首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biosynthesis of myelin-associated glycolipids was studied in quiescent secondary cultures of Schwann cells and in a rapidly proliferating population of transfected Schwann cells (TSC) by in vitro incorporation of [3H]galactose. The TSC demonstrated a marked increase (>10-fold) in [3H]galactose incorporation when compared to quiescent Schwann cells. The level (or amount) of [3H]galactose incorporation into lipids is dependent upon the number of TSC in culture. The majority of3H-labeled lipids were oligohexosylceramides (GL-2, GL-3, and GL-4). Substrates that inhibit TSC proliferation, collagen type I and Matrigel, an artificial basement membrane, decrease the [3H]galactose incorporation by 25% and 80%, respectively. Our results indicate that the synthesis of glucocerebroside and its homologs is associated with Schwann cell proliferation.Abbreviations HPTLC high-performance thin-layer chromatography - TL total lipids - NL non-polar lipids - GL glycolipids - PL phospholipids - MGDG monogalactosyl diacylglycerol - GalCe galactocerebroside - GalCe-OH galacto hydroxycerebroside - GlcCe glucocerebroside - Su sulfatide - Su-OH hydroxysulfatide - GL-2 lactosylceramide - GL-3 trihexosylceramide - GL-4 tetrahexosylceramide - PE phosphatidylethanolamine - PC phosphatidylcholine - PS phosphatidylserine - PI phosphatidylinositol - TSC transfected Schwann cells A preliminary report of this work was presented at the 22nd Annual Meeting of the American Society for Neurochemistry, Charleston, South Carolina, March 13, 1991.  相似文献   

2.
Schwann cells that are deprived of axonal contact switch their glycolipid metabolic pathway from primarily galactocerebroside (GalCe) synthesis to the formation of glucocerebroside (GlcCe) and its homologs. The removal of axonal influence has a dual effect on Schwann cell phenotype; they lose the ability to assemble both myelin and basement membrane. To determine whether a loss of basement membrane directly affects glycolipid expression, we have examined lipid biosynthesis in Schwann cells which were allowed to interact with axons of dorsal root ganglion neurons but which were deprived of the ability to assemble basal lamina. These Schwann cells resemble those from myelinating nerve in that they synthesize a large amount of galactohydroxycerebroside. This suggests that axon contact, even in the absence of basement membrane, is sufficient to induce the GalCe metabolic pathway.Abbreviations DRG dorsal root ganglia - GalCe galactocerebroside - GalCe-OH galactohydroxycerebroside - GlcCe glucocerebroside - GL-2 lactosylceramide - GL-3 trihexosylceramide - GL-4 tetrahexosylceramide - HPTLC high-performance thin-layer chromatography - MGDG monogalactosyl diacylglycerol - NL non-polar lipids - PC phosphatidylcholine - Su sulfatide - Su-OH hydroxysulfatide  相似文献   

3.
Bmax values of the specific binding of [3H]-WB 4101, [3H]-dihydroalprenolol, [3H]-spiperone and [3H]-imipramine to various rat brain regions were determined at 4 hr intervals over 24 hr under circadian conditions. No significant circadian rhythm of binding sites number was found for any receptor investigated in cerebral cortex, hypothalamus or brain stem. Some methodological issues are discussed.  相似文献   

4.
Extracts of Valeriana officinalis have been used in folkloric medicine for its sedative, hypnotic, tranquilizer and anticonvulsant effects, and may interact with -aminobutyric acid (GABA) and/or benzodiazepine sites. At low concentrations, valerian extracts enhance [3H]flunitrazepam binding (EC50 4.13 × 10–10 mg/ml). However, this increased [3H]flunitrazepam binding is replaced by an inhibition at higher concentrations (IC50 of 4.82 × 10–1 mg/ml). These results are consistent with the presence of at least two different biological activities interacting with [3H]flunitrazepam binding sites. Valerian extracts also potentiate K+ or veratridine-stimulated release of radioactivity from hippocampal slices preloaded with [3H]GABA. Finally, inhibition of synaptosomal [3H]GABA uptake by valerian extracts also displays a biphasic interaction with guvacine. The results confirm that valerian extracts have effects on GABAA receptors, but can also interact at other presynaptic components of GABAergic neurons.  相似文献   

