首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 858 毫秒
1.
Rho GTPases, dendritic structure, and mental retardation   总被引:6,自引:0,他引:6  
A consistent feature of neurons in patients with mental retardation is abnormal dendritic structure and/or alterations in dendritic spine morphology. Deficits in the regulation of the dendritic cytoskeleton affect both the structure and function of dendrites and synapses and are believed to underlie mental retardation in some instances. In support of this, there is good evidence that alterations in signaling pathways involving the Rho family of small GTPases, key regulators of the actin and microtubule cytoskeletons, contribute to both syndromic and nonsyndromic mental retardation disorders. Because the Rho GTPases have been shown to play increasingly well-defined roles in determining dendrite and dendritic spine development and morphology, Rho signaling has been suggested to be important for normal cognition. The purpose of this review is to summarize recent data on the Rho GTPases pertaining to dendrite and dendritic spine morphogenesis, as well as to highlight their involvement in mental retardation resulting from a variety of genetic mutations within regulators and effectors of these molecules.  相似文献   

2.
The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein–Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders.  相似文献   

3.
Changes in the lipid-protein composition and structural/metabolic properties of erythrocyte membranes were analyzed in 18 patients with heboid paranoia examined in the period of exacerbation of this disease, as well as in 24 patients with mental retardation and in 24 patients with neurotic disorders. The control group included 45 mentally and somatically healthy persons. In our study, we used the following techniques: thin-layer chromatography, fluorochrome assay, measuring of Na+,K+-ATPase activity and level of lipid peroxidation, separation of the membrane proteins by electrophoresis, and transmission electron microscopy. In the erythrocyte membranes of patients with exacerbated heboid paranoia, who obtained no psychopharmacological correction before the examination, we observed clear increases in the relative amounts of cholesterol and lysophosphatidylcholine, drops in the levels of phosphatidylethanolamine and phosphatidylcholine, a rise in the microviscosity of the lipid phase, marked disorganization of the membrane protein spectrum, and a significant decrease in Na+,K+-ATPase activity accompanied by ultrastructural manifestations of damage to the erythrocyte membranes. Comparison of the structural and metabolic properties of erythrocyte membranes in schizophrenic patients with those in patients with exogenous mental retardation and neurotic disorders showed that an overwhelming part of the observed changes in the indices under study were similar in their direction, and intergroup differences were of a quantitative character. These data allow us to postulate that disorganization of the cell membranes in the extracerebral cellular systems in schizophrenia and other mental disorders is, on the one hand, significant and, on the other hand, nonspecific.  相似文献   

4.
Although "intellectual disability" has widely replaced the term "mental retardation", the debate as to whether this entity should be conceptualized as a health condition or as a disability has intensified as the revision of the World Health Organization (WHO)'s International Classification of Diseases (ICD) advances. Defining intellectual disability as a health condition is central to retaining it in ICD, with significant implications for health policy and access to health services. This paper presents the consensus reached to date by the WHO ICD Working Group on the Classification of Intellectual Disabilities. Literature reviews were conducted and a mixed qualitative approach was followed in a series of meetings to produce consensus-based recommendations combining prior expert knowledge and available evidence. The Working Group proposes replacing mental retardation with intellectual developmental disorders, defined as "a group of developmental conditions characterized by significant impairment of cognitive functions, which are associated with limitations of learning, adaptive behaviour and skills". The Working Group further advises that intellectual developmental disorders be incorporated in the larger grouping (parent category) of neurodevelopmental disorders, that current subcategories based on clinical severity (i.e., mild, moderate, severe, profound) be continued, and that problem behaviours be removed from the core classification structure of intellectual developmental disorders and instead described as associated features.  相似文献   

5.
Developmental disorders originate in infancy or early childhood, are associated with presumed or observed organic abnormalities, and have serious long-term physical and/or psychological sequelae. Of particular interest here are two such disorders, mental retardation and autism. Purported causes range from genetics, early prenatal and/or postnatal exposure to toxins (including heavy metals), and recently, vaccinations. Single factors have often been claimed to be the cause of a developmental disorder, without regard to possible exacerbating or alleviating roles of other factors, including socioeconomic status. Unfortunately, professional and popular literature on both claimed causes and effective treatments has often been characterized by research and theorizing that is seriously flawed (bad science) or actively misrepresented (pseudoscience). The present paper critically reviews selected research on a few controversial issues concerning developmental disorders, particular mental retardation and autism, and emphasizes the role of low socioeconomic status.  相似文献   

