首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Triplex-forming oligonucleotides (TFOs) can bind to polypurine/polypyrimidine regions in DNA in a sequence-specific manner and provoke DNA repair. We have coupled a TFO to a short donor fragment of DNA that shares homology to a selected gene as a strategy to mediate gene targeting and correction. In this bifunctional oligonucleotide, the TFO domain is designed to bind the target gene and stimulate repair and recombination, with the donor domain positioned for recombination and information transfer. A series of these tethered donor-TFO (TD-TFO) molecules with donor domains of 40-44 nucleotides and TFO domains in both the purine and pyrimidine triplex motifs were tested for their ability to mediate either gene correction or mutation of a supF reporter gene contained in a SV40 shuttle vector in mammalian cells. In vitro binding assays revealed that the attachment of the donor domain via a flexible linker did not significantly alter the binding affinity of the TFO domain for the polypurine site in the supF target DNA, with equilibrium dissociation constants in the 10(-8) M range. Experiments in which the target vector and the linked TD-TFOs were pre-incubated in vitro and co-transfected into cells led to conversion frequencies approaching 1%, 4-fold greater than with the two domains unlinked. When cells that had been previously transfected with the SV40 vector were electroporated with the TD-TFOs, frequencies of base pair-specific gene correction were seen in the range of 0.04%, up to 50-fold over background and at least 3-fold over either domain alone or in unlinked combinations. Sequence conversion by the TD-TFOs was achieved using either single- or double-stranded donor domains and either triplex motif. Substitution of either domain in the TD-TFO with control sequences yielded reagents with diminished activity, as did mixtures of unlinked TFO and donor DNA segments. The boost in activity provided by the attached TFO domain was reduced in cells deficient in the nucleotide excision repair factor XPA but was restored in a subclone of these cells expressing XPA cDNA, suggesting a role for nucleotide excision repair in the pathway of triple helix-stimulated gene conversion. The ability to correct or mutate a specific target site in mammalian cells using the TD-TFO strategy may provide a useful tool for research and possibly for therapeutic applications.  相似文献   

2.
We compared strand pairing and gene correction activities between different constructs of oligonucleotides, using homologous supercoiled DNA and eukaryotic nuclear extracts. The RNA-DNA chimeric oligonucleotide was more efficient in strand pairing and gene correction than its DNA-DNA homolog. Single-stranded deoxyoligonucleotides showed similar strand pairing and correction activity to the modified RNA-DNA chimeric oligonucleotides, whereas single-stranded ribooligonucleotides did not show either activity. However, the correlations were not always linear, suggesting that only a fraction of the joint molecules may be processed to cause the final gene correction. Several mammalian extracts with markedly different in vitro activity showed the similar amounts of the joint molecules. These results led us to conclude that strand pairing is a necessary event in gene correction but may not be the rate-limiting step. Furthermore, depletion of HsRad51 protein caused large decreases in both strand-pairing and functional activities, whereas supplementation of HsRad51 produced only a slight increase in the repair activity, indicating that HsRad51 participates in the strand pairing, but subsequent steps define the frequency of gene correction. In addition, we found that the structure and stability of intermediates formed by single-stranded deoxyoligonucleotides and RNA-DNA chimeric oligonucleotides were different, suggesting that they differ in their mechanisms of gene repair.  相似文献   

3.
The ability to stimulate recombination in a site-specific manner in mammalian cells may provide a useful tool for gene knockout and a valuable strategy for gene therapy. We previously demonstrated that psoralen adducts targeted by triple-helix-forming oligonucleotides (TFOs) could induce recombination between tandem repeats of a supF reporter gene in a simian virus 40 vector in monkey COS cells. Based on work showing that triple helices, even in the absence of associated psoralen adducts, are able to provoke DNA repair and cause mutations, we asked whether intermolecular triplexes could stimulate recombination. Here, we report that triple-helix formation itself is capable of promoting recombination and that this effect is dependent on a functional nucleotide excision repair (NER) pathway. Transfection of COS cells carrying the dual supF vector with a purine-rich TFO, AG30, designed to bind as a third strand to a region between the two mutant supF genes yielded recombinants at a frequency of 0.37%, fivefold above background, whereas a scrambled sequence control oligomer was ineffective. In human cells deficient in the NER factor XPA, the ability of AG30 to induce recombination was eliminated, but it was restored in a corrected subline expressing the XPA cDNA. In comparison, the ability of triplex-directed psoralen cross-links to induce recombination was only partially reduced in XPA-deficient cells, suggesting that NER is not the only pathway that can metabolize targeted psoralen photoadducts into recombinagenic intermediates. Interestingly, the triplex-induced recombination was unaffected in cells deficient in DNA mismatch repair, challenging our previous model of a heteroduplex intermediate and supporting a model based on end joining. This work demonstrates that oligonucleotide-mediated triplex formation can be recombinagenic, providing the basis for a potential strategy to direct genome modification by using high-affinity DNA binding ligands.  相似文献   

