首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Conidia of Neurospora crassa which are in different physiological states show different rates of survival after freezing and thawing. [14C]adenine uptake by frozen and thawed conidia in different physiological states show a correlation with their survival. The uptake method was extended to study the survival of mycelium in log phase and stationary phase. From the uptake data it appears that log phase mycelium is extremely sensitive to all rates of freezing and thawing studied, while the stationary phase mycelium showed slight tolerance to freezing, if freezing was done at a slow rate. A study of the efflux of labeled compounds from the conidia in various physiological states or from the mycelia after freezing and thawing showed that, although efflux followed the same general trend as survival in conidia, it did not relate to the survival in mycelium, suggesting that the death of conidia or mycelium in the freeze-thaw treatments is not due to efflux of compounds.  相似文献   

2.
Closing of stomatal pores in the leaf epidermis of higher plants is mediated by long-term release of potassium and the anions chloride and malate from guard cells and by parallel metabolism of malate. Previous studies have shown that slowly activating anion channels in the plasma membrane of guard cells can provide a major pathway for anion efflux while also controlling K+ efflux during stomatal closing: Anion efflux produces depolarization of the guard cell plasma membrane that drives K+ efflux required for stomatal closing. The patch-clamp technique was applied to Vicia faba guard cells to determine the permeability of physiologically significant anions and halides through slow anion channels to assess the contribution of these anion channels to anion efflux during stomatal closing. Permeability ratio measurements showed that all tested anions were permeable with the selectivity sequence relative to Cl- of NO3- > Br- > F- ~ Cl- ~ I- > malate. Large malate concentrations in the cytosol (150 mM) produced a slow down-regulation of slow anion channel currents. Single anion channel currents were recorded that correlated with whole-cell anion currents. Single slow anion channels confirmed the large permeability ratio for nitrate over chloride ions. Furthermore, single-channel studies support previous indications of multiple conductance states of slow anion channels, suggesting cooperativity among anion channels. Anion conductances showed that slow anion channels can mediate physiological rates of Cl- and initial malate efflux required for mediation of stomatal closure. The large NO3- permeability as well as the significant permeabilities of all anions tested indicates that slow anion channels do not discriminate strongly among anions. Furthermore, these data suggest that slow anion channels can provide an efficient pathway for efflux of physiologically important anions from guard cells and possibly also from other higher plant cells that express slow anion channels.  相似文献   

3.
G Rapatz  B Luyet  A MacKenzie 《Cryobiology》1975,12(4):293-308
Human erythrocytes suspended in a sodium-free buffered salt solution containing glycerol in 1 m concentration (1 part of packed cells to 4 parts buffered salt solution) were frozen by slow, moderately rapid, or very rapid cooling to various subzero C temperatures. The frozen specimens, after a 5-min storage period at a given temperature, were thawed at low, moderately high, or very high rates. The hemolysis in the frozen and thawed samples was measured by a colorimetric determination of the hemoglobin released from the damaged cells. At ?10 °C, the highest freezing temperature employed, nearly 100% recovery of intact erythrocytes was obtained irrespective of the cooling and rewarming conditions. The extent of the hemolysis after exposure to lower freezing temperatures depended upon the cooling and rewarming conditions. Moderately rapid and very rapid freezing to, and thawing from temperatures below ?40 °C permitted significantly higher recoveries of intact cells than the other freezing/ thawing combinations. In the temperature range ?15 to ?30 °C the combination slow cooling and slow rewarming afforded maximum protection. Very rapid freezing/ slow thawing was the most damaging combination throughout the entire freezing range. The results were interpreted in part by a conventional two-factor analysis, lower cooling rates allowing concentrated salts to determine hemolysis, higher cooling rates destroying the cells by intracellular freezing. Apparent anomalies were explained in terms of a generalized “thermal/osmotic” shock according to which the erythrocytes were subject to greater hemolysis the higher the rates of cooling and/or warming.  相似文献   

