首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4- 10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization.  相似文献   

2.
The goal of the present study was to testthe hypothesis that local Ca2+ release events(Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitiveK+ (BK) channels in the cell membrane of arterial smoothmuscle cells. Ca2+ sparks and BK channels were examined inisolated myocytes from rat cerebral arteries with laser scanningconfocal microscopy and patch-clamp techniques. BK channels had anapparent dissociation constant for Ca2+ of 19 µM and aHill coefficient of 2.9 at 40 mV. At near-physiological intracellularCa2+ concentration ([Ca2+]i; 100 nM) and membrane potential (40 mV), the open probability of a singleBK channel was low (1.2 × 106). A Ca2+spark increased BK channel activity to 18. Assuming that 1-100% of the BK channels are activated by a single Ca2+ spark, BKchannel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ~30 µM to 4 µM sparkCa2+ concentration.1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our resultssupport the idea that Ca2+ spark sites are in closeproximity to the BK channels and that local[Ca2+]i reaches micromolar levels to activateBK channels.

  相似文献   

3.
4.
The regulationof intracellular Ca2+ signals in smooth muscle cells andarterial diameter by intravascular pressure was investigated in ratcerebral arteries (~150 µm) using a laser scanning confocal microscope and the fluorescent Ca2+ indicator fluo 3. Elevation of pressure from 10 to 60 mmHg increased Ca2+spark frequency 2.6-fold, Ca2+ wave frequency 1.9-fold, andglobal intracellular Ca2+ concentration([Ca2+]i) 1.4-fold in smooth muscle cells,and constricted arteries. Ryanodine (10 µM), an inhibitor ofryanodine-sensitive Ca2+ release channels, or thapsigargin(100 nM), an inhibitor of the sarcoplasmic reticulumCa2+-ATPase, abolished sparks and waves, elevated global[Ca2+]i, and constricted pressurized (60 mmHg) arteries. Diltiazem (25 µM), a voltage-dependentCa2+ channel (VDCC) blocker, significantly reduced sparks,waves, and global [Ca2+]i, and dilatedpressurized (60 mmHg) arteries. Steady membrane depolarization elevatedCa2+ signaling similar to pressure and increased transientCa2+-sensitive K+ channel current frequencye-fold for ~7 mV, and these effects were prevented by VDCCblockers. Data are consistent with the hypothesis that pressure inducesa steady membrane depolarization that activates VDCCs, leading to anelevation of spark frequency, wave frequency, and global[Ca2+]i. In addition, pressure inducescontraction via an elevation of global[Ca2+]i, whereas the net effect of sparks andwaves, which do not significantly contribute to global[Ca2+]i in arteries pressurized to between 10 and 60 mmHg, is to oppose contraction.

  相似文献   

5.
目的:探讨大鼠结肠平滑肌细胞是否存在钙库操纵性通道(SOC)。方法:荧光探针Fura-2/AM标记细胞内游离Ca2+后,用荧光分光光度计检测毒胡萝卜素(thapsigargin)和咖啡因(caffeine)耗竭胞内钙库后激活的SOC通道对酶解分离的大鼠结肠平滑肌细胞[Ca2+]i的影响。结果:在无Ca2+缓冲液中,thapsigargin(1μmol/L)以及caf-feine(10 mmol/L)分别使[Ca2+]i由静息时(68.32±3.43)nmol/L升高至(240.85±12.65)nmol/L(、481.25±34.77)nmol/L,继之,向细胞外液中引入两种浓度的Ca2+(1.5 mmol/L和3.0 mmol/L),导致[Ca2+]i进一步升高,分别为(457.55±19.80)nmol/L、(1005.93±54.62)nmol/L;(643.88±34.65)nmol/L、(920.16±43.25)nmol/L。且上述升高效应对维拉帕米(verapamil,5μmol/L)以及KCl引起的细胞膜去极化不敏感,但可被La3+(1 mmol/L)抑制。结论:在酶解分离的大鼠结肠平滑肌细胞上,存在胞内钙库耗竭激活的SOC通道,为支持在电兴奋性细胞上存在库容性Ca2+内流提供了实验和理论依据。  相似文献   

6.
Endothelin (200 nM) evoked a rapid rise in [Ca2+]i which was then followed by a maintained elevation of [Ca2+]i. The initial transient can be explained by the release of stored Ca2+ whilst the maintained plateau is likely to be an influx of Ca2+ as it was partially inhibited by nifedipine (5 microM) and the remaining component abolished by the removal of extracellular Ca2+. Vasopressin (1 nM) evoked a similar response which also showed a nifedipine insensitive component to it's plateau phase. Endothelin also evoked oscillations in [Ca2+]i; these where characterised by a rapid rising phase followed by a slower decline, with no 'pacemaker' rise in [Ca2+]i preceding the rising phase. The oscillations were inhibited by the addition of 5 microM nifedipine or the removal of extracellular Ca2+ suggesting they are at least in part dependent on voltage gated Ca2+ entry.  相似文献   

