首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to evaluate the mode of action of galanin (GAL) on the neuroeffector mechanism of peripheral sympathetic nerve fibers, the effects of this peptide were tested on the electrical stimulated and the unstimulated preparations of the isolated rat vas deferens in the presence of 10(-7) M atropine. The contractile responses, which were mediated predominantly by activation of postganglionic noradrenergic nerve fibers were dose-dependently potentiated by GAL in concentrations ranging from 1 to 50 nM. The facilitatory action induced by GAL in high concentrations (greater than 10 nM) usually returned to the control level at 2-3 min and were tachyphylactic. The potentiating action of GAL was not modified by pretreatment with 10(-7) M propranolol. Contractions produced by exogenous norepinephrine (NE) in the unstimulated preparations were not affected by pretreatment with low concentrations (less than 5 nM) of GAL. On the other hand, the contractions were dose-dependently potentiated 1 min after pretreatment with higher concentrations (greater than 10 nM) of GAL, which recovered 15 min after constant flow washout. Contractions developed by exogenous 5-hydroxytryptamine were not affected, or slightly inhibited, by GAL (1-50 nM). In some preparations without electrical stimulation, high concentrations of GAL caused a slight contraction, which was not blocked by pretreatment with 10(-6) M phentolamine and 10(-6) M tetrodotoxin. These results suggest that GAL receptors exist presynaptically in the rat vas deferens and that stimulation of the receptors by GAL potentiates the release of NE from the nerve terminals during postganglionic sympathetic nerve stimulation. Other mechanisms for GAL action, such as influence on neuronal uptake and catecholamine metabolism, cannot be ruled out.  相似文献   

2.
P Hedqvist 《Prostaglandins》1979,17(2):249-258
In the Tyrode's perfused rabbit kidney PGI2 (1.3 x 10(-8)-3.3 x 10(-7)M) dose-dependently inhibited vasoconstrictor responses to sympathetic nerve stimulation, as did PGE2. The dose-effect curve of the two compounds differed, making PGI2 the less potent in the low concentration and the more potent in the high. PGI2 also inhibited the vasoconstrictor response to exogenous noradrenaline, but it had no effect on transmitter release. The main metabolite of PGI2, 6-keto-PGF1 alpha, was ineffective both on noradrenaline release and on vascular responses to nerve stimulation or exogenous noradrenaline. It is suggested that PGI2, if a significant renal prostaglandin, may modulate renal neuroeffector transmission post-junctionally, thereby forming a complement to the prejunctional action of PGE2.  相似文献   

3.
The effect of endothelin-1 has been examined on isolated spontaneously beating right atria and electrically driven left atria from diabetic rats and age-matched controls. Diabetes was induced by a single i.v. injection of streptozotocin (65 mg/kg) 4–5 weeks before the experiments. Endothelin-1 (0.01–100 nM) caused concentration-dependent increases in atrial rate and force; the increases were not different between atria from diabetic and control rats. The ability of endothelin-1 to reduce chronotropic and inotropic responses to noradrenaline was also not different between the two groups. Endothelin-1 (10 nM) decreased the chronotropic response to sympathetic nerve stimulation (2 Hz, 10 s) in atria from control rats by 68 ± 5% (n = 8), but this decrease was slightly smaller (45 ± 6%, N = 8) in atria from diabetic rats.

The results provide no evidence to suggest that the diabetic state markedly alters cardiac responses to endothelin-1.  相似文献   