6.
脆性X综合征(fragile X syndrome,FXS)是最常见的遗传性认知障碍疾病,也是一种与自闭症谱系障碍(autism spectrum disorder,ASD)相关的严重的基因疾病.它主要是由于脆性X智力低下基因1(fragile X mental retardation 1,FMR1)的异常扩增及其上游Cp G岛的异常甲基化,导致其编码的脆性X智力低下蛋白(fragile X mental retardation protein,FMRP)表达减少或缺失引起的.FMRP与miRNA(micro RNA)均具有翻译抑制活性,而且FMRP在生物化学和遗传学上均与miRNA调控通路有相互作用.此外,越来越多的研究发现miRNA调控通路在FXS的发病和治疗中发挥作用.因此,本文对miRNA的功能及其与脆性X蛋白家族成员间的相互作用进行阐述,为在miRNA水平了解FXS的发病机制奠定基础.  相似文献   

7.
We report on three unrelated mentally disabled patients, each carrying a de novo balanced translocation that truncates the autism susceptibility candidate 2 (AUTS2) gene at 7q11.2. One of our patients shows relatively mild mental retardation; the other two display more profound disorders. One patient is also physically disabled, exhibiting urogenital and limb malformations in addition to severe mental retardation. The function of AUTS2 is presently unknown, but it has been shown to be disrupted in monozygotic twins with autism and mental retardation, both carrying a translocation t(7;20)(q11.2;p11.2) (de la Barra et al. in Rev Chil Pediatr 57:549–554, 1986; Sultana et al. in Genomics 80:129–134, 2002). Given the overlap of this autism/mental retardation (MR) phenotype and the MR-associated disorders in our patients, together with the fact that mapping of the additional autosomal breakpoints involved did not disclose obvious candidate disease genes, we ascertain with this study that AUTS2 mutations are clearly linked to autosomal dominant mental retardation.  相似文献   

8.
9.
Among mental disorders, mental retardation has been shown to be caused by various factors including a large array of genetic mutations. On the basis of remarkable progress, the emerging view is that defects in the regulation of synaptic activity and morphogenesis of dendritic spines are apparently common features associated with mutations in several genes implicated in mental retardation. In this review, we will discuss X-linked MR-related gene products that are potentially involved in the normal structure and function of the synapses, with a particular focus on pre- and/or post-synaptic plasticity mechanisms. Progress in understanding the underlying conditions leading to mental retardation will undoubtedly be gained from a closer collaboration of geneticists, physiologists and cognitive neuroscientists, which should enable the establishment of standardized approaches.  相似文献   

10.
Chromosomal investigation of a young girl with mental and motor retardation and congenital anomalies revealed a translocation between both members of pair No. 13. Banding analysis showed that the translocation was "tandem," leading to monosomy for segments in both the long and short arms of No. 13.  相似文献   

11.
We have identified a family of 'Agenet' domains that are plant-specific homologs of Tudor domains. This finding has been extended, using a combination of sequence- and structure-dependent approaches, to show that the three beta-stranded core regions of Tudor, PWWP, chromatin-binding (Chromo) and MBT domains are homologous because they originate from a common ancestor. In addition, we have revealed pairs of tandem repeats in the fragile X mental retardation protein (FMRP) family that are also members of this Tudor domain 'Royal Family'.  相似文献   

12.
X-linked hydrocephalus (HSAS) is the most common form of inherited hydrocephalus characterized by hydrocephalus due to stenosis of the aqueduct of Sylvius, mental retardation, clasped thumbs, and spastic paraparesis. MASA syndrome (mental retardation, aphasia, shuffling gait and adducted thumbs) and SPG1 (X-linked complicated spastic paraplegia) are also X-linked disorders with overlapping clinical signs. Linkage analysis studies implicated the neural cell adhesion molecule L1 (LICAM) gene as a candidate gene for these X-linked disorders. This genetic study analyzes the LICAM gene in a Japanese family with members suffering from HSAS, and describes a deletion of five nucleotides in exon 8. Screening byBg1I digestion of polymerase chain reaction (PCR) products revealed that two siblings have the same mutation and a sister was identified as a heterozygous carrier. The 5 nucleotide deletion causes a shift of the reading frame and introduces a premature stop codon 72 nucleotides downstream, which might result in a truncated protein. The mutation identified herein is a novel L1 CAM mutation, which triggers hydrocephalus. We report a unique LlCAM mutation that causes HSAS: the first report of such a mutation in a Japanese family.  相似文献   

13.
Summary Chromosomal, clinical, and psychological data are presented on members of six families with X-linked mental retardation. Affected males in three of these families express the fra(X)(q28) marker, while the retarded males in the other three do not. Similar variable physical and psychological charateristics, such as lop ears, large testes, and perseverative speech, are present in affected males in all six families. Preliminary analysis of the psychological data also shows that males with and without marker expression cannot be differentiated with certainty. On this basis we suggest that there is a type of X-linked mental retardation with many phenotypic features of marker-X mental retardation but without expression of the X chromosome fragile site.  相似文献   