4.
The effect of different rates of freezing on the character of lipids in unilamellar lipid bilayer vesicles and in the original membrane fragments of Escherichia coli B cells was investigated by measuring the temperature-dependent fluorescence polarization ratio changes of cis- and trans-parinaric acids. In lipid bilayer vesicles, both slow and rapid freezing brought about significant alterations in fluorescence polarization ratios in the specimens derived from both logarithmic and stationary-phase cells. In the original membrane fragments derived from logarithmic-phase cells, slow freezing gave rise to a similar alteration in fluorescence polarization ratio change, but no such alteration was found in the case of rapid freezing. Logarithmic-phase cells suffered from a membrane permeability change during slow freezing, which subsequently resulted in low cell viability. The cells suffered only slight impairment in membrane function during rapid freezing, and maintained higher viability. These results suggest that the primary site of damage due to freezing of the cells is the cellular membranes, and this destruction is due to a lipid state change in the membranes brought about by freezing.  相似文献   

5.
Cetinkaya G  Arat S 《Cryobiology》2011,63(3):292-297
Preservation of cell and tissue samples from endangered species is a part of biodiversity conservation strategy. Therefore, setting up proper cell and tissue cryopreservation methods is very important as these tissue samples and cells could be used to reintroduce the lost genes into the breeding pool by nuclear transfer. In this study, we investigated the effect of vitrification and slow freezing on cartilage cell and tissue viability for biobanking. Firstly, primary adult cartilage cells (ACCs) and fetal cartilage cells (FCC) were cryopreserved by vitrification and slow freezing. Cells were vitrified after a two-step equilibration in a solution composed of ethylene glycol (EG), Ficoll and sucrose. For slow freezing three different cooling rates (0.5, 1 and 2 °C/min) were tested in straws. Secondly, the tissues taken from articular cartilage were cryopreserved by vitrification and slow freezing (1 °C/min). The results revealed no significant difference between the viability ratios, proliferative activity and GAG synthesis of cartilage cells which were cryopreserved by using vitrification or slow freezing methods. Despite the significant decrease in the viability ratio of freeze–thawed cartilage tissues, cryopreservation did not prevent the establishment of primary cell cultures from cartilage tissues. The results revealed that the vitrification method could be recommended to cryopreserve cartilage tissue and cells from bovine to be used as alternative cell donor sources in nuclear transfer studies for biobanking as a part of biodiversity conservation strategy. Moreover, cartilage cell suspensions were successfully cryopreserved in straws by using a controlled-rate freezing machine in the present study.  相似文献   

6.
五种植物抗寒性的比较研究   总被引:3,自引:0,他引:3  
采用电导法对五种植物(四种美国引进的植物和一种乡土植物)进行不同低温处理,研究其在各温度下的细胞膜透性改变情况,并配以Logistic方程求拐点值确定低温半致死温度LT50。结果表明:低温处理下各种植物组织电解质渗透率增加,并呈"S"形曲线增长,各种植物的低温半致死温度分别为:沙地柏为-46.58℃,四翅滨藜-1,四翅滨藜-2分别为-42.44℃和-40.09℃,黑油脂木为-27.7℃,伏地肤为-22.18℃。故其抗寒性从强到弱的顺序为沙地柏>四翅滨藜-1>四翅滨藜-2>驼绒藜>黑油脂木>伏地肤。  相似文献   

7.
Effect of varying freezing and thawing rates in experimental cryosurgery   总被引:5,自引:0,他引:5  
Six different freezing/thawing programs, which varied freezing rate, duration of freezing, and thawing rates, were used to investigate the effect of these factors on cell destruction in dog skin. The range of tissue temperatures produced was from -15 to -50 degrees C. The extent of destruction was evaluated by skin biopsies 3 days after cold injury. In single, short freezing/thawing cycles, the temperature reached in the tissue was the prime factor in cell death. Longer freezing time and slow thawing were also important lethal factors which increased destruction of cells. Cooling rate, whether slow or fast, made little difference in the outcome. The experiments suggested that present-day, commonly employed cryosurgical techniques, which feature fast cooling, slow thawing, and repetition of the freeze/thaw cycle, should be modified by the use of maintenance of the tissue in the frozen state for several minutes and slow thawing. Thawing should be complete before freezing is repeated. These modifications in technique will maximize tissue destruction, an important consideration in cancer cryosurgery.  相似文献   

