首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit.   总被引:3,自引:0,他引:3       下载免费PDF全文
B Y Chen  H W Janes 《Plant physiology》1997,113(1):235-241
ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.  相似文献   

2.
The Subunit Structure of Potato Tuber ADPglucose Pyrophosphorylase   总被引:16,自引:6,他引:10       下载免费PDF全文
ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure (JR Sowokinos, J Preiss [1982] Plant Physiol 69: 1459-1466) together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tuber subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.  相似文献   

3.
The cytosol and chloroplast fructose-bisphosphate aldolases from spinach leaves were separated by ion-exchange chromatography on DEAE-cellulose, and were purified by subsequent affinity chromatography on phosphocellulose to apparent homogeneity as judged from polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The two aldolases had specific activities of 7.2 and 7.8 units mg protein-1. Molecular weight determinations by electrophoresis in sodium dodecyl sulfate gels and by sedimentation velocity centrifugation in sucrose gradients showed that the aldolases contained four subunits of Mr 38 000 and 35 000, respectively. Antibodies against the cytosol and chloroplast aldolase from spinach leaves were raised in a guinea pig and in a rabbit, respectively. In the Ouchterlony double-diffusion test, the two aldolases did not cross-react. A small degree of cross-reaction was observed by a test in which immune complexes were adsorbed to a solid-phase support (Staphylococcus aureus Cowan I cells) and nonbound enzyme activity was determined after centrifugation. These results imply major structural differences between the two spinach leaf aldolases. Only one major aldolase could be resolved on DEAE-cellulose from corn leaves. The aldolase was purified and had a specific activity of 6.4 units X mg protein-1. The corn leaf aldolase cross-reacted with the antiserum raised against the chloroplast enzyme from spinach leaves, but not with the other antiserum. Thus, the corn leaf aldolase could be identified as a chloroplast enzyme. Since aldolase activity is mostly restricted to the bundle sheath cells of corn leaf, it was concluded that it is compartmentalized in the chloroplasts of these cells but not in chloroplasts of the mesophyll cells.  相似文献   

4.
Asp142 in the homotetrameric ADP-glucose pyrophosphorylase (ADP-Glc PPase) enzyme from Escherichia coli was demonstrated to be involved in catalysis of this enzyme [Frueauf, J.B., Ballicora, M.A. and Preiss J. (2001) J. Biol. Chem., 276, 46319-46325]. The residue is highly conserved throughout the family of ADP-Glc PPases, as well as throughout the super-family of sugar-nucleotide pyrophosphorylases. In the heterotetrameric ADP-Glc PPase from potato (Solanum tuberosum L.) tuber, the homologous residue is present in both the small (Asp145) and the large (Asp160) subunits. It has been proposed that the small subunit of plant ADP-Glc PPases is catalytic, while the large subunit is modulatory; however, no catalytic residues have been identified. To investigate the function of these conserved Asp residues in the ADP-Glc PPase from potato tuber, we used site-directed mutagenesis to introduce either an Asn or a Glu. Kinetic analysis in the direction of synthesis or pyrophosphorolysis of ADP-Glc showed a significant decrease (more than four orders of magnitude) in the specific activity of the SD145NLwt, SD145NLD160N, and SD145NLD160E mutants, while the effect was smaller (approximately two orders of magnitude) with the SD145ELwt, SD145ELD160N, and SD145ELD160E mutants. By contrast, mutation of the large subunit alone did not affect the specific activity but did alter the apparent affinity for the activator 3-phosphoglycerate, showing two types of apparent roles for this residue in the different subunits. These results show that mutation of Asp160 of the large subunit does not affect catalysis, thus the large subunit is not catalytic, and that the negative charge of Asp145 in the small subunit is necessary for enzyme catalysis.  相似文献   

