首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Saha T  Usdin K 《FEBS letters》2001,491(3):184-187
The repeat expansion diseases are a group of genetic disorders resulting from an increase in size or expansion of a specific array of tandem repeats. It has been suggested that DNA secondary structures are responsible for this expansion. If this is so, we would expect that all unstable repeats should form such structures. We show here that the unstable repeat that causes progressive myoclonus epilepsy type-1 (EPM1), like the repeats associated with other diseases in this category, forms a variety of secondary structures. However, EPM1 is unique in that tetraplexes are the only structures likely to form in long unpaired repeat tracts under physiological conditions.  相似文献   

3.
4.
Spinocerebellar ataxia 7 (SCA7) is a progressive autosomal dominant neurodegenerative disorder characterized clinically by cerebellar ataxia associated with progressive macular dystrophy. The disease affects primarily the cerebellum and the retina, but also many other CNS structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat encoding a polyglutamine tract in the corresponding protein, ataxin-7. Normal SCA7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36-306 CAG repeats. SCA7 has a number of features in common with other diseases with polyglutamine expansions: (i) the appearance of clinical symptoms above a threshold number of CAG repeats (>35); (ii) a correlation between the size of the expansion and the rate of progression of the disease: the larger the repeat, the faster the progression; (iii) instability of the repeat sequence (approximately 12 CAG/transmission) that accounts for the marked anticipation of approximately 20 years/generation. The CAG repeat sequence is particularly unstable and de novo mutations can occur during paternal transmissions of intermediate size alleles (28-35 CAG repeats). This can explain the persistence of the disease in spite of the anticipation that should have resulted in its extinction.  相似文献   

5.
The secondary structure of DNA has been shown to be an important component in the mechanism of expansion of the trinucleotide repeats that are associated with many neurodegenerative disorders. Recently, expansion of a dodecamer repeat, (CCCCGCCCCGCG)n upstream of cystatin B gene has been shown to be the most common mutation associated with Progressive Myoclonus Epilepsy (EPM1) of Unverricht-Lundborg type. We have investigated structure of oligonucleotides containing one, two and three copies of the EPM1 repeat sequences at physiological pH. CD spectra and anomalous faster gel electrophoretic mobilty indicates formation of intramolecularly folded structures that are formed independent of concentration. Hydroxylamine probing allowed us to identify the C residues that are involved in C.G base pairing. P1 nuclease studies elucidated the presence of unpaired regions in the folded back structures. UV melting studies show biphasic melting curves for the oligonucleotides containing two and three EPM1 repeats. Our data suggests multiple hairpin structures for two and three repeat containing oligonucleotides. In this paper we show that oligonucleotides containing EPM1 repeat adopt secondary structures that may facilitate strand slippage thereby causing the expansion.  相似文献   

6.
Sofola OA  Jin P  Qin Y  Duan R  Liu H  de Haro M  Nelson DL  Botas J 《Neuron》2007,55(4):565-571
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a recently described neurodegenerative disorder of older adult carriers of premutation alleles (60-200 CGG repeats) in the fragile X mental retardation gene (FMR1). It has been proposed that FXTAS is an RNA-mediated neurodegenerative disease caused by the titration of RNA-binding proteins by the CGG repeats. To test this hypothesis, we utilize a transgenic Drosophila model of FXTAS that expresses a premutation-length repeat (90 CGG repeats) from the 5' UTR of the human FMR1 gene and displays neuronal degeneration. Here, we show that overexpression of RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppresses the phenotype of the CGG transgenic fly. Furthermore, we show that hnRNP A2/B1 directly interacts with riboCGG repeats and that the CUGBP1 protein interacts with the riboCGG repeats via hnRNP A2/B1.  相似文献   

7.
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare autosomal dominant neurodegenerative disease characterized by various combinations of ataxia, choreoathetosis, myoclonus, epilepsy and dementia as well as various ages of onset. We have identified a specific unstable trinucleotide repeat expansion in a gene on the short arm of chromosome 12 as the pathogenic mutation for DRPLA. We investigated how the degree of the expansion of the CAG repeat affects the clinical manifestations of DRPLA. The sizes of the expanded alleles were well correlated with the ages of onset (r = −0.6955, P < 0.001). Patients with progressive myoclonus epilepsy (PME) phenotype had larger expansions (62–79 repeats) and earlier ages of onset (onset before age 20). Furthermore, most of the patients with PME phenotype inherited their expanded alleles from their affected fathers. On the other hand, patients with non-PME phenotype showed later ages of onset (onset after age 20) and smaller expansions (54–67 repeats). When ages of onset of each clinical symptom are compared with sizes of the CAG repeat, there is again a remarkably high correlation of the sizes of CAG repeat with each of the clinical symptoms. Thus the wide variation in clinical manifestations of DRPLA can now be clearly explained based on the degree of CAG repeat expansion, which strongly indicates that the expanded alleles are intimately involved in the neuronal degeneration in dentatofugal and pallidofugal systems.  相似文献   

