首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell migration/proliferation processes associated with wound healing were measured in BeWo cells at 6 h, when mitosis is still scarce. Cells were cultured in medium with 1% fetal bovine serum to minimize proliferation. BeWo cell migration covered 20.6 ± 7.0%, 38.0 ± 5.4%, 16.6 ± 4.8% and 13.7 ± 3.6% of the wound when cultivated under control, aldosterone (100 nM, 12 h), aldosterone plus amiloride (10 μM) and amiloride treatments, respectively. When BeWo cells were treated with aldosterone, there was an increase in wound healing (P < 0.05), which was prevented by adding the ENaC blocker amiloride (P < 0.05, n = 16). Immunocytochemistry studies showed that the three ENaC subunits showed greater expression at the leading edge of the wound 3 h after injury, supporting the notion that these proteins participate in a postinjury signal. Antisense oligonucleotides directed against the α-ENaC subunit decreased the migratory response of the cells compared to the sense treated cells or the cells without oligonucleotides (P < 0.001, n = 16): 30.2 ± 3.7%, 17.6 ± 1.3%, 27.5 ± 1.5% and 20.2 ± 1.5% reinvasion of the wound with aldosterone, aldosterone plus antisense, aldosterone plus sense treatments and control conditions, respectively. Aldosterone and amiloride influence wound healing in BeWo cells, probably by their effects upon ENaCs, transmitting a signal to the cell cytoplasm for the release of several agents that promote cell migration.  相似文献   

2.
We used single channel methods on A6 renal cells to study the regulation by methylation reactions of epithelial sodium channels. 3-Deazaadenosine (3-DZA), a methyltransferase blocker, produced a 5-fold decrease in sodium transport and a 6-fold decrease in apical sodium channel activity by decreasing channel open probability (P(o)). 3-Deazaadenosine also blocked the increase in channel open probability associated with addition of aldosterone. Sodium channel activity in excised "inside-out" patches usually decreased within 1-2 min; in the presence of S-adenosyl-l-methionine (AdoMet), activity persisted for 5-8 min. Sodium channel mean time open (t(open)) before and after patch excision was higher in the presence of AdoMet than in untreated excised patches but less than t(open) in cell-attached patches. Sodium channel activity in excised patches exposed to both AdoMet and GTP usually remained stable for more than 10 min, and P(o) and the number of active channels per patch were close to values in cell-attached patches from untreated cells. These findings suggest that a methylation reaction contributes to the activity of epithelial sodium channels in A6 cells and is directed to some regulatory element closely connected with the channel, whose activity also depends on the presence of intracellular GTP.  相似文献   

3.
Aldosterone acts to increase apical membrane permeability by activation of epithelial Na(+) channels (ENaC). We have previously shown that aldosterone activates ENaC early in the course of its action by stimulating the methylation of the beta subunit of this heteromeric channel in A6 cells. Aldosterone also stimulates the expression and methylation of k-ras in A6 cells. To determine whether aldosterone-stimulated methylations are seen in mammalian cells, we examined the effect of aldosterone on methylation and ras activation in a continuous line of cultured epithelial cells derived from mouse cortical collecting duct (CCD) and determined that beta mENaC is a substrate for methylation by an enzyme contained in CCD cells. Aldosterone stimulated protein base labile methylation in CCD cells. Aldosterone stimulated Na(+) transport in CCD cells within 1 h of addition and without an increase in cellular amount of any ENaC subunits over the first 4 h. Inhibition of methylation, using the inhibitor 3-deaza-adenosine, blocked the stimulation of Na(+) transport induced by aldosterone at early time points (1-4 h) without affecting cellular amounts of any ENaC subunits. In contrast to 3-deaza-adenosine (3-DZA), which inhibits all methylation reactions, specific inhibitors of small G-protein methylation or prenylation had no effect on the early aldosterone-induced current. Overexpression of isoprenylcysteine carboxylmethyltransferase (PCMTase), the enzyme that methylates ras, had little effect on basal transport but enhanced aldosterone-stimulated transport in A6 cells. Overexpression of PCMTase in CCD cells had no effect on either basal or aldosterone-stimulated transport. Moreover PCMTase had no effect on ENaC activity when co-expressed in Xenopus oocytes. Aldosterone had no effect on either message or protein levels of k-ras in CCD cells. Searching a mouse kidney library, we identified a methyltransferase that stimulates ENaC activity in Xenopus oocytes without affecting surface expression of ENaC. Our results demonstrate that aldosterone stimulates protein methylation in CCD cells, and this is required for expression of the early transport response. In CCD cells this effect is not mediated via methylation of ras, which is not induced by aldosterone in these cells, and the enzyme that methylates ras has no direct effect on ENaC activity. beta ENaC is a substrate for methylation in CCD cells. A novel methyltransferase that stimulates ENaC directly has been identified in CCD cells.  相似文献   