5.
ADPglucose pyrophosphorylase from developing endosperm tissue of starchy maize (Zea mays) was purified 88-fold to a specific activity of 34 micromoles α-glucose-1-P produced per minute per milligram protein. Rabbit antiserum to purified spinach leaf ADPglucose pyrophosphorylase was able to inhibit pyrophosphorolysis activity of the purified enzyme by up to 90%. The final preparation yielded four major protein staining bands following sodium dodecyl sulfate polyacrylamide gel electrophoresis. When analyzed by Western blot hybridization only the fastest migrating, 54 kilodaltons, protein staining band cross-reacted with affinity purified rabbit antispinach leaf ADPglucose pyrophosphorylase immunoglobulin. The molecular mass of the native enzyme was estimated to be 230 kilodaltons. Thus, maize endosperm ADPglucose pyrophosphorylase appears to be comprised of four subunits. This is in contrast to the respective subunit and native molecular masses of 96 and 400 kilodaltons reported for a preparation of maize endosperm ADPglucose pyrophosphorylase (Fuchs RL and JO Smith 1979 Biochim Biophys Acta 556: 40-48). Proteolytic degradation of maize endosperm ADPglucose pyrophosphorylase appears to occur during incubation of crude extracts at 30°C or during the partial purification of the enzyme according to a previously reported procedure (DB Dickinson, J Preiss 1969 Arch Biochem Biophys 130: 119-128). The progressive appearance of a 53 kilodalton antigenic peptide suggested the loss of a 1 kilodalton proteolytic fragment from the 54 kilodalton subunit. The complete conservation of the 54 kilodalton subunit structure following extraction of the enzyme in the presence of phenylmethylsulfonyl fluoride and/or chymostain was observed. The allosteric and catalytic properties of the partially purified proteolytic degraded versus nondegraded enzyme were compared. The major effect of proteolysis was to enhance enzyme activity in the absence of added activator while greatly decreasing its sensitivity to the allosteric effectors 3-P-glycerate and inorganic phosphate.  相似文献   

6.
ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta.  相似文献   

7.
8.
ADPglucose pyrophosphorylase (EC 2.7.7.27) has been purified from two cyanobacteria: the filamentous, heterocystic, Anabaena PCC 7120 and the unicellular Synechocystis PCC 6803. The purification procedure gave highly purified enzymes from both cynobacteria with specific activities of 134 (Synechocystis) and 111 (Anabaena) units per milligram protein. The purified enzymes migrated as a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with molecular mass corresponding to 53 (Synechocystis) and 50 (Anabaena) kilodaltons. Tetrameric structures were determined for the native enzymes by analysis of gel filtrations. Kinetic and regulatory properties were characterized for the cyanobacterial ADPglucose pyrophosphorylases. Inorganic phosphate and 3-phosphoglycerate were the most potent inhibitor and activator, respectively. The Synechocystis enzyme was activated 126-fold by 3-phosphoglycerate, with saturation curves exhibiting sigmoidicity (A0.5 = 0.81 millimolar; nH = 2.0). Activation by 3-phosphoglycerate of the enzyme from Anabaena demonstrated hyperbolic kinetics (A0.5 = 0.12 millimolar; nH = 1.0), having a maximal stimulation of 17-fold. I0.5 values of 95 and 44 micromolar were calculated for the inhibition by inorganic phosphate of the Synechocystis and Anabaena enzyme, respectively. Pyridoxal-phosphate behaved as an activator of the cyanobacterial enzyme. It activated the enzyme from Synechocystis nearly 10-fold with high apparent affinity (A0.5 = 10 micromolar; nH = 1.8). Phenylglyoxal modified the cyanobacterial enzyme by inactivating the activity in the presence of 3-phosphoglycerate. Antibody neutralization experiments showed that anti-spinach leaf (but not anti-Escherichia coli) ADPglucose pyrophosphorylase serum inactivated the enzyme from cyanobacteria. When the cyanobacterial enzymes were resolved on sodium dodecyl sulfate- and two-dimensional polyacrylamide gel electrophoresis and probed with Western blots, only one protein band was recognized by the anti-spinach leaf serum. The same polypeptide strongly reacted with antiserum prepared against the smaller spinach leaf 51 kilodalton subunit, whereas the anti-54 kilodalton antibody raised against the spinach subunit reacted weakly to the cyanobacterial subunit. Regulatory and immunological properties of the cyanobacterial enzyme are more related to the higher plant than the bacterial enzyme. Despite this, results suggest that the ADPglucose pyrophosphorylase from cyanobacteria is homotetrameric in structure, in contrast to the reported heterotetrameric structures of the higher plant ADPglucose pyrophosphorylase.  相似文献   

