriochlorophyll (BChl) content in the membrane was dependent on the light intensity during growth. The relation between the total BChl content in the membrane and BChl content in the RC-B880 and B800-850 complex was linear above 15 nmol BChl per mg membrane protein, regardless of the culturel conditions, photosynthetic or photo-denitrifying. The linear relationship reached a point where all BChl molecules were contained in RC-B880 at 13 nmol BChl per mg membrane protein. This means that only RC-B880 would be synthesized below the threshold, and above the threshold additional BChl was distributed between RC-B880 and B800-850 in a constant ratio (1:5.7). The results suggest that the syntheses of B800-850 and RC-B880 are not regulated independently.  相似文献   

12.
Comparison of absorption and circular dichroism (CD) spectra in the near infrared region was made with chromatophore and subchromatophore preparations obtained from Rhodopseudomonas sphaeroides. The 850 nm absorption band had a positive correlation with the 850 nm and 870 nm CD bands. The 800 nm and 870 nm absorption bands seemed not to correlate with any CD bands. Lipid contents in chromatophores and subchromatophores were measured. Lipids in membranes seemed to contribute to the appearance of the 870 nm absorption band, but not to that of the 800 nm and 850 nm absorption bands. The time courses of absorbance changes were compared at 800, 850, and 870 nm in detergent-treated chromatophores. Relative changes of absorbances differed from one another. The present results suggest that the three absorption bands are due to three different bacteriochlorophyll a-types and the 850 nm absorption band originates from exciton-coupling of bacteriochlorophyll a.  相似文献   

13.
The absorption (OD) and circular dichroism (CD) spectra of LH2 complexes from various purple bacteria have been measured and modeled. Based on the lineshapes of the spectra we can sort the LH2 complexes into two distinguishable groups: "acidophila"-like (type 1) and "molischianum"-like (type 2). Starting from the known geometric structures of Rhodopseudomonas (Rps.) acidophila and Rhodospirillum (Rsp.) molischianum we can model the OD and CD spectra of all species by just slightly varying some key parameters: the interaction strength, the energy difference of alpha- and beta-bound B850 bacteriochlorophylls (BChls), the orientation of the B800 and B850 BChls, and the (in)homogeneous broadening. Although the ring size can vary, the data are consistent with all the LH2 complexes having basically very similar structures.  相似文献   

14.
Low temperature (4.2 K) absorption and hole burned spectra are reported for a stabilized preparation (no excess detergent) of the photosystem II reaction center complex. The complex was studied in glasses to which detergent had and had not been added. Triton X-100 (but not dodecyl maltoside) detergent was found to significantly affect the absorption and persistent hole spectra and to disrupt energy transfer from the accessory chlorophyll a to the active pheophytin a. However, Triton X-100 does not significantly affect the transient hole spectrum and lifetime (1.9 ps at 4.2 K) of the primary donor state, P680*. Data are presented which indicate that the disruptive effects of Triton X-100 are not due to extraction of pigments from the reaction center, leaving structural perturbations as the most plausible explanation. In the absence of detergent the high resolution persistent hole spectra yield an energy transfer decay time for the accessory Chl a QY-state at 1.6 K of 12 ps, which is about three orders of magnitude longer than the corresponding time for the bacterial RC. In the presence of Triton X-100 the Chl a QY-state decay time is increased by at least a factor of 50.Abbreviations PS I photosystem I - PS II photosystem II - RC reaction center - P680, P870, P960 the primary electron donor absorption bands of photosystem II, Rhodobacter sphaeroides, Rhodopseudomonas viridis - NPHB nonphotochemical hole burning - TX Triton X-100 - DM Dodecyl Maltoside - Chl chlorophyll - Pheo pheophytin - ZPH ero phonon hole  相似文献   

15.
Light-harvesting mutants of Rhodopseudomonas sphaeroides lacking either the B800-850 complex or the B875 complex have been characterized by their absorption spectra in the visible and near-infrared region, and by their ability to transfer energy from the light-harvesting complexes to the reaction center. A new method of measuring the relative efficiency of energy transfer from the light-harvesting complexes to the reaction center is described. The B875- mutant had absorption maxima in the near-infrared at 800 and 849 nm with no evidence of an 875-nm shoulder. The efficiency of energy transfer from the light-harvesting complexes to the reaction center in the B875- mutant was 24% of the value measured for the wild-type strain and the B800-850- mutant. Yet, despite the fact that the efficiency of energy transfer for the B800-850- mutant and the wild-type strain were the same, there was a large difference in their photosynthetic unit size. These results are discussed in the context of a model in which light energy captured by the B800-850 complexes is transferred through the B875 complexes to the reaction center.  相似文献   

16.
A method is described which allows the selective release and removal of the Bchla-B800 molecules from the LH2 complex of Rhodopseudomonas acidophila 10050. This procedure also allows reconstitution of approximately 80% of the empty binding sites with native Bchla. As shown by circular dichroism spectroscopy, the overall structures of the B850-only and reconstituted complexes are not affected by the pigment-exchange procedure. The pigments reconstituted into the B800 sites can also efficiently transfer excitation energy to the Bchla-B850 molecules.  相似文献   