4.
Triplex-forming oligonucleotides (TFOs) have the potential to serve as gene therapeutic agents on the basis of their ability to mediate site-specific genome modification via induced recombination. However, high-affinity triplex formation is limited to polypurine/polypyrimidine sites in duplex DNA. Because of this sequence restriction, careful analysis is needed to identify suitable TFO target sites within or near genes of interest. We report here an examination of two key parameters which influence the efficiency of TFO-induced recombination: (1) binding affinity of the TFO for the target site and (2) the distance between the target site and the mutation to be corrected. To test the influence of binding affinity, we compared induced recombination in human cell-free extracts by a series of G-rich oligonucleotides with an identical base composition and an increasing number of mismatches in the third strand binding code. As the number of mismatches increased and, therefore, binding affinity decreased, induced recombination frequency also dropped. There was an apparent threshold at an equilibrium dissociation constant (K(d)) of 1 x 10(-)(7) M. In addition, TFO chemical modification with N,N-diethylethylenediamine (DEED) internucleoside linkages to confer improved binding was found to yield increased levels of induced recombination. To test the ability of triplex formation to induce recombination at a distance, episomal targets with informative reporter genes were constructed to contain polypurine TFO target sites at varying distances from the mutations to be corrected. TFO-induced recombination in mammalian cells between a plasmid vector and a donor oligonucleotide was detected at distances ranging from 24 to 750 bp. Together, these results indicate that TFO-induced recombination requires high-affinity binding but can affect sites hundreds of base pairs away from the position of triplex formation.  相似文献   

5.
Human Rad51 protein (HsRad51) is a homolog of Escherichia coli RecA protein, and functions in DNA repair and recombination. In higher eukaryotes, Rad51 protein is essential for cell viability. The N-terminal region of HsRad51 is highly conserved among eukaryotic Rad51 proteins but is absent from RecA, suggesting a Rad51-specific function for this region. Here, we have determined the structure of the N-terminal part of HsRad51 by NMR spectroscopy. The N-terminal region forms a compact domain consisting of five short helices, which shares structural similarity with a domain of endonuclease III, a DNA repair enzyme of E. coli. NMR experiments did not support the involvement of the N-terminal domain in HsRad51-HsBrca2 interaction or the self-association of HsRad51 as proposed by previous studies. However, NMR tiration experiments demonstrated a physical interaction of the domain with DNA, and allowed mapping of the DNA binding surface. Mutation analysis showed that the DNA binding surface is essential for double-stranded and single-stranded DNA binding of HsRad51. Our results suggest the presence of a DNA binding site on the outside surface of the HsRad51 filament and provide a possible explanation for the regulation of DNA binding by phosphorylation within the N-terminal domain.  相似文献   

6.
Interaction of human recombination proteins Rad51 and Rad54.   总被引:11,自引:5,他引:6       下载免费PDF全文
The cDNA for human protein HsRad54, which is a structural homolog of Saccharomyces cerevisiae recombination/repair protein Rad54, was cloned and expressed in Escherichia coli. As demonstrated by analysis in vitro and in vivo, HsRad54 protein interacts with human Rad51 recombinase. The interaction is mediated by the N-terminal domain of HsRad54 protein, which interacts with both free and DNA-bound HsRad51 protein.  相似文献   

7.
Expression of the DNA repair and recombination protein human Rad51 (HsRad51) is increased in transformed cells and in cancer cell lines. In order to study the effects of acute HsRad51 ectopic overexpression on cell proliferation, cell cycle progression, and apoptosis, we generated clones of the human fibrosarcoma cell line HT1080 carrying a HsRad51 transgene under a repressible promoter. The HsRad51-overexpressing cells showed decreased plating efficiency and growth rate in a dose-dependent manner with regard to the degree of overexpression. An accumulation of HsRad51-overexpressing cells in G(2) was observed following release of cells after synchronization with double thymidine block. Moreover, the fraction of apoptotic cells measured by annexin V-FACS increased with the time of HsRad51 overexpression. In the light of these observations, sustained increased levels of HsRad51 may contribute to tumor progression by causing a selection for cells tolerant to the growth-suppressive and apoptosis-inducing effects of acute HsRad51 overexpression.  相似文献   