9.
Purification of Spinach Leaf ADPglucose Pyrophosphorylase   总被引:13,自引:11,他引:2       下载免费PDF全文
ADPglucose pyrophosphorylase from spinach leaves has been purified to homogeneity by hydrophobic chromatography carried out in 1 molar phosphate buffer. After polyacrylamide gel electrophoresis, the preparation showed only one protein staining band that coincided with a single activity stain. The enzyme appears to be composed of two subunits with molecular weights of 44,000 and 48,000, respectively, as determined by SDS polyacrylamide gel electrophoresis. Thus ADPglucose pyrophosphorylase of spinach appears to be comprised of subunits which are similar in size to the subunits of ADPglucose pyrophosphorylase isolated from bacterial sources. In contrast, a subunit molecular weight of 96,000 has been reported for the maize endosperm ADPglucose pyrophosphorylase (Fuchs RL and JO Smith 1979 Biochim Biophys Acta 556: 40-48). The purified enzyme retains similar allosteric and catalytic properties as reported previously and is more sensitive to phosphate inhibition under “dark”-simulated conditions than under “light”-simulated conditions.  相似文献   

10.
We have isolated and characterized argininosuccinate lyase (ASL; EC 4.3.2.1) from the photosynthetic green alga, Chlamydomonas reinhardtii. The general properties of Chlamydomonas ASL are very similar to those described previously for ASLs from phylogenetically diverse organisms. The algal ASL has a native Mr, determined by gel-filtration chromatography, of 218,000 +/- 25,000, and a pI of 5.4-5.6. The Km for argininosuccinate at 37 degrees C and pH 7.5 is 0.26 mM. The subunit Mr of Chlamydomonas ASL is approx. 50,000, determined by SDS/polyacrylamide-gel electrophoresis, in contrast with a previously reported value of 39,000. Rabbit antisera prepared against the Mr-50,000 protein completely abolished ASL activity in vitro. In contrast, serum prepared against the Mr-39,000 protein was ineffective in inhibiting ASL activity. Despite the general similarity of the physical properties of Chlamydomonas ASL and those of other ASLs, antiserum raised against the algal ASL did not cross-react with ASL preparations from Escherichia coli, Saccharomyces cerevisiae or bovine liver.  相似文献   

11.
ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the regulatory step in the pathway for synthesis of bacterial glycogen and starch in plants. ADP-Glc PPases from cyanobacteria (homotetramer) and from potato (Solanum tuberosum) tuber (heterotetramer) are activated by 3-phosphoglycerate and inhibited by inorganic orthophosphate. To study the function of two putative domains, chimeric enzymes were constructed. PSSANA contained the N-terminus (292 amino acids) of the potato tuber ADP-Glc PPase small subunit (PSS) and the C-terminus (159 residues) of the Anabaena PCC 7120 enzyme. ANAPSS was the inverse chimera. These constructs were expressed separately or together with the large subunit of the potato tuber ADP-Glc PPase (PLS), to obtain homo- and heterotetrameric chimeric proteins. Characterization of these forms showed that the N-terminus determines stability and regulatory redox-dependent properties. The chimeric forms exhibited intermediate 3-phosphoglycerate activation properties with respect to the wild-type homotetrameric enzymes, indicating that the interaction between the putative N- and C-domains determines the affinity for the activator. Characterization of the chimeric heterotetramers showed the functionality of the large subunit, mainly in modulating regulation of the enzyme by the coordinate action of 3-phosphoglycerate and inorganic orthophosphate.  相似文献   

12.
Two peaks of glutamine synthetase (GS) activity were resolved by anion-exchange chromatography from the marine diatom Skeletonema costatum Grev. The second peak of activity accounted for greater than 93% of total enzyme activity, and this isoform was purified over 200-fold. Results from denaturing gel electrophoresis and gel-filtration chromatography suggest that six 70-kD subunits constitute the 400-kD native enzyme. The structure of the diatom GS, therefore, appears more similar to that of a type found in bacteria than to the type common among other eukaryotes. Apparent Michaelis constant values were 0.7 mM for NH4(+), 5.7 mM for glutamic acid, and 0.5 mM for ATP. Enzyme activity was inhibited by serine, alanine, glycine, phosphinothricin, and methionine sulfoximine. Polyclonal antiserum raised against the purified enzyme localized a single polypeptide on western blots of S. costatum cell lysates and recognized the denatured, native enzyme. Western analysis of the two peak fractions derived from anion-exchange chromatography demonstrated that the 70-kD protein was present only in the later eluting peak of enzyme activity. This form of GS does not appear to be unique to S. costatum, since the antiserum recognized a similar-sized protein in cell lysates of other chromophytic algae.  相似文献   