4.
Due to an increasing life expectancy in western countries, chronic wound treatment will be an emerging challenge in the next decades. Because therapies are improving slowly appropriate diagnostic tools enabling the early prediction of the healing success remain to be developed. We used a well-established in vitro assay in combination with the analysis of 27 cytokines to discriminate between fibroblasts from chronic (n = 6) and well healing (n = 8) human wounds. Proliferation and migration of the cells as well as their response to hypoxia and their behaviour in co-culture with microvascular endothelial cells were analyzed. Myofibroblast differentiation, a time-limited essential process of regular wound healing, was also quantified. Besides weaker proliferation and migration significantly higher rates of myofibroblasts were detected in chronic wounds. With respect to the cytokine release, there was a clear trend within the group of chronic wound fibroblasts, which were releasing interferon-γ, monocyte chemotactic protein-1, granulocyte–macrophage colony stimulating factor and basic fibroblast growth factor in higher amounts than fibroblasts from healing wounds. Although the overall response of both groups of fibroblasts to hypoxia and to the contact with endothelial cells was similar, especially chronic wound fibroblasts seemed to benefit from the endothelial interaction during hypoxia and displayed better migration characteristics. The study shows (1) that the assay can identify specific features of fibroblasts derived from different human wounds and (2) that wound fibroblasts are varying in their response to the chosen parameters. Thus, current therapeutic approaches and individual healing prediction might benefit from this assay.  相似文献   

5.
6.
The A6 cell line was used to study the role ofS-adenosyl-L-homocysteine hydrolase (SAHHase) inthe aldosterone-induced activation of the epithelial Na+channel (ENaC). Because aldosterone increases methylation of severaldifferent molecules, and because this methylation is associated withincreased Na+ reabsorption, we tested the hypothesis thataldosterone increases the expression and activity of SAHHase protein.The rationale for this work is that general methylation may be promotedby activation of SAHHase, the only enzyme known to metabolize SAH, apotent end-product inhibitor of methylation. Although aldosteroneincreased SAHHase activity, steroid did not affect SAHHase expression.Antisense SAHHase oligonucleotide decreased SAHHaseexpression and activity. Moreover, this oligonucleotide, as well as apharmacological inhibitor of SAHHase, decreased aldosterone-inducedactivity of ENaC via a decrease in ENaC open probability. The kineticsof ENaC in cells treated with antisense plus aldosterone were similarto those reported previously for the channel in the absence of steroid. This is the first report showing that active SAHHase, in part, increases ENaC open probability by reducing the transition rate fromopen states in response to aldosterone. Thus aldosterone-induced SAHHase activity plays a critical role in shifting ENaC from a gatingmode with short open and closed times to one with longer open andclosed times.