4.
The object of the present study was to investigate the involvement of nitric oxide (NO) in the regulation of renal vasoconstrictor responses to sympathetic nerve activation, and each of the known sympathetic cotransmitters separately, in the pig in vivo. Renal vasoconstrictor responses were elicited by sympathetic nerve stimulation, the alpha(1)-adrenoceptor agonist phenylephrine (10 nmol kg(-1), injected iv), neuropeptide Y (NPY, 120 pmol kg(-1), iv) acting on the NPY Y(1) receptor, and the stable ATP-analogue alpha,beta-methylene ATP (mATP, 10 nmol kg(-1)) presumably acting on the P2X(1) purinoceptor. Infusion of the NO-donor sodium nitroprusside, at a dose (0.1 mg kg(-1) h(-1), iv) that elevated renal blood flow (by 14 +/- 7%) and lowered mean arterial pressure (by 30 +/- 5%), inhibited renal vasoconstrictor responses to sympathetic nerve stimulation, phenylephrine, and NPY, but not to mATP. In contrast, injection of the NO synthase inhibitor Nomega-nitro-l-arginine methyl ester, at a dose (10 mg kg(-1), iv) that lowered renal blood flow (by 47 +/- 4%) and elevated mean arterial pressure (by 28 +/- 8%), potentiated the renal vasoconstriction evoked by sympathetic nerve stimulation, phenylephrine, and NPY, but not mATP. It is concluded that endogenous NO may function as an inhibitory modulator of vasoconstrictor responses to the sympathetic cotransmitters norepinephrine and NPY. In contrast, NO seems not to modify vasoconstrictor responses to the sympathetic cotransmitter ATP, a discrepancy that may be due to differences in the types of receptors and intracellular effector mechanisms.  相似文献   

5.
The effects of 6-keto-PGE1 on vascular resistance and vascular responses to sympathetic nerve stimulation and vasoconstrictor hormones were investigated in the feline mesenteric vascular bed. Infusions of 6-keto-PGE1 into the superior mesenteric artery dilated the mesenteric vascular bed and markedly inhibited vasoconstrictor responses to sympathetic nerve stimulation, norepinephrine and angiotensin II. The effects of 6-keto-PGE1 and PGE1 on vascular resistance and vasoconstrictor responses were quite similar and both substances inhibited responses to nerve stimulation and pressor hormones in a reversible manner. Responses to nerve stimulation, norepinephrine and angiotensin II were inhibited to a similar extent during infusion of 6-keto-PGE1 and PGE1. Results of these studies suggest that 6-keto-PGE1, a newly identified prostaglandin metabolite, and PGE1 possess the ability to inhibit the vasconstrictor effects of sympathetic nerve stimulation and pressor hormones by a nonspecific action on vascular smooth muscle in the feline small intestine.  相似文献   

6.
The effects were examined of endothelin-1 and U46619 on the responses to perivascular nerve stimulation of the simultaneously perfused arterial and venous vessels of the superior mesenteric arterial bed of the rat. Stimulation of the nerves at 4-16 Hz for 30 s caused frequency dependent constrictions of both the arterial and venous vessels similar to those produced by bolus doses of exogenous noradrenaline (0.1-10 nmol). Infusion of either endothelin-1 (0.1 nM) or U46619 (1-3 nM) caused small (less than or equal to 5 mmHg) increases in arterial and venous perfusion pressures and selectively potentiated the venous, but not arterial, responses to nerve stimulation. Conversely, endothelin-1 and U46619 potentiated the responses of both the arterial and venous vessels to exogenous noradrenaline. Thus, as reported previously for the arterial vessels of the rat mesentery, the isolated venous vessels constrict to perivascular nerve stimulation in a frequency dependent manner. In addition, endothelin-1 and U46619 potentiate selectively the effects of nerve stimulation on the veins.  相似文献   

7.
Y J Li  S P Duckles 《Life sciences》1991,48(24):2331-2339
The modulatory actions of gamma-aminobutyric acid (GABA) receptor agonists and omega-conotoxin GVIA (CTX) on sympathetic and sensory nerves were examined on contractile responses of the perfused rat mesentery to transmural nerve stimulation (TNS). GABA and baclofen, a selective GABAB receptor agonist, significantly inhibited vasoconstrictor responses to TNS, while muscimol, a selective GABAA receptor agonist, had no effect. In the guanethidine treated and methoxamine-contracted mesentery, TNS caused a vasodilator response which was unaffected by GABA. CTX (10(-8) M) markedly suppressed the vasoconstrictor response to TNS, but did not affect vasodilator responses. These findings suggest that in the rat mesentery: (1) GABA receptors modulate the activity of sympathetic nerves via prejunctional GABAB receptors, but do not influence sensory nerves, and (2) calcium channels which participate in sympathetic nerve activation have different properties than calcium channels in capsaicin-sensitive sensory nerves.  相似文献   