8.
The Rad51 protein, a homologue of the bacterial RecA protein, is an essential factor for both meiotic and mitotic recombination. The N-terminal domain of the human Rad51 protein (HsRad51) directly interacts with DNA. Based on a yeast two-hybrid analysis, it has been reported that the N-terminal region of the Saccharomyces cerevisiae Rad51 protein binds Rad52;S. cerevisiae Rad51 and Rad52 both activate the homologous pairing and strand exchange reactions. Here, we show that the HsRad51 N-terminal region, which corresponds to the Rad52-binding region of ScRad51, does not exhibit strong binding to the human Rad52 protein (HsRad52). To investigate its function, the C-terminal region of HsRad51 was randomly mutagenized. Although this region includes the two segments corresponding to the putative DNA-binding sites of RecA, all seven of the mutants did not decrease, but instead slightly increased, the DNA binding. In contrast, we found that some of these HsRad51 mutations significantly decreased the HsRad52 binding. Therefore, we conclude that these amino acid residues are required for the HsRad51.HsRad52 binding. HsRad52, as well as S. cerevisiae Rad52, promoted homologous pairing between ssDNA and dsDNA, and higher homologous pairing activity was observed in the presence of both HsRad51 and HsRad52 than with either HsRad51 or HsRad52 alone. The HsRad51 F259V mutation, which strongly impaired the HsRad52 binding, decreased the homologous pairing in the presence of both HsRad51 and HsRad52, without affecting the homologous pairing by HsRad51 alone. This result suggests the importance of the HsRad51.HsRad52 interaction in homologous pairing.  相似文献   

9.
Correction of a defective gene is a promising approach for both basic research and clinical gene therapy. However, the absence of site-specific targeting and the low efficiency of homologous recombination in human cells present barriers to successful gene targeting. In an effort to overcome these barriers, we utilized triplex-forming oligonucleotides (TFOs) conjugated to a DNA interstrand crosslinking (ICL) agent, psoralen (pTFO-ICLs), to improve the gene targeting efficiency at a specific site in DNA. Gene targeting events were monitored by the correction of a deletion on a recipient plasmid with the homologous sequence from a donor plasmid in human cells. The mechanism underlying this event is stimulation of homologous recombination by the pTFO-ICL. We found that pTFO-ICLs are efficient in inducing targeted gene conversion (GC) events in human cells. The deletion size in the recipient plasmid influenced both the recombination frequency and spectrum of recombinants; i.e. plasmids with smaller deletions had a higher frequency and proportion of GC events. The polarity of the pTFO-ICL also had a prominent effect on recombination. Our results suggest that pTFO-ICL induced intermolecular recombination provides an efficient method for targeted gene correction in mammalian cells.  相似文献   

10.
The human recombinase HsRad51 is cleaved during apoptosis. We have earlier observed cleavage of the 41-kDa full-length protein into a 33-kDa product in apoptotic Jurkat cells and in in vitro translated HsRad51 after treatment with activated S-100 extract. In this study, site-directed mutagenesis was used for mapping of the cleavage site to AQVD274 downward arrow G, which does not correspond to a conventional caspase cleavage site. The absence of HsRad51 cleavage in staurosporine-treated apoptotic MCF-7 cells, which lack caspase-3, indicates that caspase-3 is essential for HsRad51 cleavage in vivo. Cleavage into the 33-kDa fragment was generated by recombinant caspase-3 and -7 in in vitro translated wild type HsRad51, but not in the HsRad51 AQVE274 downward arrow G mutant. Similarly, HsRad51 of Jurkat cell extracts was cleaved into the 33-kDa product by recombinant caspase-3, whereas caspase-7 failed to cleave endogenous HsRad51. The cleavage of in vitro translated wild type and AQVE274 downward arrow G mutant HsRad51 as well as of endogenous HsRad51 also gave rise to a smaller fragment, which corresponds in size to a recently reported DVLD187 downward arrow N HsRad51 cleavage product. In Jurkat cell extracts, the AQVD274 downward arrow G and DVLD187 downward arrow N cleavage products of HsRad51 appeared at equal concentrations of caspase-3. Moreover both fragments were generated by induction of apoptosis in MDA-MB 157 cells with staurosporine and in Jurkat cells with camptothecin. Thus, two sites in the HsRad51 sequence are targets for caspase cleavage both in vitro and in vivo.  相似文献   