7.
Li  Xing  Hu  Bing  Wang  Li  Xia  Qingqing  Ni  Xiuqin 《Molecular biology reports》2021,48(3):2133-2142
Molecular Biology Reports - P2X7R activation contributes to the pathogenesis of pulmonary hypertension. However, the molecular mechanism through which P2X7R participates in pulmonary vascular...  相似文献   

8.
Arterial smooth muscle cell large-conductance Ca2+-activated potassium (KCa) channels have been implicated in modulating hypoxic dilation of systemic arteries, although this is controversial. KCa channel activity in arterial smooth muscle cells is controlled by localized intracellular Ca2+ transients, termed Ca2+ sparks, but hypoxic regulation of Ca2+ sparks and KCa channel activation by Ca2+ sparks has not been investigated. We report here that in voltage-clamped (–40 mV) cerebral artery smooth muscle cells, a reduction in dissolved O2 partial pressure from 150 to 15 mmHg reversibly decreased Ca2+ spark-induced transient KCa current frequency and amplitude to 61% and 76% of control, respectively. In contrast, hypoxia did not alter Ca2+ spark frequency, amplitude, global intracellular Ca2+ concentration, or sarcoplasmic reticulum Ca2+ load. Hypoxia reduced transient KCa current frequency by decreasing the percentage of Ca2+ sparks that activated a transient KCa current from 89% to 63%. Hypoxia reduced transient KCa current amplitude by attenuating the amplitude relationship between Ca2+ sparks that remained coupled and the evoked transient KCa currents. Consistent with these data, in inside-out patches at –40 mV hypoxia reduced KCa channel apparent Ca2+ sensitivity and increased the Kd for Ca2+ from 17 to 32 µM, but did not alter single-channel amplitude. In summary, data indicate that hypoxia reduces KCa channel apparent Ca2+ sensitivity via a mechanism that is independent of cytosolic signaling messengers, and this leads to uncoupling of KCa channels from Ca2+ sparks. Transient KCa current inhibition due to uncoupling would oppose hypoxic cerebrovascular dilation. transient calcium-activated potassium current  相似文献   

9.
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.  相似文献   

10.
Peroxynitrite (ONOO(-)) is a contractile agonist of rat middle cerebral arteries. To determine the mechanism responsible for this component of ONOO(-) bioactivity, the present study examined the effect of ONOO(-) on ionic current and channel activity in rat cerebral arteries. Whole cell recordings of voltage-clamped cells were made under conditions designed to optimize K(+) current. The effects of iberiotoxin, a selective inhibitor of large-conductance Ca(2+)-activated K(+) (BK) channels, and ONOO(-) (10-100 microM) were determined. At a pipette potential of +50 mV, ONOO(-) inhibited 39% of iberiotoxin-sensitive current. ONOO(-) was selective for iberiotoxin-sensitive current, whereas decomposed ONOO(-) had no effect. In excised, inside-out membrane patches, channel activity was recorded using symmetrical K(+) solutions. Unitary currents were sensitive to increases in internal Ca(2+) concentration, consistent with activity due to BK channels. Internal ONOO(-) dose dependently inhibited channel activity by decreasing open probability and mean open times. The inhibitory effect of ONOO(-) could be overcome by reduced glutathione. Glutathione, added after ONOO(-), restored whole cell current amplitude to control levels and reverted single-channel gating to control behavior. The inhibitory effect of ONOO(-) on membrane K(+) current is consistent with its contractile effects in isolated cerebral arteries and single myocytes. Taken together, our data suggest that ONOO(-) has the potential to alter cerebral vascular tone by inhibiting BK channel activity.  相似文献   

11.
目的:观察离体活膀胱肌条铺片中平滑肌细胞自发性钙活动,并分析平滑肌细胞自发性钙活动的特征.方法:制作离体膀胱肌条铺片,Physiological saline生理液灌流保持肌条铺片活性.待肌条自发性收缩活动出现后,Fluo-4负载肌条铺片激光扫描共聚焦显微镜观察并高速扫描记录平滑肌细胞自发性钙活动,随后利用Fluoview软件分析平滑肌细胞自发性钙活动肌束内纵向、横向及肌束间的传递情况.结果:成功记录到离体活膀胱肌条铺片中平滑肌细胞的节律性自发性钙活动.钙活动在肌束内纵向传递几乎无时间延迟,但在肌束内横向传递有一定的时间延迟;在相邻的膀胱平滑肌束间也记录到钙活动的传递.结论:平滑肌细胞的自发性钙活动起源于肌束的一侧,随后传导到肌束的另一侧;平滑肌细胞钙活动纵向传递和横向传递的途径和机制可能不同;膀胱平滑肌束之间的钙活动传递可能是通过ICCs细胞完成.  相似文献   