8.
The effects of synthetic atrial natriuretic factor (rANF(3-28)) on sympathetic neurotransmission in the isolated perfused rat kidney was examined. ANF (10(-10)-10(-7) M) had no significant effect on stimulus-induced (1 Hz, 2 min) overflow of endogenous norepinephrine (NE) from the rat kidney. ANF also failed to affect stimulus-induced overflow which was markedly enhanced as a result of prejunctional beta-adrenoceptor activation with isoproterenol (10(-6)M). However, over the same concentration range ANF markedly attenuated the vasoconstrictor response to nerve stimulation. In addition, ANF significantly reduced the renal vasoconstrictor responses to intra-arterial injections of NE and angiotensin II. These results suggest that, while ANF potently inhibits renal sympathetic neurotransmission by inhibition of vascular responsiveness to vasoconstrictor stimuli, ANF does not appear to have a prejunctional effect to alter NE release from renal sympathetic nerves.  相似文献   

9.
In order to evaluate the mode of action of calcitonin gene-related peptide (CGRP) on the neuroeffector mechanism of peripheral sympathetic nerve fibers, the effects of CGRP were tested on the electrical stimulated and the non-stimulated preparations of the isolated rat vas deferens. The contractile responses, which were mediated predominantly by activation of postganglionic noradrenergic nerve fibers, were dose-dependently inhibited by CGRP in concentrations ranging from 0.1 to 10 nM. The inhibitory response produced by CGRP in high concentrations (greater than 2 nM) usually returned to the control level at 20-30 min and were rarely tachyphylactic. The inhibitory action of CGRP was not modified by pretreatment with 10(-7) M propranolol or 10(-7) M atropine. Contractions produced by exogenous norepinephrine (NE) and 5-hydroxytryptamine (5-HT) in unstimulated preparations were not affected by pretreatment with CGRP in a low concentration (less than 2 nM). On the other hand, the contractions were slightly reduced 1 min after pretreatment with CGRP in high concentrations (greater than 5 nM), which recovered in 15 min after constant flow washout. High concentrations of CGRP also caused a concentration-dependent relaxation on the precontracted preparations produced by high potassium (60 mM K+) solution. These results suggest that CGRP in high concentrations (greater than 5 nM) may have a non-specific inhibitory action on the postsynaptic plasma membrane of the smooth muscle cell and a postulated CGRP receptor exists presynaptically in the rat vas deferens and that CGRP may inhibit the release of NE during adrenergic nerve stimulation.  相似文献   

10.
To determine whether atrial natriuretic factor (ANF) affects vasoconstrictor responses to electrical stimulation of sympathetic nerves or intra-arterial norepinephrine (NE), changes in perfusion pressure were measured during lumbar sympathetic nerve stimulation (LSNS, 1-8 Hz), or administration of NE (50-200 ng), in an isolated constant flow-perfused hindlimb of chloralose-anesthetized rabbit before and after intra-arterial infusion of ANF (0.5 ng.mL-1.min-1). ANF significantly attenuated responses to LSNS (relative potency, RP = 0.65) and to NE (RP = 0.47). We conclude that ANF attenuates vasoconstrictor responses to both LSNS and NE. Thus ANF alters sympathetic nervous system mediated changes in vascular resistance possibly at the neuroeffector site.  相似文献   