13.
ADP-glucose pyrophosphorylase (ADP-Glc PPase) is the enzyme responsible for the regulation of bacterial glycogen synthesis. To perform a structure-function relationship study of the Escherichia coli ADP-Glc PPase enzyme, we studied the effects of pentapeptide insertions at different positions in the enzyme and analyzed the results with a homology model. We randomly inserted 15 bp in a plasmid with the ADP-Glc PPase gene. We obtained 140 modified plasmids with single insertions of which 21 were in the coding region of the enzyme. Fourteen of them generated insertions of five amino acids, whereas the other seven created a stop codon and produced truncations. Correlation of ADP-Glc PPase activity to these modifications validated the enzyme model. Six of the insertions and one truncation produced enzymes with sufficient activity for the E. coli cells to synthesize glycogen and stain in the presence of iodine vapor. These were in regions away from the substrate site, whereas the mutants that did not stain had alterations in critical areas of the protein. The enzyme with a pentapeptide insertion between Leu(102) and Pro(103) was catalytically competent but insensitive to activation. We postulate this region as critical for the allosteric regulation of the enzyme, participating in the communication between the catalytic and regulatory domains.  相似文献   

14.
R F Troxler  F Zhang  J Hu    L Bogorad 《Plant physiology》1994,104(2):753-759
Plastid genes are transcribed by DNA-dependent RNA polymerase(s), which have been incompletely characterized and have been examined in a limited number of species. Plastid genomes contain rpoA, rpoB, rpoC1, and rpoC2 coding for alpha, beta, beta', and beta" RNA polymerase subunits that are homologous to the alpha, beta, and beta' subunits that constitute the core moiety of RNA polymerase in bacteria. However, genes with homology to sigma subunits in bacteria have not been found in plastid genomes. An antibody directed against the principal sigma subunit of RNA polymerase from the cyanobacterium Anabaena sp. PCC 7120 was used to probe western blots of purified chloroplast RNA polymerase from maize, rice, Chlamydomonas reinhardtii, and Cyanidium caldarium. Chloroplast RNA polymerase from maize and rice contained an immunoreactive 64-kD protein. Chloroplast RNA polymerase from C. reinhardtii contained immunoreactive 100- and 82-kD proteins, and chloroplast RNA polymerase from C. caldarium contained an immunoreactive 32-kD protein. The elution profile of enzyme activity of both algal chloroplast RNA polymerases coeluted from DEAE with the respective immunoreactive proteins, indicating that they are components of the enzyme. These results provide immunological evidence for sigma-like factors in chloroplast RNA polymerase in higher plants and algae.  相似文献   

15.
Gómez-Casati DF  Iglesias AA 《Planta》2002,214(3):428-434
ADP-glucose pyrophosphorylase (AGPase; EC 2.7.7.27) was purified and characterized from two wheat (Triticum aestivum L.) tissues: leaf and endosperm. The leaf enzyme, purified over 1,300-fold, was found to be a heterotetramer composed of subunits of 51 and 54 kDa and possessing regulatory properties typical of AGPases from photosynthetic tissues, being mainly regulated by 3-phosphoglycerate (activator; A0.5=0.01 mM) and orthophosphate (inhibitor; I0.5=0.2 mM). Conversely, the enzyme from wheat endosperm was insensitive to activation by 3-phosphoglycerate and other metabolites. It was, however, inhibited by orthophosphate (I0.5=0.7 mM), ADP (I0.5=3.2 mM) and fructose-1,6-bisphosphate (0.5 = 1.5 mM). All of these inhibitory actions were reversed by 3-phosphoglycerate and fructose-6-phosphate. The endosperm enzyme was found to be a heterotetramer composed of subunits of 52 and 53 kDa, which were recognized by antiserum raised to spinach leaf AGPase. The results suggest that wheat endosperm AGPase possesses distinctive regulatory properties that are relevant in vivo.  相似文献   