  相似文献   

7.
Previous work from our laboratory and others has shown that, in some epithelia, the epithelial sodium channel (ENaC) increases its expression during wound healing. In these cases, inhibition of the channel determines a decrease in the healing rate, a result suggesting a role for ENaC in the overall healing process. To understand further this role of ENaC in epithelia, we explored the participation of ENaC in wound healing in four cultured epithelial cell lines selected on the basis of their different embryonic origins, function and modality of healing, i.e., by lamellipodial cell crawling or by actin cable formation. Three of the cell lines (bovine corneal endothelial cells, rabbit corneal epithelial cells and Madin-Darby canine kidney cells) exhibited an increase in ENaC expression and consequent membrane potential depolarization and an increase in cytosolic sodium and calcium, whereas one line (bovine aortal endothelial cells, BAEC) did not exhibit any of these changes. In all of the cell lines, however, ENaC inhibition determined a similar decrease in the rate of wound healing. In BAEC monolayers, the increase in ENaC activity produced plasma membrane depolarization, increased cytosolic sodium and calcium, and augmented the velocity of healing. These novel findings contribute to the idea that ENaC plays a critical role in wound healing in various epithelia, independently of the modality of healing and of any increase in the expression of the channel.  相似文献   

8.
Growth factors are the key elements in wound healing signaling for cell migration, differentiation and proliferation. Platelet-rich plasma (PRP), one of the most studied sources of growth factors, has demonstrated to promote wound healing in vitro and in vivo. Adipose tissue is an alternative source of growth factors. Through a simple lipoaspirate method, adipose derived growth factor-rich preparation (adipose tissue extract; ATE) can be obtained. The authors set out to compare the effects of these two growth factor sources in cell proliferation and migration (scratch) assays of keratinocyte, fibroblast, endothelial and adipose derived stem cells. Growth factors involved in wound healing were measured: keratinocyte growth factor, epidermal growth factor, insulin-like growth factor, interleukin 6, platelet-derived growth factor beta, tumor necrosis factor alfa, transforming growth factor beta and vascular endothelial growth factor. PRP showed higher growth factor concentrations, except for keratinocyte growth factor, that was present in adipose tissue in greater quantities. This was reflected in vitro, where ATE significantly induced proliferation of keratinocytes at day 6 (p < 0.001), compared to plasma and control. Similarly, ATE-treated fibroblast and adipose stem cell cultures showed accelerated migration in scratch assays. Moreover, both sources showed accelerated keratinocyte migration. Adipose tissue preparation has an inductive effect in wound healing by proliferation and migration of cells involved in wound closure. Adipose tissue preparation appears to offer the distinct advantage of containing the adequate quantities of growth factors that induce cell activation, proliferation and migration, particularly in the early phase of wound healing.  相似文献   

9.
Selenoprotein K (SelK), a member of selenoprotein family, is identified as a single endoplasmic reticulum (ER) transmembrane protein. Although over-expression of SelK inhibits adherence and migration of human gastric cancer BGC-823 cells, the effects of SelK in human choriocarcinoma (CCA) are not well understood. In this study, the expression levels of SelK in three CCA cell lines, BeWo, JEG-3, and JAR, were examined. The effects of silencing or over-expressing SelK on expression of human chorionic gonadotropin beta subunit (β-hCG) were detected by western blotting. The results show that the protein level of β-hCG was reciprocally regulated by down- or up-regulation of SelK (*P < 0.05; #P < 0.05). The proliferative, migratory, and invasive capabilities of JEG-3 cells with reduced or over-expressed SelK were then tested using the cell counting kit-8 (CCK-8), wound healing, and transwell chamber assays. We found that these cellular activities were markedly increased by the loss of SelK in JEG-3 cells. Conversely, over-expressing SelK in JEG-3 cells suppressed these phenotypes. In addition, SelK expression after down- or up-regulation of β-hCG was also measured. Surprisingly, we found that level of SelK was affected by β-hCG (*P < 0.05; #P < 0.05). The proliferation, migration, and invasion were determined in JEG-3 cells after each over-expression and reduction of β-hCG. The results confirmed that β-hCG functions as a promoter of human choriocarcinoma. Furthermore, ERK/p38 MAPK and Akt signaling pathways were found to involve in these cellular functions. This work suggests that SelK may act as a tumor suppressor in human choriocarcinoma cells by negatively regulating β-hCG expression via ERK, p38 MAPK, and Akt signaling pathways. These findings revealed that selenoprotein K may serve as a novel target for human choriocarcinoma therapy in vitro.  相似文献   