11.
The Rad52 protein, which is unique to eukaryotes, plays important roles in the Rad51-dependent and the Rad51-independent pathways of DNA recombination. In the present study, we have biochemically characterized the homologous pairing activity of the HsRad52 protein (Homo sapiens Rad52) and found that the presynaptic complex formation with ssDNA is essential in its catalysis of homologous pairing. We have identified an N-terminal fragment (amino acid residues 1-237, HsRad52(1-237)) that is defective in binding to the human Rad51 protein, which catalyzed homologous pairing as efficiently as the wild type HsRad52. Electron microscopic visualization revealed that HsRad52 and HsRad52(1-237) both formed nucleoprotein filaments with single-stranded DNA. These lines of evidence suggest the role of HsRad52 in the homologous pairing step of the Rad51-independent recombination pathway. Our results reveal the striking similarity between HsRad52 and the Escherichia coli RecT protein, which functions in a RecA-independent recombination pathway.  相似文献   

12.
13.
Replication protein A (RPA), a heterotrimeric single-stranded DNA binding protein, is required for recombination, and stimulates homologous pairing and DNA strand exchange promoted in vitro by human recombination protein HsRad51. Co-immunoprecipitation revealed that purified RPA interacts physically with HsRad51, as well as with HsDmc1, the homolog that is expressed specifically in meiosis. The interaction with HsRad51 was mediated by the 70 kDa subunit of RPA, and according to experiments with deletion mutants, this interaction required amino acid residues 169-326. In exponentially growing mammalian cells, 22% of nuclei showed foci of RPA protein and 1-2% showed foci of Rad51. After gamma-irradiation, the percentage of cells with RPA foci increased to approximately 50%, and those with Rad51 foci to 30%. All of the cells with foci of Rad51 had foci of RPA, and in those cells the two proteins co-localized in a high fraction of foci. The interactions of human RPA with Rad51, replication proteins and DNA are suited to the linking of recombination to replication.  相似文献   

14.
In eukaryotes, Rad51 and Rad54 functionally cooperate to mediate homologous recombination and the repair of damaged chromosomes by recombination. Rad51, the eukaryotic counterpart of the bacterial RecA recombinase, forms filaments on single-stranded DNA that are capable of pairing the bound DNA with a homologous double-stranded donor to yield joint molecules. Rad54 enhances the homologous DNA pairing reaction, and this stimulatory effect involves a physical interaction with Rad51. Correspondingly, the ability of Rad54 to hydrolyze ATP and introduce superhelical tension into covalently closed circular plasmid DNA is stimulated by Rad51. By controlled proteolysis, we show that the amino-terminal region of yeast Rad54 is rather unstructured. Truncation mutations that delete the N-terminal 113 or 129 amino acid residues of Rad54 attenuate or ablate physical and functional interactions with Rad51 under physiological ionic strength, respectively. Surprisingly, under less stringent conditions, the Rad54 Delta129 protein can interact with Rad51 in affinity pull-down and functional assays. These results highlight the functional importance of the N-terminal Rad51 interaction domain of Rad54 and reveal that Rad54 contacts Rad51 through separable epitopes.  相似文献   

15.
Human Rad51 (HsRad51), a key element of the homologous recombination repair pathway, is related to the resistance of cancer cells to chemo- and radio-therapies. This protein is thus a good target for the development of anti-cancer treatments. We have searched for new inhibitors directed against HsRad51 using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach. We have selected three aptamers displaying strong effects on strand exchange activity. Analysis by circular dichroism shows that they are highly structured DNA molecules. Our results also show that they affect the first step of the strand exchange reaction by promoting the dissociation of DNA from the ATP/HsRad51/DNA complex. Moreover, these inhibitors bind only weakly to RecA, a prokaryotic ortholog of HsRad51. Both the specificity and the efficiency of their inhibition of recombinase activity offer an analytical tool based on molecular recognition and the prospect of developing new therapeutic agents.  相似文献   