12.
Vasopressin increases 45Ca2+ influx in rat aortic smooth muscle cells   总被引:1,自引:0,他引:1  
[Arg8]Vasopressin (AVP)-induced 45Ca2+ influx was examined in vascular smooth muscle cells derived from rat aorta. AVP stimulated the 45Ca2+ influx in a concentration-dependent manner. The effect was abolished in the presence of La3+. The dihydropyridine calcium channel antagonist darodipine did not affect the AVP-induced influx of 45Ca2+. These data suggest that AVP stimulates in these cultured aortic smooth muscle cells a receptor-operated channel (ROC) that is permeable to Ca2+.  相似文献   

13.
Although ketamine and Ca2+-activated K+ (KCa) channels have been implicated in the contractile activity regulation of cerebral arteries, no studies have addressed the specific interactions between ketamine and the KCa channels in cerebral arteries. The purpose of this study was to examine the direct effects of ketamine on KCa channel activities using the patch-clamp technique in single-cell preparations of rabbit middle cerebral arterial smooth muscle. We tested the hypothesis that ketamine modulates the KCa channel activity of the cerebral arterial smooth muscle cells of the rabbit. Vascular myocytes were isolated from rabbit middle cerebral arteries using enzymatic dissociation. Single KCa channel activities of smooth muscle cells from rabbit cerebral arteries were recorded using the patch-clamp technique. In the inside-out patches, ketamine in the micromolar range inhibited channel activity with a half-maximal inhibition of the ketamine concentration value of 83.8 +/- 12.9 microM. The Hill coefficient was 1.2 +/- 0.3. The slope conductance of the current-voltage relationship was 320.1 +/- 2.0 pS between 0 and +60 mV in the presence of ketamine and symmetrical 145 mM K+. Ketamine had little effect on either the voltage-dependency or open- and closed-time histograms of KCa channel. The present study clearly demonstrates that ketamine inhibits KCa channel activities in rabbit middle cerebral arterial smooth muscle cells. This inhibition of KCa channels may represent a mechanism for ketamine-induced cerebral vasoconstriction.  相似文献   

14.
The effects of external pH (7.0-8.0) on intracellular Ca(2+) signals (Ca(2+) sparks and Ca(2+) waves) were examined in smooth muscle cells from intact pressurized arteries from rats. Elevating the external pH from 7.4 to 7.5 increased the frequency of local, Ca(2+) transients, or "Ca(2+) sparks," and, at pH 7.6, significantly increased the frequency of Ca(2+) waves. Alkaline pH-induced Ca(2+) waves were inhibited by blocking Ca(2+) release from ryanodine receptors but were not prevented by inhibitors of voltage-dependent Ca(2+) channels, phospholipase C, or inositol 1,4,5-trisphosphate receptors. Activating ryanodine receptors with caffeine (5 mM) at pH 7.4 also induced repetitive Ca(2+) waves. Alkalization from pH 7.4 to pH 7.8-8.0 induced a rapid and large vasoconstriction. Approximately 82% of the alkaline pH-induced vasoconstriction was reversed by inhibitors of voltage-dependent Ca(2+) channels. The remaining constriction was reversed by inhibition of ryanodine receptors. These findings indicate that alkaline pH-induced Ca(2+) waves originate from ryanodine receptors and make a minor, direct contribution to alkaline pH-induced vasoconstriction.  相似文献   

15.
16.
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.  相似文献   

17.
Uridine 5'-triphosphate (UTP), a potent vasoconstrictor that activatesphospholipase C, shifted Ca2+ signaling from sparks towaves in the smooth muscle cells of rat cerebral arteries. UTPdecreased the frequency of Ca2+ sparks and transientCa2+-activated K+ (KCa) currentsand increased the frequency of Ca2+ waves. The UTP-inducedreduction in Ca2+ spark frequency did not reflect adecrease in global cytoplasmic Ca2+, Ca2+influx through voltage-dependent Ca2+ channels (VDCC), orCa2+ load of the sarcoplasmic reticulum (SR), since globalCa2+ was elevated, blocking VDCC did not prevent theeffect, and SR Ca2+ load did not decrease. However,blocking protein kinase C (PKC) with bisindolylmaleimide I did preventUTP reduction of Ca2+ sparks and transient KCacurrents. UTP decreased the effectiveness of caffeine, which increasesthe Ca2+ sensitivity of ryanodine-sensitiveCa2+ release (RyR) channels, to activate transientKCa currents. This work supports the concept thatvasoconstrictors shift Ca2+ signaling modalities fromCa2+ sparks to Ca2+ waves through the concertedactions of PKC on the Ca2+ sensitivity of RyR channels,which cause Ca2+ sparks, and of inositol trisphosphate(IP3) on IP3 receptors to generateCa2+ waves.