8.
Cold-acclimated twigs of Amelanchier alnifolia Nutt. released less HCN at −4.5 C than nonacclimated twigs following slow freezing to −25 C or rapid freezing to −78 C. Cold-acclimated twigs frozen slowly to −25 C released more HCN than cold-acclimated twigs frozen only to −4.5 C. Cold-acclimated twigs frozen slowly to −25 C and then rapidly to −78 C released less HCN at −4.5 C than cold-acclimated twigs frozen rapidly to −78 C. In general, K+ efflux and the inability to reduce triphenyl tetrazolium chloride following freezing and thawing paralleled HCN release at −4.5 C. Because low K+ efflux and high triphenyl tetrazolium chloride reduction are known to depend upon membrane integrity, the increased K+ efflux and the decreased triphenyl tetrazolium chloride reduction following freezing and thawing provide indirect evidence that HCN release at −4.5 C is a measure of membrane damage in frozen cells.  相似文献   

9.
《Cryobiology》2012,64(3):285-291
While studies on the freezing of cells in suspension have been carried out extensively, corresponding studies with cells in the attached state and in tissue or tissue-equivalents are less developed. As attachment is a hallmark of the tissue state it is important to understand its impact on biophysics and viability to better apply freezing towards tissue preservation. The current study reports on observed biophysical response changes observed during freezing human dermal fibroblasts in suspension, attached cell, and fibrin tissue-equivalent models. Specifically, intracellular ice formation is shown to increase and dehydration is inferred to increase from suspension to attached systems. Biophysical model parameters fit to these experimental observations reflect the higher kinetics in the attached state. Post-thaw viability values from fast cooling rates were higher for suspension systems, and correlated well with the amount of IIF observed. On the other hand, viability values from slow cooling rates were higher for attached systems, although the degree of dehydration was predicted to be comparable to suspension cells. This disconnect between biophysics and viability predictions at slow rates clearly requires further investigation as it runs counter to our current understanding of dehydration injury in cells. This may suggest a possible protective effect of the attachment state on cell systems.  相似文献   

10.
Choi J  Bischof JC 《Cryobiology》2011,(3):285-291
While studies on the freezing of cells in suspension have been carried out extensively, corresponding studies with cells in the attached state and in tissue or tissue-equivalents are less developed. As attachment is a hallmark of the tissue state it is important to understand its impact on biophysics and viability to better apply freezing towards tissue preservation. The current study reports on observed biophysical response changes observed during freezing human dermal fibroblasts in suspension, attached cell, and fibrin tissue-equivalent models. Specifically, intracellular ice formation is shown to increase and dehydration is inferred to increase from suspension to attached systems. Biophysical model parameters fit to these experimental observations reflect the higher kinetics in the attached state. Post-thaw viability values from fast cooling rates were higher for suspension systems, and correlated well with the amount of IIF observed. On the other hand, viability values from slow cooling rates were higher for attached systems, although the degree of dehydration was predicted to be comparable to suspension cells. This disconnect between biophysics and viability predictions at slow rates clearly requires further investigation as it runs counter to our current understanding of dehydration injury in cells. This may suggest a possible protective effect of the attachment state on cell systems.  相似文献   