11.
R A Hahn 《Life sciences》1981,29(24):2501-2509
Intraperitoneal injection of pergolide (12.5–500 μg/kg) produced dose-related and sustained arterial hypotension in anesthetized spontaneously hypertensive rats (SHR) which was accompanied by bradycardia at higher tested doses. During the time frame of hypotension produced by pergolide (50 μg/kg, i.p.), diastolic blood pressure and cardiac rate responses to electrical stimulation of the sympathetic outflow in pithed SHR were attenuated, whereas comparable responses induced by exogenous norepinephrine were unaffected. Pretreatment of SHR with sulpiride abolished pergolide-induced hypotension and prevented its inhibitory effect on neurogenic vasoconstrictor responses. Sulpiride alone had no effect on responses to electrical stimulation or injected norepinephrine. Yohimbine or vagotomy plus atropine did not attenuate the hypotensive effect of pergolide while hexamethonium or pithing reversed it; increments in pressure produced by pergolide after each of the latter interventions were probably mediated by postsynaptic alpha receptors, since vasoconstrictor responses to pergolide (10?100 μg/kg, i.v.) in pithed preparations were attenuated by phentolamine.The data suggest that pergolide lowers arterial blood pressure and cardiac rate by inhibiting peripheral sympathetic nerve function through a dopaminergic mechanism. The probable site of action of pergolide is at presynaptic (neuronal) dopamine receptors which are known to mediate inhibition of neurogenic release of norepinephrine.  相似文献   

12.
R A Hahn  S K Farrell 《Life sciences》1981,28(22):2497-2504
Intraperitoneal injection of lergotrile (0.5 mg/kg) produced arterial hypotension and bradycardia for 120 and 90 minutes, respectively, in anesthesized spontaneously hypertensive rats (SHR). During this time frame, lergotrile (0.5 mg/kg, i.p.) greatly attenuated diastolic blood pressure and cardiac rate responses to electrical stimulation (0.062-4 Hz) of the sympathetic outflow in pithed SHR, but had no significant effect on comparable increments in pressure and rate produced by exogenous norepinephrine (0.01–10 μg/kg, i.v.). Pretreatment of SHR with haloperidol (2 mg/kg, i.p.) prevented lergotrile-induced hypotension and partially reversed its inhibitory effect on neurogenic vasoconstrictor responses. Haloperidol alone had no significant effect on baseline arterial blood pressure or responses to sympathetic nerve stimulation. Administration of hexamethonium (20 mg/kg, i.v.) to SHR antagonized the hypotensive response to lergotrile (0.5 mg/kg, i.p.), although hydralazine (2 mg/kg, i.p.) still produced a marked reduction in pressure.These results suggest that lergotrile produces arterial hypotension and bradycardia primarily by inhibiting peripheral sympathetic nerve function through a dopaminergic mechanism. The probable site of action of lergotrile is at presynaptic (neuronal) dopamine receptors which are known to be inhibitory to neurogenic release of norepinephrine.  相似文献   

13.
In the Tyrode's perfused rabbit kidney PGI2 (1.3 × 10−8-3.3 × 10−7M) dose-dependently inhibited vasoconstrictor responses to sympathetic nerve stimulation, as did PGE2. The dose-effect curve of the two compounds differed, making PGI2 the less potent in the low concentration and the more potent in the high. PGI2 also inhibited the vasoconstrictor response to exogenous noradrenaline, but it had no effect on transmitter release. The main metabolite of PGI2, 6-keto-PGF, was ineffective both on noradrenaline release and on vascular responses to nerve stimulation or exogenous noradrenaline. It is suggested that PGI2,if a significant renal prostaglandin, may modulate renal neuroeffector transmission post-junctionally, thereby forming a complement to the prejunctional action of PGE2.  相似文献   

14.
The effect of endothelin-1 (ET-1) on the increase in perfusion pressure and the release of noradrenaline produced by electrical field stimulation were examined in isolated perfused/superfused rat tail arteries. ET-1 (1–30 nM) increased, in an identical concentration-dependent manner, the basal perfusion pressure and the stimulation-evoked tritum overflow, whereas the basal outflow of noradrenaline was not changed by the peptide. These results show that, besides its postjunctional vasoconstrictor effect, ET-1 exerts in the rat tail artery a prejunctional action which might be involved in the modulation of stimulation-evoked noradrenaline release from postganglionic nerves.  相似文献   