  相似文献   

18.
Ca(+) sparklets are subcellular Ca(2+) signals produced by the opening of sarcolemmal L-type Ca(2+) channels. Ca(2+) sparklet activity varies within the sarcolemma of arterial myocytes. In this study, we examined the relationship between Ca(2+) sparklet activity and sarcoplasmic reticulum (SR) Ca(2+) accumulation and release in cerebral arterial myocytes. Our data indicate that the SR is a vast organelle with multiple regions near the sarcolemma of these cells. Ca(2+) sparklet sites were located at or <0.2 μm from SR-sarcolemmal junctions. We found that while Ca(2+) sparklets increase the rate of SR Ca(2+) refilling in arterial myocytes, their activity did not induce regional variations in SR Ca(2+) content or Ca(2+) spark activity. In arterial myocytes, L-type Ca(2+) channel activity was independent of SR Ca(2+) load. This ruled out a potential feedback mechanism whereby SR Ca(2+) load regulates the activity of these channels. Together, our data suggest a model in which Ca(2+) sparklets contribute Ca(2+) influx into a cytosolic Ca(2+) pool from which sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps Ca(2+) into the SR, indirectly regulating SR function.  相似文献   

19.
M S Goligorsky 《FEBS letters》1988,240(1-2):59-64
Cytosolic Ca2+ concentration and membrane potential were monitored in individual cultured enothelial cells mechanically stimulated with a micropipette attached to the stage of a microscope. Both dimpling and poking of endothelial cells resulted in Ca2+i transients (from 63 ± 12 to 397 ± 52 nM, characterized by a refractory period of approx. 2 min) and cell depolarization. Ca2+i transients of the reduced amplitude (201 ± 41 nM) were evoked by mechanical stimulation of endothelial cells incubated in a Ca2+-free medium. Dimpling-induced Ca2+i transients were refractory to the pretreatments with pertussis toxin, colchicine, or cytochalasin B, and were not mimicked by an increase in the hydrodynamic pressure. In a co-perfusion system (endothelium: smooth muscle), both the KCl-induced depolarization and ionomycin-induced increase in Ca2+i in the endothelial cells resulted in the reduction of Ca2+i in the smooth muscle cells. The data reported are consistent with the phenomenon of vascular relaxation in response to the increased blood flow. We hypothesize that the mechanical interaction of the formed elements with the microvascular endothelium can serve as a pacemaker for the sustained relaxation of vascular smooth muscle.  相似文献   

20.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is an important stimulus for cell contraction, migration, and proliferation. Depletion of intracellular Ca2+ stores opens store-operated Ca2+ channels (SOC) and causes Ca2+ entry. Transient receptor potential (TRP) cation channels that are permeable to Na+ and Ca2+ are believed to form functional SOC. Because sarcolemmal Na+/Ca2+ exchanger has also been implicated in regulating [Ca2+]cyt, this study was designed to test the hypothesis that the Na+/Ca2+ exchanger (NCX) in cultured human PASMC is functionally involved in regulating [Ca2+]cyt by contributing to store depletion-mediated Ca2+ entry. RT-PCR and Western blot analyses revealed mRNA and protein expression for NCX1 and NCKX3 in cultured human PASMC. Removal of extracellular Na+, which switches the Na+/Ca2+ exchanger from the forward (Ca2+ exit) to reverse (Ca2+ entry) mode, significantly increased [Ca2+]cyt, whereas inhibition of the Na+/Ca2+ exchanger with KB-R7943 (10 µM) markedly attenuated the increase in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Store depletion also induced a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Removal of extracellular Na+ or inhibition of the Na+/Ca2+ exchanger with KB-R7943 attenuated the store depletion-mediated Ca2+ entry. Furthermore, treatment of human PASMC with KB-R7943 also inhibited cell proliferation in the presence of serum and growth factors. These results suggest that NCX is functionally expressed in cultured human PASMC, that Ca2+ entry via the reverse mode of Na+/Ca2+ exchange contributes to store depletion-mediated increase in [Ca2+]cyt, and that blockade of the Na+/Ca2+ exchanger in its reverse mode may serve as a potential therapeutic approach for treatment of pulmonary hypertension. sodium-calcium exchange; calcium homeostasis; vascular smooth muscle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号