11.
The properties of the calcium efflux system in the yeast Saccharomyces cerevisiae were investigated. After growing the cells overnight in medium containing 45Ca, the cells were transferred to medium containing glucose, Hepes buffer (pH 5.2) and monovalent cations. The presence of potassium or sodium in the medium induced efflux of calcium from the cells. The magnitude of the efflux was dependent on the concentration of these cations in the medium. The time course of calcium efflux was analyzed, and two types of exchangeable calcium pools, which turned over at different rates, were detected: ‘Fast turnover’ and ‘slow turnover’. Increase in the concentration of monovalent cations in the medium caused an increase in the fraction of cellular calcium which turned over at a fast rate, and activation of calcium efflux from the ‘slow turnover’ calcium pool. The specific changes in the parameters of calcium efflux induced by monovalent cations were different from those reported previously to be induced by divalent cations. Both processes, i.e. activation of calcium efflux by monovalent and by divalent cations, were found to be additive, indicating that they operate via different mechanisms. Experiments using the respiratory inhibitor Antimycin A, showed that stimulation of calcium efflux by monovalent cations is energy dependent. Lanthanum ions which are known to inhibit calcium influx into yeast cells, inhibitted the activation of calcium efflux by both divalent and monovalent cations. Determination of the cationic composition of the cells indicated that the stimulation of calcium efflux was accompanied by influx of potassium or sodium into the cells.  相似文献   

12.
Free protoplasts prepared from the epicotyls of nonhardened rye seedlings were subjected to fast and slow freezing on a microscope-adapted thermoelectric stage. During rapid freezing to ?12 °C, ice formation occurred inside the protoplasts causing lethal disruption of cell and membrane organization. Under slow freezing to ?12 °C, ice formation occurred outside the protoplast with accompanying dehydration and contraction of the protoplast. Complete rehydration and recovery of the protoplasts occurred upon thawing after slow freezing. Free protoplasts therefore afford a new system for the study of mechanisms of plant cell freezing injury and resistance free of the complications presented by a cell wall.  相似文献   

13.
Infrared video thermography was used to observe ice nucleation temperatures, patterns of ice formation, and freezing rates in nonacclimated and cold acclimated leaves of a spring (cv Quest) and a winter (cv Express) canola (Brassica napus). Distinctly different freezing patterns were observed, and the effect of water content, sugars, and soluble proteins on the freezing process was characterized. When freezing was initiated at a warm subzero temperature, ice growth rapidly spread throughout nonacclimated leaves. In contrast, acclimated leaves initiated freezing in a horseshoe pattern beginning at the uppermost edge followed by a slow progression of ice formation across the leaf. However, when acclimated leaves, either previously killed by a slow freeze (2 degrees C h(-1)) or by direct submersion in liquid nitrogen, were refrozen their freezing pattern was similar to nonacclimated leaves. A novel technique was developed using filter paper strips to determine the effects of both sugars and proteins on the rate of freezing of cell extracts. Cell sap from nonacclimated leaves froze 3-fold faster than extracts from acclimated leaves. The rate of freezing in leaves was strongly dependent upon the osmotic potential of the leaves. Simple sugars had a much greater effect on freezing rate than proteins. Nonacclimated leaves containing high water content did not supercool as much as acclimated leaves. Additionally, wetted leaves did not supercool as much as nonwetted leaves. As expected, cell solutes depressed the nucleation temperature of leaves. The use of infrared thermography has revealed that the freezing process in plants is a complex process, reminding us that many aspects of freezing tolerance occur at a whole plant level involving aspects of plant structure and metabolites rather than just the expression of specific genes alone.  相似文献   

14.
Initiation, growth and cryopreservation of plant cell suspension cultures   总被引:1,自引:0,他引:1  
Methods described in this paper are confined to in vitro dedifferentiated plant cell suspension cultures, which are convenient for the large-scale production of fine chemicals in bioreactors and for the study of cellular and molecular processes, as they offer the advantages of a simplified model system for the study of plants when compared with plants themselves or differentiated plant tissue cultures. The commonly used methods of initiation of a callus from a plant and subsequent steps from callus to cell suspension culture are presented in the protocol. This is followed by three different techniques for subculturing (by weighing cells, pipetting and pouring cell suspension) and four methods for growth measurement (fresh- and dry-weight cells, dissimilation curve and cell volume after sedimentation). The advantages and disadvantages of the methods are discussed. Finally, we provide a two-step (controlled rate) freezing technique also known as the slow (equilibrium) freezing method for long-term storage, which has been applied successfully to a wide range of plant cell suspension cultures.  相似文献   