10.
Nongenomic regulation of ENaC by aldosterone   总被引:1,自引:0,他引:1  
Aldosterone isinvolved in salt and water homeostasis. The main effect is thought toinvolve genomic mechanisms. However, the existence of plasma membranesteroid receptors has been postulated. We used whole cell patch clampto test the hypothesis that epithelial sodium channels (ENaC) expressedby renal collecting duct principal cells can be regulatednongenomically by aldosterone. In freshly isolated principal cells fromrabbit, aldosterone (100 nM) rapidly (<2 min) increased ENaC sodiumcurrent specifically. The aldosterone-activated current was completelyinhibited by amiloride. Aldosterone also activated ENaC in cellstreated with the mineralocorticoid receptor blocker spiranolactone.Nongenomic activation was inhibited by inclusion ofS-adenosyl-L-homocysteine in the pipettesolution, which inhibits methylation reactions. Also, the nongenomicactivation required 2 mM ATP supplementation in the pipette solution.Aldosterone did not activate any ENaC current in whole cell clamped ratcollecting duct principal cells. These functional studies areconsistent with aldosterone membrane binding studies, suggesting thepresence of a plasma membrane steroid receptor that affects cellularprocesses by mechanisms unrelated to altered gene expression.

  相似文献   

11.
The current study was undertaken to correlate post‐translational protein modification by methylation with the functionality of enzymes involved in trehalose metabolism in Saccharomyces cerevisiae. Trehalose is an economically important disaccharide providing protection against various kinds of stresses. It also acts as a source of cellular energy by storing glucose. Methyl group donor S‐adenosyl L ‐methionine (AdoMet) and methylation inhibitor‐oxidized adenosine (AdOx) were used for the methylation study. AdoMet delayed initial growth of the cells but the overall growth rate remained same suggesting its interference in G1 phase of the cell cycle. Metabolic‐altered enzyme activities of acid trehalase (AT), neutral trehalase (NT), and trehalose‐6‐phosphate synthase (TPS) were observed when treated with AdOx and AdoMet separately. A positive effect of methylation was observed in TPS, hence, it was purified in three different conditions, using AdoMet, AdOx, and control. Differences in mobility of methylated, methylation‐inhibited, and control TPS during acidic native gel electrophoresis confirmed the occurrence of induced methylation. Hydrolysis under alkaline pH conditions revealed that methylation of TPS was different than O‐methylation. MALDI‐TOF analysis of trypsin‐digested samples of purified methylated, methylation‐inhibited, and control TPS revealed that an increase of 18 Da mass in methylated peptides suggesting the introduction of methyl ester in TPS. Results of amino acid analysis corroborated the presence of methyl cysteine. The data presented here strongly suggests that trehalose production was enhanced due to methylation of TPS arising from carboxymethylation of cysteine residues. J. Cell. Physiol. 226: 158–164, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Aldosterone-induced increases in apical membrane epithelial sodium channel (ENaC) density and Na transport involve the induction of 14-3-3 protein expression and their association with Nedd4-2, a substrate of serum- and glucocorticoid-induced kinase (SGK1)-mediated phosphorylation. A search for other 14-3-3 binding proteins in aldosterone-treated cortical collecting duct (CCD) cells identified the Rab-GAP, AS160, an Akt/PKB substrate whose phosphorylation contributes to the recruitment of GLUT4 transporters to adipocyte plasma membranes in response to insulin. In CCD epithelia, aldosterone (10 nM, 24 h) increased AS160 protein expression threefold, with a time-course similar to increases in SGK1 expression. In the absence of aldosterone, AS160 overexpression increased total ENaC expression 2.5-fold but did not increase apical membrane ENaC or amiloride-sensitive Na current (Isc). In AS160 overexpressing epithelia, however, aldosterone increased apical ENaC and Isc 2.5-fold relative to aldosterone alone, thus recruiting the accumulated ENaC to the apical membrane. Conversely, AS160 knockdown increased apical membrane ENaC and Isc under basal conditions to ∼80% of aldosterone-stimulated values, attenuating further steroid effects. Aldosterone induced AS160 phosphorylation at five sites, predominantly at the SGK1 sites T568 and S751, and evoked AS160 binding to the steroid-induced 14-3-3 isoforms, β and ε. AS160 mutations at SGK1 phospho-sites blocked its selective interaction with 14-3-3β and ε and suppressed the ability of expressed AS160 to augment aldosterone action. These findings indicate that the Rab protein regulator, AS160, stabilizes ENaC in a regulated intracellular compartment under basal conditions, and that aldosterone/SGK1-dependent AS160 phosphorylation permits ENaC forward trafficking to the apical membrane to augment Na absorption.  相似文献   