8.
Progressive myoclonus epilepsy (EPM1) is an autosomal recessive disorder, characterized by severe, stimulus-sensitive myoclonus and tonic-clonic seizures. The EPM1 locus was mapped to within 0.3 cM from PFKL in chromosome 21q22.3. The gene for the proteinase inhibitor cystatin B was recently localized in the EPM1 critical region, and mutations were identified in two EPM1 families. We have identified six nucleotide changes in the cystatin B gene of non-Finnish EPM1 families from northern Africa and Europe. The 426G-->C change in exon 1 results in a Gly4Arg substitution and is the first missense mutation described that is associated with EPM1. Molecular modeling predicts that this substitution severely affects the contact of cystatin B with papain. Mutations in the invariant AG dinucleotides of the acceptor sites of introns 1 and 2 probably result in abnormal splicing. A deletion of two nucleotides in exon 3 produces a frameshift and truncates the protein. Therefore, these four mutations are all predicted to impair the production of functional protein. These mutations were found in 7 of the 29 unrelated EPM1 patients analyzed, in homozygosity in 1, and in heterozygosity in the others. The remaining two sequence changes, 431G-->T and 2575A-->G, probably represent polymorphic variants. In addition, a tandem repeat in the 5' UTR (CCCCGCCCCGCG) is present two or three times in normal alleles. It is peculiar that in the majority of patients no mutations exist within the exons and splice sites of the cystatin B gene.  相似文献   

9.
Dynamic mutations in human genes result from unstable trinucleotide repeats embedded within the transcribed region. The changeable nature of these mutations from generation to generation is in contrast to the static inheritance of other single-gene mutational events, e.g. point mutations, deletions, insertions and inversions, typically associated with Mendelian inheritance patterns. Intergenerational instability of dynamic mutations within families has provided an explanation for the genetic anticipation, leading to increasing severity or earlier age of onset in successive generations, associated with certain inherited disorders. While models for genomic instability presume that trinucleotide repeat expansion results from disruption of the DNA replication process, experimental evidence has not yet been obtained in support of this contention. Nevertheless, examples of unstable trinucleotide repeats continue to increase, although not all are associated with a specific phenotype. Five disorders resulting from small-scale expansions of CAG repeats within the protein-coding region are known: spinobulbar muscular atrophy, Huntington’s disease, spinocerebellar ataxia type 1, dentatorubral-pallidoluysian atrophy (DRPLA) and Machado-Joseph disease. A sixth disorder, Haw River syndrome, is allelic to DRPLA. Five folate-sensitive chromosomal fragile sites characterized to date, viz. FRAXA, FRAXE, FRAXF, FRA11B and FRA16A, all have large-scale CGG repeat expansion. Two disorders, fragile X syndrome and FRAXE mental retardation, result from instability of CGG repeats in the 5’ untranslated region ofFMR1 andF M R2 genes respectively. FRA11B lies close to chromosome 1 1q deletion endpoints in many Jacobsen syndrome patients and may be related to the deletion event producing partial aneuploidy for 1lq. Expansion of FRAXF and FRA16A has not been associated with a phenotype. Myotonic dystrophy results from a large-scale CTG expansion in the 3’ untranslated region of the myotonin protein kinase gene while Friedreich’s ataxia has recently been found to have a large-scale GAA repeat in the first intron ofX25. This article reviews the characteristics of trinucleotide repeat disorders and summarizes current understanding of the molecular pathophysiology.  相似文献   

10.
Larger CAG/CTG trinucleotide-repeat tracts in individuals affected with schizophrenia (SCZ) and bipolar affective disorder (BPAD) in comparison with control individuals have previously been reported, implying a possible etiological role for trinucleotide repeats in these diseases. Two unstable CAG/CTG repeats, SEF2-1B and ERDA1, have recently been cloned, and studies indicate that the majority of individuals with large repeats as detected by repeat-expansion detection (RED) have large repeat alleles at these loci. These repeats do not show association of large alleles with either BPAD or SCZ. Using RED, we have identified a BPAD individual with a very large CAG/CTG repeat that is not due to expansion at SEF2-1B or ERDA1. From this individual's DNA, we have cloned a highly polymorphic trinucleotide repeat consisting of (CTA)n (CTG)n, which is very long ( approximately 1,800 bp) in this patient. The repeat region localizes to chromosome 13q21, within 1.2 cM of fragile site FRA13C. Repeat alleles in our sample were unstable in 13 (5.6%) of 231 meioses. Large alleles (>100 repeats) were observed in 14 (1. 25%) of 1,120 patients with psychosis, borderline personality disorder, or juvenile-onset depression and in 5 (.7%) of 710 healthy controls. Very large alleles were also detected for Centre d'Etude Polymorphisme Humaine (CEPH) reference family 1334. This triplet expansion has recently been reported to be the cause of spinocerebellar ataxia type 8 (SCA8); however, none of our large alleles above the disease threshold occurred in individuals either affected by SCA or with known family history of SCA. The high frequency of large alleles at this locus is inconsistent with the much rarer occurrence of SCA8. Thus, it seems unlikely that expansion alone causes SCA8; other genetic mechanisms may be necessary to explain SCA8 etiology.  相似文献   