17.
A green mutant was obtained among the chemically induced mutants of Rhodobacter sphaeroides 601 (RS601) and named GM309. A blue shift of 20 nm of the carotenoid absorption spectrum was found in the light-harvesting complex II (LH2) of GM309. Different from LH2 of RS601, it was found that the carotenoids in GM309-LH2 changed to be neurosporene by mutation. Neurosporene lacks a conjugate double bond, compared with the spheroidene in RS601-LH2 which has ten conjugate double bonds. As shown by absorption and circular dichroism spectroscopy, the overall structure of GM309-LH2 is little affected by this change. From fluorescence emission spectra, it is found that GM309-LH2 can transfer energy from carotenoids to Bchl-B850 without any change in efficiency. But the efficiency of energy transfer from B800 to B850 in GM309-LH2 is decreased to be 42% of that of the native. This work would provide a novel method to investigate the mechanism of excitation energy transfer in LH2.  相似文献   

18.
Emission and absorption spectra in the temperature range 4–300 K have been obtained for bacteriochlorophyll light-harvesting complexes (B800–850 complexes) from several mutants of Rhodopseudomonas sphaeroides and a nonphotosynthetic mutant of Rhodopseudomonas capsulata. The energy-transfer properties of these complexes were remarkably similar despite differences in carotenoid composition. Between 300 and 200 K the excitation densities in B800 and B850 are in thermal equilibrium, indicating rapid energy transfer from B800 to B850 and vice versa. The temperature dependence of the ratio of the B800 and B850 emission yields allows the determination of the ratio of the number of B800 and B850 molecules in the complex which is close to 0.5. Below 200 K thermal equilibrium no longer exists. At 4–100 K the B800 emission yield increases with decreasing temperature and becomes dependent on the wavelength of excitation. From the B800 emission yield at 4 K the B800–850 dipole-dipole distance was calculated to be equal to or smaller than 21 Å for all B800–850 complexes. Excitation spectra for B800 and B850 emission show that the overall energy-transfer efficiencies from carotenoid and B800 to B850 are greater than 90% at all temperatures. At 4 K the carotenoid transfers its excitation energy preferentially to B850. Experiments with chromatophores indicated that the energy-transfer properties of the B800–850 complexes were not modified by the isolation procedures.  相似文献   

19.
A peripheral light-harvesting complex from the aerobic purple bacterium Roseobacter (R.) denitrificans was purified and its photophysical properties characterized. The complex contains two types of pigments, bacteriochlorophyll (BChl) a and the carotenoid (Car) spheroidenone and possesses unique spectroscopic properties. It appears to lack the B850 bacteriochlorophyll a Q(y) band that is typical for similar light-harvesting complex 2 antennas. Circular dichroism and low temperature steady-state absorption spectroscopy revealed that the B850 band is present but is shifted significantly to shorter wavelengths and overlaps with the B800 band at room temperature. Such a spectral signature classifies this protein as a member of the light-harvesting complex 4 class of peripheral light-harvesting complexes, along with the previously known light-harvesting complex 4 from Rhodopseudomonas palustris. The influence of the spectral change on the light-harvesting ability was studied using steady-state absorption, fluorescence, circular dichroism, femtosecond and microsecond time-resolved absorption and time-resolved fluorescence spectroscopies. The results were compared to the properties of the similar (in pigment composition) light-harvesting complex 2 from aerobically grown Rhodobacter sphaeroides and are understood within the context of shared similarities and differences and the putative influence of the pigments on the protein structure and its properties.  相似文献   

20.
Certain redox properties of bacteriochlorophyll alpha were used to probe the structure of several light-harvesting pigment-protein complexes or holochromes. To attribute redox properties unequivocally to a given holochrome, we worked with purified holochromes. We developed purification procedures for the B880 holochromes from Rhodospirillum rubrum, Rhodopseudomonas sphaeroides and Ectothiorhodospira sp. and for the B800-850 holochromes from the latter two species. In all these holochromes, bacteriochlorophyll alpha could be oxidized by ferricyanide as witnessed by the bleaching of their near-infrared absorption bands. However, only in B880 holochromes was this oxidation reversible. Another important difference between the B800-850 and the B880 holochromes is that oxidation of the latter gives rise to a g = 2.0025 electron paramagnetic resonance (EPR) signal with linewidth varying, according to species, from 0.37 mT to 0.48 mT. Both the reversible EPR signal and absorption changes titrate with a midpoint redox potential (pH 8.0) of approximately 570 mV. Linewidth narrowing can be interpreted by delocalization of the free electron spin over approximately 12 bacteriochlorophyll molecules. While the B880 holochromes from the three species considered had indistinguishable redox properties, the B800-850 holochromes differed from one another by their circular dichroic spectra and by the relative ease of oxidation of their 800-nm and 850-nm bands. This indicates that, contrary to the B880 holochromes, the B800-850 holochromes may not form a homogeneous class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号