16.
17.
A starch deficient mutant of Arabidopsis thaliana (L.) Heynh. has been isolated in which leaf extracts contain only about 5% as much activity of ADPglucose pyrophosphorylase (EC 2.7.7.27) as the wild type. A single, nuclear mutation at a previously undescribed locus designated adg2 is responsible for the mutant phenotype. Although the mutant contained only 5% as much ADPglucose pyrophosphorylase activity as the wild type, it accumulated 40% as much starch when grown in a 12 hour photoperiod. The mutant also contained about 40% as much starch as the wild type when grown in continuous light, suggesting that the rate of synthesis regulates its steady state accumulation. Immunological analysis of leaf extracts using antibodies against the spinach 54 and 51 kilodalton (kD) ADPglucose pyrophosphorylase subunits indicated that the mutant is deficient in a cross-reactive 54 kD polypeptide and has only about 4% as much as the wild type of a cross-reactive 51 kD polypeptide. This result and genetic studies suggested that adg2 is a structural gene which codes for the 54 kD polypeptide, and provides the first functional evidence that the 54 kD polypeptide is a required component of the native ADPglucose pyrophosphorylase enzyme.  相似文献   

18.
To initiate structural studies of the ADPglucose pyrophosphorylase from spinach an improved purification procedure was devised. The modified purification scheme allowed the isolation of 20 to 30 milligrams pure enzyme from 10 kilogram of spinach leaves. Electrophoresis of the purified enzyme confirmed an earlier study which showed that the enzyme was putatively composed of two subunits (Copeland L, J Preiss 1981 Plant Physiol 68: 996-1001). The two subunits migrate as 51 and 54 kilodalton proteins upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both proteins can be detected on Western blots of leaf homogenates prepared under denaturing conditions suggesting that both subunits exist in vivo. Anion-exchange chromatography in the presence of urea allowed resolution of the 51 and 54 kilodalton proteins. They possess different N-terminal amino acid sequences and tryptic peptide maps. Western blot analysis reveals that the 51 and 54 kilodalton proteins are antigenically dissimilar. The 51 but not the 54 kilodalton protein is immunologically related to the ADPglucose pyrophosphorylase from maize endosperm and potato tuber.  相似文献   

19.
Amyloplast is the site of starch synthesis in the storage tissue of maize (Zea mays). The amyloplast stroma contains an enriched group of proteins when compared with the whole endosperm. Proteins with molecular masses of 76 and 85 kD have been identified as starch synthase I and starch branching enzyme IIb, respectively. A 112-kD protein was isolated from the stromal fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to tryptic digestion and amino acid sequence analysis. Three peptide sequences showed high identity to plastidic forms of starch phosphorylase (SP) from sweet potato, potato, and spinach. SP activity was identified in the amyloplast stromal fraction and was enriched 4-fold when compared with the activity in the whole endosperm fraction. Native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses showed that SP activity was associated with the amyloplast stromal 112-kD protein. In addition, antibodies raised against the potato plastidic SP recognized the amyloplast stromal 112-kD protein. The amyloplast stromal 112-kD SP was expressed in whole endosperm isolated from maize harvested 9 to 24 d after pollination. Results of affinity electrophoresis and enzyme kinetic analyses showed that the amyloplast stromal 112-kD SP preferred amylopectin over glycogen as a substrate in the synthetic reaction. The maize shrunken-4 mutant had reduced SP activity due to a decrease of the amyloplast stromal 112-kD enzyme.  相似文献   

20.
ADPglucose pyrophosphorylase from potato (Solanum tuberosum L.) tubers has been purified by hydrophobic chromatography on 3 aminopropyl-sepharose (Seph-C3-NH2). The purified preparation showed two closely associated protein-staining bands that coincided with enzyme activity stains. Only one major protein staining band was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The subunit molecular weight was determined to be 50,000. The molecular weight of the native enzyme was determined to be 200,000. The enzyme appeared to be a tetramer consisting of subunits of the same molecular weight. The subunit molecular weight of the enzyme is compared with previously reported subunit molecular weights of ADPglucose pyrophosphorylases from spinach leaf, maize endosperm, and various bacteria. ADPglucose synthesis from ATP and glucose 1-P is almost completely dependent on the presence of 3-P-glycerate and is inhibited by inorganic phosphate. The kinetic constants for the substrates and Mg2+ are reported. The enzyme Vmax is stimulated about 1.5- to 3-fold by 3 millimolar DTT. The significance of the activation by 3-P-glycerate and inhibition by inorganic phosphate ADPglucose synthesis catalyzed by the potato tuber enzyme is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号