13.
Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel?-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels, and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110 % increase in cell proliferation relative to basal conditions (~51 % without heparin). 2.62 pM VEGF-A165 induced a three-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ~1.3-fold increased average rate of endothelial wound healing 4–18 h after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 h following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury.  相似文献   

14.
Cell motility is a crucial component involved in wound healing, development, and tumor metastasis. This study investigated whether extracellular annexins, members of a calcium- and phospholipid-binding family of proteins, play a role in the migration of Lewis lung carcinoma cells. Using assays for wound closure and migration through 8-μm pores, it was found that annexins II and V significantly (>40%) inhibited migration of these highly metastatic cells. Additionally, anti-annexin II antibodies enhanced migration of these same cells in the wound closure assay, while an irrelevant antibody (anti-calmodulin) showed no effect. These effects may be due to annexin–membrane binding and inhibition of phospholipid movement that is necessary for the formation of membrane protrusions.  相似文献   

15.
目的:通过建立表达不同高低水平miRNA-194的骨肉瘤细胞系,研究和探测miRNA-194对于骨肉瘤细胞转移特性的影响和作用。为进一步研究miRNA-194作为生物治疗的新靶点提供理论依据。方法:使用慢病毒技术,对骨肉瘤细胞进行转染和筛选,获得表达不同高低水平miRNA-194的骨肉瘤细胞系并进行分组。通过Transwell实验,划痕实验对miRNA-194在骨肉瘤中的作用进行探索。结果:1)慢病毒转染及筛选成功,获得表达不同高低水平miRNA-194的骨肉瘤细胞系;2)transwell迁移及侵袭实验中,miRNA-194过表达组的迁移(28.60±4.36)及侵袭(21.25±6.42)能力都显著的小于其余各组,相应的,miRNA-194沉默表达组(132.60±15.64;115.76±11.38)则高于其余各组。划痕实验结果显示,miRNA能够显著的抑制骨肉瘤细胞SOSP-9607的划痕愈合能力(P0.01)。结论:miR-194能够对骨肉瘤细胞SOSP-9607的转移起到明确的抑制作用。MiRNA-194有望成为骨肉瘤转移与治疗的新靶点。  相似文献   

16.
TGF-β plays an important role in skin wound healing process, in which Smad3 acts as a signaling molecule. Smad3 knockout mice exhibit enhanced wound healing and less inflammatory process, but the intrinsic properties of the mouse derived skin cells are generally unexplored. The purpose of this study is to characterize the biological behavior of skin cells derived from Smad3 knockout mice and thus to define the mechanism of this particular wound healing process. Keratinocytes and dermal fibroblasts were harvested from the skin of Smad3 knockout (Smad3 KO) and wild-type (WT) mice and in vitro cultured for one and two passages for various experiments. The results showed that KO mouse serum contained significantly higher levels of TGF-β1 and lower level of IL-6 and IL-10 than WT mouse serum (p < 0.05), which were also supported by the same findings of more TGF-β1 and less IL-6 and IL-10 in the supernatant of cultured KO dermal fibroblasts than those of WT cells (p < 0.05). At gene levels, IL-6, IL-10, and TGF-β1 were significantly less expressed in KO fibroblasts than in WT fibroblasts (p < 0.05). In addition, KO dermal fibroblasts also exhibited stronger migration and proliferation potentials than WT fibroblasts (p < 0.05). Moreover, both KO fibroblasts and keratinocytes showed higher colony-forming efficiency than WT counterparts with significant difference (p < 0.05). These findings indicate that both systemic factors and intrinsic properties of skin cells contribute to enhanced wound healing and less inflammatory reaction observed in Smad3 knock-out mice.  相似文献   