11.
Fragile X syndrome results from mutations in a (CGG)n repeat found in the coding sequence of the FMR-1 gene. Analysis of length variation in this region in normal individuals shows a range of allele sizes varying from a low of 6 to a high of 54 repeats. Premutations showing no phenotypic effect in fragile X families range in size from 52 to over 200 repeats. All alleles with greater than 52 repeats, including those identified in a normal family, are meiotically unstable with a mutation frequency of one, while 75 meioses of alleles of 46 repeats and below have shown no mutation. Premutation alleles are also mitotically unstable as mosaicism is observed. The risk of expansion during oogenesis to the full mutation associated with mental retardation increases with the number of repeats, and this variation in risk accounts for the Sherman paradox.  相似文献   

12.
Friedreich ataxia is an autosomal recessive neurodegenerative disorder associated with a GAA repeat expansion in the first intron of the gene (FRDA) encoding a novel, highly conserved, 210 amino acid protein known as frataxin. Normal variation in repeat size was determined by analysis of more than 600 DNA samples from seven human populations. This analysis showed that the most frequent allele had nine GAA repeats, and no alleles with fewer than five GAA repeats were found. The European and Syrian populations had the highest percentage of alleles with 10 or more GAA repeats, while the Papua New Guinea population did not have any alleles carrying more than 10 GAA repeats. The distributions of repeat sizes in the European, Syrian, and African American populations were significantly different from those in the Asian and Papua New Guinea populations (p < 0.001). The GAA repeat size was also determined in five nonhuman primates. Samples from 10 chimpanzees, 3 orangutans, 1 gorilla, 1 rhesus macaque, 1 mangabey, and 1 tamarin were analyzed. Among those primates belonging to the Pongidae family, the chimpanzees were found to carry three or four GAA repeats, the orangutans had four or five GAA repeats, and the gorilla carried three GAA repeats. In primates belonging to the Cercopithecidae family, three GAA repeats were found in the mangabey and two in the rhesus macaque. However, an AluY subfamily member inserted in the poly(A) tract preceding the GAA repeat region in the rhesus macaque, making the amplified sequence approximately 300 bp longer. The GAA repeat was also found in the tamarin, suggesting that it arose at least 40 million years ago and remained relatively small throughout the majority of primate evolution, with a punctuated expansion in the human genome. Received: 18 August 2000 / Accepted: 10 November 2000  相似文献   

13.
Cystatin B (CSTB) is an anti-protease frequently mutated in progressive myoclonus epilepsy (EPM1), a devastating degenerative disease. This work shows that rat CSTB is an unstable protein that undergoes structural changes following the interaction with a chaperone, either prokaryotic or eukaryotic. Both the prokaryotic DnaK and eukaryotic HSP70 promote CSTB polymerization. Denaturated CSTB is polymerized by the chaperone alone. Native CSTB monomers are more stable than denatured monomers and require Cu2 + for chaperone-dependent polymerization. Cu2 + interacts with at least two conserved histidines, at positions 72 and 95 modifying the structure of native monomeric CSTB. Subsequently, CSTB becomes unstable and readily responds to the addition of DnaK or HSP70, generating polymers. This reaction depends strictly on the presence of this divalent metal ion and on the presence of one cysteine in the protein chain. The cysteine deletion mutant does not polymerize. We propose that Cu2 + modifies the redox environment of the protein, allowing the oxidation of the cysteine residue of CSTB that triggers polymerization. These polymers are sensitive to reducing agents while polymers obtained from denatured CSTB monomers are DTT resistant. We propose that the Cu2 +/HSP70 dependent polymers are physiological and functional in eukaryotic cells. Furthermore, while monomeric CSTB has anti-protease function, it seems likely that polymeric CSTB fulfils different function(s).  相似文献   