14.
We report molecular and cytogenetic characterization of proximal deletion of chromosome 4q, del(4)(q12 --> q21.21) in a 131/2-year-old girl with short stature, mental retardation, developmental delay, hyperopia, exotropia, enamel defects, delayed tooth eruption and delayed puberty. We speculate that haploinsufficiency of the AMTN, ENAM and AMBN genes is most likely responsible for dental disorders, haploinsufficiency of the BMP2K genes is most likely responsible for ocular disorders, and haploinsufficiency of the EREG, AREG and BTC genes is most likely responsible for delayed puberty in this patient.  相似文献   

15.
Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders.  相似文献   

16.
A large French family including members affected by nonspecific X-linked mental retardation, with or without autism or pervasive developmental disorder in affected male patients, has been found to have a 2-base-pair deletion in the Neuroligin 4 gene (NLGN4) located at Xp22.33. This mutation leads to a premature stop codon in the middle of the sequence of the normal protein and is thought to suppress the transmembrane domain and sequences important for the dimerization of neuroligins that are required for proper cell-cell interaction through binding to beta-neurexins. As the neuroligins are mostly enriched at excitatory synapses, these results suggest that a defect in synaptogenesis may lead to deficits in cognitive development and communication processes. The fact that the deletion was present in both autistic and nonautistic mentally retarded males suggests that the NLGN4 gene is not only involved in autism, as previously described, but also in mental retardation, indicating that some types of autistic disorder and mental retardation may have common genetic origins.  相似文献   

17.
In general, carriers of paracentric inversions are phenotypically normal, although individual reports describe like occurrence of infertility, miscarriages and mental retardation in inversion carriers. We present a family with paracentric inversion of 1p [karyotype: 46,XY/XY, inv(1)(p13.2p36.2)] in 7 of the 12 investigated family members. The index patient, a four year-old boy was referred for motor and mental retardation. The possible relationship between the paracentric inversion and the MR/MCA syndrome in the index patient of this family is briefly discussed.  相似文献   

18.
Tall stature is less often experienced as an important problem than short stature. However, a correct diagnosis may be of eminent importance, especially when interventions are planned, or to know the natural history. Overgrowth can be caused by endocrine disorders and skeletal dysplasias, but also by several genetic syndromes. Despite a systematic diagnostic approach, there will be patients with tall stature who do not fit a known diagnosis. In this group of patients possibilities of genetic analysis do exist, but are not common practice. The FMR1 gene should be analyzed in patients with tall stature and mental retardation, and in these patients the NSD1 gene can be considered whenever some features of Sotos syndrome do exist. In tall patients without mental retardation and some features of Sotos or Beckwith-Wiedemann syndrome it may still be useful to look for mutations in the NSD1 gene, but also for changes in the 11p15 region. The various possibilities are discussed and placed in a flowchart.  相似文献   

19.
Mental retardation (MR) is a common disorder, affecting 1-3% of the total population. This condition results from failure to develop cognitive abilities and intelligence level appropriate for the age group. Mental retardation is basically a clinically as well as etiologically heterogeneous type of condition and both genetic and non-genetic factors have been found to be involved. There are more than 1000 entries in Online Mendelian Inheritance in Man (OMIM) database under the name of mental retardation. In recent years 15 genes for X linked non-specific mental retardation have been identified which provide important clues regarding molecular and cellular processes involved in signal transduction cascade in central nervous system. Recent advancements in identification and characterization of X-linked non-specific mental retardation genes have been discussed in this review. Understanding of the molecular pathways of disease causing genes would be helpful in developing effective therapeutic approaches for mental retardation.  相似文献   

20.
Activation of group I metabotropic glutamate receptors leads to long-term depression (mGluR-LTD). Alterations in this form of plasticity have been linked to drug addiction and cognitive disorders. A key characteristic of mGluR-LTD is its dependence on rapid protein synthesis; however, the identities of the proteins mediating LTD remain elusive. Here, we identify the X-linked mental retardation protein OPHN1 as a molecule essential for mGluR-LTD in the hippocampus. mGluR-LTD induction elicits rapid dendritic OPHN1 synthesis, which is dependent on mGluR1 activation and independent of fragile X mental retardation protein (FMRP). This response is essential for mGluR-LTD, as acute blockade of OPHN1 synthesis impedes LTD. mGluR-induced OPHN1 mediates LTD and associated persistent decreases in surface AMPARs via interactions with endophilin A2/3. Importantly, this role of OPHN1 is separable from its effects on basal synaptic strength, which require OPHN1's Rho-GAP activity and interaction with Homer1b/c. Thus, our data establish a role for rapid OPHN1 synthesis in mGluR-LTD. VIDEO ABSTRACT:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号