5.
Human adipose-derived stem cells (ASCs) have a potential for the treatment of peripheral nerve injury. Recent studies demonstrated that stem cells can mediate therapeutic effect by secreting exosomes. We aimed to investigate the effect of human ASCs derived exosomes (ASC-Exos) on peripheral nerve regeneration in vitro and in vivo. Our results showed after being internalized by Schwann cells (SCs), ASC-Exos significantly promoted SC proliferation, migration, myelination, and secretion of neurotrophic factors by upregulating corresponding genes in vitro. We next evaluated the efficacy of ASC-Exo therapy in a rat sciatic nerve transection model with a 10-mm gap. Axon regeneration, myelination, and restoration of denervation muscle atrophy in ASC-Exos treated group was significantly improved compared to vehicle control. This study demonstrates that ASC-Exos effectively promote peripheral nerve regeneration via optimizing SC function and thereby represent a novel therapeutic strategy for regenerative medicine and nerve tissue engineering.  相似文献   

6.
Previous studies describe decreased acetylcholine synthesis in brain as well as neurobehavioural evidence for a central muscarinic cholinergic deficit in pyrithiamine-induced thiamine-deficient rats. In order to further evaluate this possibility, quantitative autoradiographic procedures using [3H]quinuclidinyl benzilate (for total muscarinic binding sites), [3H]pirenzepine (for muscarinic M1 sites) and [3H]AF-DX 384 (for muscarinic M2 sites) were performed at early (presymptomatic) and late (symptomatic) stages of thiamine deficiency induced in rats by administration of the central thiamine antagonist, pyrithiamine. No significant alterations in densities of M1, M2 or total muscarinic binding sites were observed in any brain structure evaluated at either early or late stages of thiamine deficiency. These findings do not support a major role for modifications of muscarinic cholinergic function in the pathogenesis of the neurological symptoms of thiamine deficiency.  相似文献   

7.
The relative affinities of various muscarinic drugs in the antagonist ([3H]N-methyl scopolamine ([3H]NMS)) and agonist ([3H]Oxotremorine-m ([3H]OXO-M)) binding assays using a mixture of tissues containing M1–M4 receptor subtypes have been determined. [3H]NMS bound with high affinity (Kd=25±5.9 pM; n=3) and to a high density (Bmax=11.8±0.025 nmol/g wet weight) of muscarinic receptors. [3H]OXO-M appeared to bind to two binding sites with differing affinities (Kd1=2.5±0.1 nM; Kd2=9.0±4.9 M; n=4) and to a different population of binding sites (Bmax1=5.0±0.26 nmol/g wet weight; Bmax2=130±60 nmol/g wet weight). Well known antagonists exhibited high affinity for [3H]NMS binding but a lower affinity for [3H]OXO-M binding. The opposite was true for acetylcholine and other known agonists. However, pilocarpine and McN-A-343 had similar affinities for sites labeled by both radioligands. Using the ratios of antagonist-to-agonist binding affinities, it was possible to group compounds into apparently distinct full agonist (ratios of 180–665; e.g. carbachol, muscarine, OXO-M, OXO-S and arecoline), partial agonist (ratios of 14–132; e.g. McN-A-343, pilocarpine, aceclidine, bethanechol, OXA-22 and acetylcholine) and antagonist (ratios of 0.22–1.9; e.g. atropine, NMS, pirenzepine, methoctramine, 4-DAMP and p-fluorohexahydrosialo-difenidol) classes. These data suggest that the NMS/OXO-M affinity ratios using a mixture of M1–M4 muscarinic receptors may be a useful way to screen and group a large number of compounds into apparent agonist, partial agonist, and antagonist classes of cholinergic agents.  相似文献   

8.
Summary Exponentially growing HeLa cells have been separated according to their cell cycle age by sedimenting at unit gravity for 3 hr on a phosphate-buffered sucrose density gradient. Measurements of cell size, cell number, DNA content, and tritiated thymidine incorporation in consecutive portions of the gradient showed that cells in upper fractions were in G1, cells in middle fractions were in S, and cells in lower fractions were in G2. Basic amino acids were rapidly incorporated into nuclear protein during late G1 and S; some incorporation also took place during G2. This work is supported by grant A-3458 from the National Research Council of Canada.  相似文献   

9.
We previously isolated a Serratia marcescens O5: HI Z-54 strain which produces a new reddish-violet pigment, a peptide- ferropyrimine complex. This study showed that polymyxin B enhances the formation of the pigment about threefold. This occurs because polymyxin B in the medium causes the formation of an iron-polymyxin B complex which imposes a low iron stress on the bacteria and, in turn, enhances pigment production. This shows that polymyxin B is both a membrane-disrupting and ionophoric antibiotic.  相似文献   