15.
Fibroblasts take up trehalose during freezing and thawing, which facilitates cryosurvival of the cells. The aim of this study was to investigate if trehalose uptake via fluid‐phase endocytosis prefreeze increases cryosurvival. To determine endocytic trehalose uptake in attached as well as suspended fibroblasts, intracellular trehalose concentrations were determined during incubation at 37°C using an enzymatically based trehalose assay. In addition, freezing‐induced trehalose uptake of extracellularly added trehalose was determined. Cryosurvival rates were determined via trypan blue staining. Intracellular trehalose contents of attached as well as suspended cells were found to increase linearly with time, consistent with fluid‐phase endocytosis. Furthermore, the intracellular trehalose concentration increased with increasing extracellular trehalose concentration (0–100 mM) in a linear fashion. Prefreeze loading of cells with trehalose via fluid‐phase endocytosis only showed increased cryosurvival rates at extracellular trehalose concentrations lower than 50 mM in the cryopreservation medium. To obtain satisfactory cryosurvival rates after endocytic preloading, extracellular trehalose is needed to prevent efflux of trehalose during freezing and thawing and for freezing‐induced trehalose uptake. At trehalose concentrations greater than 100 mM, cryosurvival rates were similar or slightly higher if cells were not loaded with trehalose prefreeze. Cells that were grown in the presence of trehalose showed a tendency to aggregate after harvesting. It is concluded that it is particularly freezing‐induced trehalose uptake that facilitates cryosurvival when trehalose is used as the sole cryoprotectant for cryopreservation of fibroblasts. Preloading with trehalose does not increase cryosurvival rates if trehalose is also added as extracellular protectant. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:229–230, 2017  相似文献   

16.
Human embryonic stem cells (hESC) hold tremendous potential in the emerging fields of gene and cell therapy as well as in basic scientific research. One of the major challenges regarding their application is the development of efficient cryopreservation protocols for hESC since current methods present poor recovery rates and/or technical difficulties which impair the development of effective processes that can handle bulk quantities of pluripotent cells. The main focus of this work was to compare different strategies for the cryopreservation of adherent hESC colonies. Slow‐rate freezing protocols using intact hESC colonies was evaluated and compared with a surface‐based vitrification approach. Entrapment within ultra‐high viscous alginate was investigated as the main strategy to avoid the commonly observed loss of viability and colony fragmentation during slow‐rate freezing. Our results indicate that entrapment beneath a layer of ultra‐high viscous alginate does not provide further protection to hESC cryopreserved through slow‐rate freezing, irrespectively of the cryomedium used. Vitrification of adherent hESC colonies on culture dishes yielded significantly higher recovery rates when compared to the slow‐rate freezing approaches investigated. The pluripotency of hESC was not changed after a vitrification/thawing cycle and during further propagation in culture. In conclusion, from the cryopreservation methods investigated in this study, surface‐based vitrification of hESC has proven to be the most efficient for the cryopreservation of intact hESC colonies, reducing the time required to amplify frozen stocks thus supporting the widespread use of these cells in research and clinical applications. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1079–1087, 2012  相似文献   