14.
Expansion of trinucleotide repeat DNA of the classes CAG-CTG, CGG-CCG and GAA-TTC are found to be associated with several neurodegenerative disorders. Different mechanisms have been attributed to the expansion of triplets, mainly involving the formation of alternate secondary structures by such repeats. This paper reports the molecular dynamics simulation of triplet repeat DNA sequences to study the basic structural features of DNA that are responsible for the formation of structures such as hairpins and slip-strand DNA leading to expansion. All the triplet repeat sequences studied were found to be more flexible compared to the control sequence unassociated with disease. Moreover, flexibility was found to be in the order CAG-CTG > CGG-CCG approximately GAA-TTC, the highly flexible CAG-CTG repeat being the most common cause of neurodegenerative disorders. In another simulation, a single G-C to T-A mutation at the 9th position of the CAG-CTG repeat exhibited a reduction in bending compared to the pure 15-mer CAG-CTG repeat. EPM1 dodecamer repeat associated with the pathogenesis of progressive myoclonus epilepsy was also simulated and showed flexible nature suggesting a similar expansion mechanism.  相似文献   

15.
Friedreich ataxia is caused by expansion of a GAA triplet repeat (GAA-TR) in the FRDA gene. Normal alleles contain <30 triplets, and disease-causing expansions (66-1700 triplets) arise via hyperexpansion of premutations (30-65 triplets). To gain insight into GAA-TR instability we analyzed all triplet repeats in the human genome. We identified 988 (GAA)(8+) repeats, 291 with >or=20 triplets, including 29 potential premutations (30-62 triplets). Most other triplet repeats were restricted to <20 triplets. We estimated the expected frequency of (GAA)(6+) repeats to be negligible, further indicating that GAA-TRs have undergone significant expansion. Eighty-nine percent of (GAA)(8+) sequences map within G/A islands, and 58% map within the poly(A) tails of Alu elements. Only two other (GAA)(8+) sequences shared the central Alu location seen at the FRDA locus. One showed allelic variation, including expansions analogous to short Friedreich ataxia mutations. Our data demonstrate that GAA-TRs have expanded throughout primate evolution with the generation of potential premutation alleles at multiple loci.  相似文献   

16.
A substantial portion of the human genome has been found to consist of simple sequence repeats, including microsatellites and minisatellites. Microsatellites, tandem repeats of 1-6 nucleotides, form the template for dynamic mutations, which involve heritable changes in the lengths of repeat sequences. In recent years, a large number of human disorders have been found to be caused by dynamic mutations, the most common of which are trinucleotide repeat expansion diseases. Dynamic mutations are common to numerous nervous system disorders, including Huntington's disease, various spinocerebellar ataxias, fragile X syndrome, fragile X tremor/ataxia syndrome, Friedreich ataxia and other neurodegenerative disorders. The involvement of dynamic mutations in brain disorders will be reviewed, with a focus on the large group caused by CAG/glutamine repeat expansions. We will also outline a proposed role of tandem repeat polymorphisms (TRPs), with unique 'digital' genetic distributions, in modulating brain development and normal function, so as to generate additional mutational diversity upon which natural selection may act.  相似文献   

17.
Myotonic dystrophy type 1 (DM1), the most common form of adult muscular dystrophy, is caused by anormal expansion of CTG trinucleotide repeats located in the 3′-untranslated region of the DMPK gene. The clinical features of DM1 are multisystemic and highly variable, and the unstable nature of CTG expansion causes wide genotypic and phenotypic presentations. In this study, we described to our knowledge for the first time the molecular diagnosis of myotonic dystrophy type 1 patients in the Mexican population, applying a fluorescent PCR method in combination with capillary electrophoresis analysis of the amplified products. We identified expanded alleles in 45 out of 50 patients (90%) with clinical features of myotonic disease. Furthermore, genotyping of 400 healthy subjects revealed the presence of 25 different alleles, ranging in size from 5 to 34 repeats. The most frequent allele was 13 CTG repeats (38.87%) and the frequency for alleles over 18 CTG repeats was 6.7%. Molecular test is essential for DM1 diagnosis and distribution of the CTG repeat alleles present in the Mexican population are significantly different from those of other populations.  相似文献   

18.
19.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal, dominantly inherited neurodegenerative disease caused by an unstable CAG trinucleotide repeat expansion in the ataxin-1 gene located on chromosome 6p22-p23. The expanded CAG repeat is unstable during transmission, and a variation in the CAG repeat length has been found in different tissues, including sperm samples from affected males. In order further to examine the mitotic and meiotic instability of the (CAG)n stretch we have performed single sperm and low-copy genome analysis in SCA1 patients and asymptomatic carriers. A pronounced variation in the size of the expanded allele was found in sperm cells and peripheral blood leucocytes, with a higher degree of instability seen in the sperm cells, where an allele with 50 repeat units was contracted in 11.8%, further expanded in 63.5% and unchanged in 24.6% of the single sperm analysed. We found a low instability of the normal alleles; the normal alleles from the individuals carrying a CAG repeat expansion were significantly more unstable than the normal alleles from the control individuals (P<0.001), indicating an interallelic interaction between the expanded and the normal alleles. Received: 8 June 1998 / Accepted: 10 September 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号