10.
Summary The binding of [3H]dizocilpine [[3H]MK-801] to the N-methylD-aspartate receptor complex of well washed rat cortical membranes was reduced by guanidinoethane sulphonic acid (GES). Micromolar concentrations of GES, which were high relative to those of dizocilpine, inhibited in a concentration dependent manner the binding of [3H]dizocilpine. The inhibitory effect of GES on [3H]dizocilpine binding was slightly influenced by concentration of glutamate. The glutamate antagonist DL-2-amino-5phosphonovaleric acid blocked the effect GES at concentrations higher relative to GES. The inhibitory effect of GES was still present during spermidine-induced stimulation of [3H]dizocilpine binding. GES reduced the binding of the glycine antagonist [3H]5,7-dichlorokynurenic acid with an IC50 of 530 M.. Intraperitoneal injections of GES (0.2mmol/kg) protected against both amnesia and decrease in the choline acetyltransferase activity following local injections of the neurotoxin AF64A into the nucleus basalis magnocellularis. GES given to lesioned rats during the training period in the spatial learning task gradually improved the performance to the level of sham operated rats. It is concluded that GES interferes with the transmitter and the dizocilpine binding sites of the NMDA receptor complex and has the capacity to protect against neurotoxic brain damage.  相似文献   

11.
Chronic exposure of dissociated cerebellar cultures to 50M kainate results in a complete loss of [3H]-GABA release which is a marker of GABAergic interneurons. No loss of granule cells was found and the glutamatergic nature of the granule cells appeared unaltered by the kainate treatment, since evoked release of [3H]-d-aspartate was maintained after kainate exposure. Glial cells in such cultures are virtually eliminated by treatment with an antimitotic such as cytarabin. In consequence a pure culture of cerebellar granule cells virtually free of stellate, basket and glial cells may be obtained by a combined chronic treatment of the cultures with kainate and cytarabin.  相似文献   

12.
In the normal C57BL/6J male mouse a specific subset of the kidney glycosphingolipids which is associated with multilamellar bodies of lysosomal origin and represents about 10% of the total kidney glycolipids, is excreted into the urine each day. This excretion is blocked and glycosphingolipids accumulate in the kidney of bg J/bgJ mutants of this strain. To examine this process in vitro, glycosphingolipid metabolism and excretion were studied in beige mouse kidney cell cultures. Primary kidney cell cultures from male C57BL/6J control and bg J/bg J beige mutants were grown in D-valine medium and glycosphingolipids labeled with [3H]palmitate. As we have shown previously, the giant lysosomes of altered morphology were maintained in cultures of the beige kidney cells. Beige-J and control cells synthesized the same types of glycosphingolipids, but the mutant cells had quantitatively higher levels of these compounds than control cells, as determined by high performance liquid chromatography. Beige-J cells incorporated more [3H]palmitate into glycospingholipids than control cells on a cpm/mg protein basis and the specific activity (cpm/pmole glycosphingolipid) was lower in beige cells. Medium from beige-J cells accumulated more glycosphingolipids than that from control cells in a 24 h period. The glycosphingolipids released into the medium as determined by HPLC were primarily non-lysosomal types and both control and mutant cells retained the glycosphingolipids associated with lysosomal multilamellar bodies excreted in vivo. The elevated levels of lysosomal glycosphingolipids and the dysmorphic lysosomes in primary cultures of beige cells, then, are not caused by a mutant block in secretion of lysosomes. (Mol Cell Biochem 118: 61–66, 1992)  相似文献   

13.
Summary The histogenesis of the dorsal root ganglia of chick embryos (ages 3 to 9 days) was followed in three different tissue culture systems. Organotypic explants included dorsal root ganglia connected to the lumbosacral segment of the spinal cord or isolated explants of the contralateral ganglia. Additionally, dissociated monolayer cultures of ganglia tissue were established. The gradual differentiation of progenitor neuroblasts into distinct populations of large ventrolateral and small dorsomedial neurons was observed in vivo and in vitro. Neurites developed after 3 days in the presence or absence of nerve growth factor in the medium. In contrast, autoradiographic analysis indicates that [3H]thymidine incorporation in neuronal cultures differed significantly from intact embryos. In vivo, the number of neuronal progenitor cells labeled with [3H]thymidine decreased in older embryos; in vitro, uptake of [3H]thymidine label was not observed in ganglionic progenitor cells regardless of the age of the donor embryo or the type of culture system. Lack of proliferation in ganglionic progenitor cells was not due to degeneration because vital staining and uptake of [3H]deoxyglucose indicated that neurons were metabolically active. Furthermore, the block in mitotic activity in vitro was limited to presumptive ganglionic neuronal cells. In the ependyma of the spinal cord segment connected to the dorsal root ganglia, neuronal progenitor cells were heavily labeled as were non-neuronal cells within both spinal cord and ganglia. Our results suggest that in vitro conditions can promote the differentiation of sensory neurons from early embryos (E3.5–4.5) without proliferation of progenitor cells.  相似文献   