17.
Effect of a potent methylation inhibitor oxidized adenosine (Adox), and a universal methyl group donor S-adenosyl-L-methionine (AdoMet) on trehalose metabolism was studied in two haploids of S. cerevisiae of mating types MATalpha, met3 (6460 -8D) and MATa, leu2, ura3, his4 (8534 -10A). Trehalose level decreased in presence of Adox in both strains. Both neutral trehalase (NT) and trehalose-6-phosphate (tre-6-p) synthase activities increased in presence of Adox in -8D strain. Decrease in trehalose level in -8D thus could not be explained in the light of increased tre-6-p synthase activity; however, it could be correlated with increased NT activity. In strain -10A, NT activity was reduced in presence of Adox while tre-6-p synthase activity increased. Enzyme activity profiles in -10A thus do not explain the reduced trehalose level on Adox treatment. Effect of AdoMet was not very prominent in either strain, though in -8D a small increase in trehalose level was seen on treatment. Intracellular AdoMet level of untreated cells of -10A was seen to be almost six times higher than that of -8D. Further, AdoMet treatment caused increase in its level compared to untreated cells, suggesting AdoMet uptake. No effect of either compound was seen on acid trehalase (AT) activity in any strain. The results suggest that there was a possible effect of demethylation on trehalose metabolism (particularly in the synthetic direction) in both strains, though effect of methylation was not very prominent, the reason for which is not very clear.  相似文献   

18.
Acidification of extracellular medium in malignant tumors increases the invasive behaviors of cancer cells. In normal healthy tissues, acid production is catalyzed by carbonic anhydrases. Some of the carbonic anhydrase enzymes are overexpressed in certain types of cancer. The present study aimed to investigate the effect of acetazolamide, a potent carbonic anhydrase inhibitor, on in vitro cultivated cancer cells. Three different assays (MTT test, wound healing and clonogenic assay) were performed using human colorectal adenocarcinoma cells (SW620) to evaluate the suppressive effect of acetazolamide, on the colorectal cancer cells migration ability, colony formation and cell viability. The dose-dependent (1–1000 μM) reducing effect of acetazolamide on the cell viability was more significant within the first 48 h. This inhibitory effect of acetazolamide was found to be decreased at 72 h, and affects cells migration ability of cells at 24 and 48 h. Acetazolamide was observed to inhibit the cell viability, migration and colony formation ability of cells, depending on dose.  相似文献   

19.
Wound healing is a highly orchestrated physiological process consisting of a complex events, and scarless wound healing is highly desired for the development and application in clinical medicine. Recently, we have demonstrated that human amniotic epithelial cells (hAECs) promoted wound healing and inhibited scar formation through a paracrine mechanism. However, exosomes (Exo) are one of the most important paracrine factors. Whether exosomes derived from human amniotic epithelial cells (hAECs-Exo) have positive effects on scarless wound healing have not been reported yet. In this study, we examined the role of hAECs-Exo on wound healing in a rat model. We found that hAECs, which exhibit characteristics of both embryonic and mesenchymal stem cells, have the potential to differentiate into all three germ layers. hAECs-Exo ranged from 50 to 150 nm in diameter, and positive for exosomal markers CD9, CD63, CD81, Alix, TSG101 and HLA-G. Internalization of hAECs-Exo promoted the migration and proliferation of fibroblasts. Moreover, the deposition of extracellular matrix (ECM) were partly abolished by the treatment of high concentration of hAECs-Exo (100 μg/mL), which may be through stimulating the expression of matrix metalloproteinase-1 (MMP-1). In vivo animal experiments showed that hAECs-Exo improved the skin wound healing with well-organized collagen fibers. Taken together, These findings represent that hAECs-Exo can be used as a novel hope in cell-free therapy for scarless wound healing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号