17.
The environmental physiology of Antarctic terrestrial nematodes: a review   总被引:10,自引:1,他引:9  
The environmental physiology of terrestrial Antarctic nematodes is reviewed with an emphasis on their cold-tolerance strategies. These nematodes are living in one of the most extreme environments on Earth and face a variety of stresses, including low temperatures and desiccation. Their diversity is low and declines with latitude. They show resistance adaptation, surviving freezing and desiccation in a dormant state but reproducing when conditions are favourable. At high freezing rates in the surrounding medium the Antarctic nematode Panagrolaimus davidi freezes by inoculative freezing but can survive intracellular freezing. At slow freezing rates this nematode does not freeze but undergoes cryoprotective dehydration. Cold tolerance may be aided by rapid freezing, the production of trehalose and by an ice-active protein that inhibits recrystallisation. P. davidi relies on slow rates of water loss from its habitat, and can survive in a state of anhydrobiosis, perhaps aided by the ability to synthesise trehalose. Teratocephalus tilbrooki and Ditylenchus parcevivens are fast-dehydration strategists. Little is known of the osmoregulatory mechanisms of Antarctic nematodes. Freezing rates are likely to vary with water content in Antarctic soils. Saturated soils may produce slow freezing rates and favour cryoprotective dehydration. As the soil dries freezing rates may become faster, favouring freezing tolerance. When the soil dries completely the nematodes survive anhydrobiotically. Terrestrial Antarctic nematodes thus have a variety of strategies that ensure their survival in a harsh and variable environment. We need to more fully understand the conditions to which they are exposed in Antarctic soils and to apply more natural rates of freezing and desiccation to our studies.Communicated by: I.D. Hume  相似文献   

18.
The effect of various freezing rates on the extent of hemolysis in human, bovine and ovine erythrocytes, which are known to have different cell volumes, water contents and permeabilities, was investigated. Blood in stainless steel capillary tubes was frozen at various rates by abrupt immersion of the capillaries into cooling baths at temperatures ranging from ?20° to ?130°C. Minimum lysis values were obtained at freezing temperatures of ?40°, ?50° and ?70°C with, respectively, human, bovine and ovine blood. The smallest, highly permeable sheep erythrocytes were the least damaged at the highest freezing rates; the largest human cells with the highest water content, suffered the greatest damage; intermediate values were obtained with ox blood. At the lower freezing rates, the largest, human cells were the least damaged; the highest hemolysis values were obtained with the smallest, highly permeable sheep erythrocytes; ox blood again gave intermediate values. These results are in agreement with current views that, (1) very rapid freezing results in the formation of damaging intracellular ice; (2) injury associated with slow freezing is related to the extent of dehydration or to the increase in electrolyte concentration which accompanies ice formation; (3) minimum hemolysis is obtained under those freezing conditions in which osmotic dehydration has been sufficient to prevent the formation of intracellular ice, but has left enough water in the cells to prevent the damaging effects of dehydration and high electrolyte concentrations.  相似文献   

19.
A small-volume fluorescent dye viability assay has been successfully applied to a conduction cryomicroscope freezing-thawing stage as a means of determining post-thaw survival of the nucleated mammalian cell HeLa S-3. The survival signature for HeLa S-3 cells has been determined, revealing an optimum cooling rate of −30 °C/min where the maximum survival is 30%. No cells survive for cooling rates greater than −128 °C/min and the decreased survival at supraoptimal cooling rates coincides with a linear increase in the percentage of cells containing intracellular ice from 0% at −16 °C/min to 100% at −128 °C/min.Although no data were taken to identify increased salt concentration as the mechanism responsible for cell injury at suboptimal cooling rates, the post-thaw leakage of intracellular fluorescent dye at these rates takes approximately 4–10 min as opposed to instantaneous release of dye for cells which contain ice at the high cooling rates. This indicates two modes of damage.Cell number density has been identified as an important parameter in freezing studies since survival can be enhanced at slow rates by packing cells together in groups. Packing also causes a greater fraction of the cells in a sample to have intracellular ice present, thus decreasing survival at the faster rates. These responses can be explained by assuming that the outer cells in a group protect the inner ones from solution damage at slow rates, yet restrict water flux from the inner cells at faster rates, causing an increased likelihood of intracellular ice formation. Both of these results are consistent with the dual-mechanism freezing damage theory proposed by Mazur.  相似文献   

20.
Treatment with low temperature, water stress or dimethyl sulphoxideinduces freeze tolerance in Brassica juncea, Coss and Czern.Short day-light periods for 3 or 6 d have no such effect. Percent ion efflux from leaves appears to be related to freezetolerance as determined by cell or plant survival tests. Increasedactivities of peroxidase and malate dehydrogenase are associatedwith freezing injury. Brassica juncea, freezing, water stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号