14.
The serotonin (5-HT) transporter from calf striatum cerebral membranes was solubilized with digitonin and characterized by gel exclusion chromatography. [3H]Imipramine and [3H]paroxetine were utilized as markers for labeling it.3H-imipramine labels a high- and a low-affinity site on striaturn membranes, whereas it binds to a single high-affinity site on the solubilized fraction. [3H]Paroxetine binds with the same affinity to a single site on both membranes and solubilized preparations. After gel exclusion chromatography of the solubilizate both [3H]imipramine and [3H]paroxetine bind on an identical fraction of 205 kDa molecular weight, with a similar maximum number of binding sites (Bmax). Our results suggest that both3H-imipramine and [3H]paroxetine bind to a common site on the 5-HT transporter.  相似文献   

15.
1. The effects of chronic administration of antidepressants on dopamine-related [3H]SCH 23390 and [3H]spiperone binding to rat striatal membranes were assessed. 2. The monoamine oxidase inhibitors phenelzine (5 or 10 mg kg-1/day) and tranylcypromine (1 mg kg-1/day) and the tricyclic desipramine (10 mg kg-1/day) were administered for 28 days by constant subcutaneous infusion using Alzet (2ML4) osmotic minipumps. 3. These treatments did not alter Kd estimates for either [3H]SCH 23390 or [3H]spiperone binding sites. The monoamine oxidase inhibitors induced a decrease in the Bmax values for both [3H]SCH 23990 and [3H]spiperone binding sites. Desipramine induced a decrease in the Bmax value for [3H]SCH 23390 binding but had no effect on the Bmax value for [3H]spiperone binding.  相似文献   

16.
ABSTRACT

In Chinese Hamster Ovary (CHO) cells expressing cloned human 5-hydroxy-tryptamine1A (5-HT1A) receptors, (R)-3-N,N-dicyclobutylamino-8-fluoro-[6-3H]-3,4-dihydro-2H-1-benzopyran-5-carboxamide ([3H]NAD-299) exhibited high affinity (Kd = 0.16?nM) and labeled 34% more receptors than 8-hydroxy-2-([2,3-3H]di-n-propylamino)tetralin ([3H]8-OH-DPAT). NAD-299 behaved as a silent antagonist in [35S]GTPγS binding similar to N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide (WAY-100635) and (S)-5-fluoro-8-hydroxy-2-(di-n-propylamino)tetralin ((S)UH-301). 5-HT and 5-carboxamidotryptamine (5-CT) stimulated [35S]GTPγS binding 2.5-fold while spiperone and methiothepin inhibited [35S]GTPγS binding 1.4-fold. Furthermore, NAD-299 antagonised both the 5-HT stimulated and the spiperone inhibited [35S]GTPγS binding to basal levels. The KiL/KiH ratios for spiperone (0.66), methiothepin (0.39), WAY-100635 (0.32), (S)UH-301 (0.94), NAD-299 (1.29), NAN-190 (1.23), (S)pindolol (5.85), ipsapirone (13.1), buspirone (24.6), (±)8-OH-DPAT (47.3), flesinoxan (55.8), 5-HT (200) and 5-CT (389) correlated highly significantly with the intrinsic activity obtained with [35S] GTPγS (r = 0.97).  相似文献   

17.
Summary

The metabolism of [3H]ecdysone was examined in 3 species of annelids: the bloodworm, Tubifex vulgaris (a freshwater oligochaete), the earthworm, Lumbricus terrestris (a terrestrial oligochaete) and the ragworm, Nereis divtrsicolor (a marine polychaete). One of these species, N. diversicolor, metabolised injected [3H]ecdysone into compounds which co-chromatographed on both reversed-phase and adsorption HPLC with authentic 20-hydroxyecdysone, 26-hydroxyecdysone and 20,26-dihydroxyecdysone, thus demonstrating the occurrence of 20-hydroxylation and 26-hydroxylation capability in the Annelida. Furthermore, [3H]ecdysonoic acid was also formed and excreted by N. diversicolor, suggesting that 26-oic acid formation is involved in ecdysteroid inactivation in this species. Other, as yet unidentified, radioactive metabolites were also excreted by N. diversicolor. Several metabolites of [3H]ecdysone were also detected in the other 2 species examined, T. vulgaris and L. terrestris.  相似文献   