16.
Triple helix-forming oligonucleotides (TFOs) are promising agents for the control of gene expression, as they can selectively bind to a chosen oligopyrimidine.oligopurine region of a gene of interest thus interfering with its expression. The stability of the triplex formed by the TFO and the duplex is often too poor for successful applications of TFOs in vivo and the conjugation of a DNA intercalating moiety to the TFO is a common way to enhance the TFO affinity for its target. In a previous work, we investigated the properties of daunomycin conjugated TFO (dauno-TFO) and found that this class of compounds showed a higher degree of affinity than native oligonucleotides for an oligopyrimidine.oligopurine duplex target and that the presence of the amino sugar increases such stability. Here, we report a significantly improved synthetic procedure for the preparation of the conjugates, based on the protection of the daunosamine moiety by N-trifluoroacetylation. This protecting group is removed as a final step from the conjugation product by mild basic hydrolysis to give the desired dauno-TFO. Compared to the previous synthetic procedure, the improvement is important. The synthesis is now more reproducible and no side products are formed. Moreover, the thus protected daunomycin derivative is very stable, up to at least one year. Two dauno-TFOs, differing by the length of the oligonucleotide moiety, were prepared to target the polypurine tract (PPT) of HIV-1. Triplex formation by these compounds with model duplexes was studied by UV spectroscopy, thermal gradient gel electrophoresis (TGGE) and gel electrophoretic mobility shift. The experimental results demonstrate that dauno-TFOs bind to the PPT of HIV-1 more strongly than the unconjugated TFOs.  相似文献   

17.
Overexpression of the 22-kDa peripheral myelin protein (PMP22) causes the inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1A (CMT1A). In an attempt to alter PMP22 gene expression as a possible therapeutic strategy for CMT1A, antiparallel triplex-forming oligonucleotides (TFO) were designed to bind to purine-rich target sequences in the two PMP22 gene promoters, P1 and P2. Target region I in P1 and region V in P2 were also shown to specifically bind proteins in mammalian nuclear extracts. Competition for binding of these targets by TFO vs. protein(s) was compared by exposing proteins to their target sequences after triplex formation (passive competition) or by allowing TFO and proteins to simultaneously compete for the same targets (active competition). In both formats, TFO were shown to competitively interfere with the binding of protein to region I. Oligonucleotides directed to region V competed for protein binding by a nontriplex-mediated mechanism, most likely via the formation of higher-order, manganese-destabilizable structures. Given that the activity of the P1 promoter is closely linked to peripheral nerve myelination, TFO identified here could serve as useful reagents in the investigation of promoter function, the role of PMP22 in myelination, and possibly as rationally designed drugs for the therapy of CMT1A. The nontriplex-mediated action of TFO directed at the P2 promoter may have wider implications for the use of such oligonucleotides in vivo.  相似文献   

18.
19.
The effect of the structure of donor DNA molecules on the initiation of recombination for double strand break repair in human nuclear extracts, was investigated here. A unique double strand break was introduced into M13 duplex derivatives by digestion with restriction enzymes. After coincubation of the cleaved DNA in human nuclear extracts, with a plasmid containing M13 sequences spanning the break, double strand break repair was estimated by the plating efficiency in JM109 (RecA1) bacteria. We first confirm that a short heterologous insert (8bp) close to the break on the recipient cleaved M13 DNA inhibits recombination with circular as well as with linear donor molecules. The results indicate that, with these substrates, recombination is initiated at the level of the break, requires uninterrupted homology on both sides of the break, and is associated with a decreasing gradient of gene conversion. When the heterologous insertion is located on the plasmid donor DNA, similar results are obtained with a circular donor DNA. In contrast, with a linear donor molecule, bearing the insert, homology requirements, in the region of the break in M13 DNA, are abolished. This last result suggests that recombination could be initiated at the extremities of the linear donor DNA.  相似文献   

20.
Successful gene-targeting reagents must be functional under physiological conditions and must bind chromosomal target sequences embedded in chromatin. Triple helix-forming oligonucleotides (TFOs) recognize and bind specific sequences via the major groove of duplex DNA and may have potential for gene targeting in vivo. We have constructed chemically modified, psoralen-linked TFOs that mediate site-specific mutagenesis of a chromosomal gene in living cells. Here we show that targeting efficiency is sensitive to the biology of the cell, specifically, cell cycle status. Targeted mutagenesis was variable across the cycle with the greatest activity in S phase. This was the result of differential TFO binding as measured by cross-link formation. Targeted cross-linking was low in quiescent cells but substantially enhanced in S phase cells with adducts in approximately 20-30% of target sequences. 75-80% of adducts were repaired faithfully, whereas the remaining adducts were converted into mutations (>5% mutation frequency). Clones with mutations could be recovered by direct screening of colonies chosen at random. These results demonstrate high frequency target binding and target mutagenesis by TFOs in living cells. Successful protocols for TFO-mediated manipulation of chromosomal sequences are likely to reflect a combination of appropriate oligonucleotide chemistry and manipulation of the cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号