18.
Schwann cells (SCs) are hitherto regarded as the most promising candidates for viable cell-based therapy to peripheral nervous system (PNS) injuries or degenerative diseases. However, the extreme drawbacks of transplanting autologous SCs for clinical applications still represent a significant bottleneck in neural regenerative medicine, mainly owing to the need of sacrificing a functional nerve to generate autologous SCs and the nature of slow expansion of the SCs. Thus, it is of great importance to establish an alternative cell system for the generation of sufficient SCs. Here, we demonstrated that adipose-derived stem cells (ADSCs) of rat robustly give rise to morphological, phenotypic and functional SCs using an optimized protocol. After undergoing a 3-week in vitro differentiation, almost all of treated ADSCs exhibited spindle shaped morphology similar to genuine SCs and expressed SC markers GFAP and S100. Most importantly, apart from acquisition of SC antigenic and biochemical features, the ADSC-derived SCs were functionally identical to native SCs as they possess a potential ability to form myelin, and secret nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glia-derived neurotrophic factor (GDNF). The current study may provide an ideal strategy for harvesting sufficient SCs for cell-based treatment of various peripheral nerve injuries or disorders.  相似文献   

19.
Amine transporters are major target for development of various pharmacological agents to treat behavioral disorders. Serotonin transporters (SERT) have been implicated in the etiology of depression and drugs acting on SERT can be effective in treating depression. The aim of the present study was to study the in vivo effect of various antidepressants on [3H]paroxetine binding to SERT in regions of rat brain. Rats were treated with tricyclic antidepressant (TCAs) such as amitriptyline (AMI), serotonin/norepinephrine reuptake inhibitor (SNRIs) such as clomipramine (CMI), and selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLX) and citalopram (CIT) (10 mg/kg body wt.) for 30 days. Density of SERT was measured in cortex and hippocampus using [3H]paroxetine (0.03–1.0 nM) in presence and absence of 10 μM fluoxetine as displacer. It was observed that the density of cortical SERT was significantly decreased with CMI (68%, P < 0.0001), FLX (67%, P < 0.0001), CIT (54%, P < 0.0001), and AMI (52%, P < 0.0001) treatment, when compared to the density of 120.7 ± 4.0 fmol/mg protein in control rats, without altering the affinity (Kd) of [3H]paroxetine to the transporters. The density of SERT in hippocampus was also significantly decreased with FLX (65%, P < 0.0001), CMI (54%, P < 0.0001), CIT (52%, P < 0.0001) and AMI (46%, P < 0.0001) treatment, when compared to the density of 74.0 ± 2.6 fmol/mg protein in control rats, without altering the affinity of [3H]paroxetine to the transporters. Displacement study showed high affinity for CMI > CIT > FLX. The results suggest that chronic antidepressant treatment significantly down-regulates both cortical and hippocampal SERT in rat brain and SSRIs have high affinity for SERT than TCAs.  相似文献   

20.
The density and functional activity of theN-methyl-D-aspartate (NMDA)-sensitive glutamate receptor was examined in various brain areas of 3-, 18- and 24-month-old rats. The total numbers of binding sites for the NMDA receptor antagonists [3H]CGP 39653 and [3H]MK 801 binding sites were decreased in the hippocampus, cerebral cortex and striatum of 18- and 24-month-old rats, relative to 3-month-old animals. In the hippocampus of 18-month-old rats, the reduced number of NMDA receptors was associated with an increased sensitivity of [3H]MK 801 binding to the stimulatory action of glycine and glutamate. Thus, 10 M glycine and 10 M glutamate increased [3H]MK 801 binding in the hippocampus of 18-month-old rats by 75 and 160%, respectively; in 3-month-old animals, the same concentration of these amino acids increased binding by 37 and 95%, respectively. The sensitivity of [3H]MK 801 binding to glycine and glutamate was not increased in the cerebral cortex and striatum of aged rats. Moreover, an increased efficacy of glycine and glutamate in stimulating the binding of [3H]MK 801 in the hippocampus was no longer apparent in the 24-month-old rats. The increased sensitivity of [3H]MK 801 binding to glycine and glutamate in the hippocampus of 18-month-old rats may reflect an increase in NMDA receptor activity to compensate for the decrease in receptor number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号