15.
In congestive heart failure, renal blood flow is decreased and renal vascular resistance is increased in a setting of increased activity of both the sympathetic nervous and renin-angiotensin systems. The renal vasoconstrictor response to renal nerve stimulation is enhanced. This is associated with an abnormality in the low-pass filter function of the renal vasculature wherein higher frequencies (> or =0.01 Hz) within renal sympathetic nerve activity are not normally attenuated and are passed into the renal blood flow signal. This study tested the hypothesis that excess angiotensin II action mediates the abnormal frequency response characteristics of the renal vasculature in congestive heart failure. In anesthetized rats, the renal vasoconstrictor response to graded frequency renal nerve stimulation was significantly greater in congestive heart failure than in control rats. Losartan attenuated the renal vasoconstrictor response to a significantly greater degree in congestive heart failure than in control rats. In control rats, the frequency response of the renal vasculature was that of a first order (-20 dB/frequency decade) low-pass filter with a corner frequency (-3 dB, 30% attenuation) of 0.002 Hz and 97% attenuation (-30 dB) at > or =0.1 Hz. In congestive heart failure rats, attenuation did not exceed 45% (-5 dB) over the frequency range of 0.001-0.6 Hz. The frequency response of the renal vasculature was not affected by losartan treatment in control rats but was completely restored to normal by losartan treatment in congestive heart failure rats. The enhanced renal vasoconstrictor response to renal nerve stimulation and the associated abnormality in the frequency response characteristics of the renal vasculature seen in congestive heart failure are mediated by the action of angiotensin II on renal angiotensin II AT1 receptors.  相似文献   

16.
In anesthetized cats, we 1) compared the effects of antihypertensive agents (nifedipine, clonidine, phentolamine, propranolol, and nitroprusside) on the parasympathetic vasodilations elicited by lingual nerve (LN) stimulation in the lower lip and tongue and 2) investigated the mechanisms underlying the inhibitory effect of nifedipine on parasympathetic lower lip vasodilation. At the doses used, each antihypertensive agent reduced systemic arterial blood pressure by approximately 20 mmHg; however, the parasympathetic vasodilation elicited by LN stimulation was significantly reduced only by nifedipine. This inhibitory effect of nifedipine was not seen when LN was stimulated during ongoing repetitive stimulation of the superior cervical sympathetic trunk at 1-Hz frequency. This suggests that the ability of lip and tongue blood vessels to relax to parasympathetic stimulation is not directly impaired by this calcium channel blocker and that the inhibitory effects of nifedipine seen here probably resulted from an action on postsynaptic sites in vascular smooth muscle that caused a reduction in preexisting sympathetic vasoconstrictor tone (by inhibiting calcium influx into the vascular smooth muscle cell).  相似文献   

17.
《Life sciences》1990,47(17):PL83-PL89
The effects of 3 endothelins (ETs) on sympathetic nerve-mediated responses were investigated in the mouse isolated vas deferens. ET-1, ET-2 and, to a lesser extent, ET-3 (0.3–30 nM) caused marked and sustained potentiation of responses to field stimulation at 0.1 Hz, but had little effects, if any, on baseline tension. Incubation with nicardipine (30 nM) strongly inhibited the development of twitch potentiation by the ETs. Twitches potentiated beforehand by ET-1 (10 nM) displayed marked resistance to inhibition by nicardipine, so that 10 μM of nicardipine only reversed part of the effect of ET-1. ET-1 also enhanced both components of the response to high frequency field stimulation (2 to 16 Hz) and contractions induced by submaximal concentrations of noradrenaline, ATP or KCl. All effects of ET-1 were mimicked by Bay K 8644, an activator of L-type Ca++ channels. It is concluded that ETs increase the efficacy of sympathetic neurotransmission in the mouse vas deferens by, at least in part, a postjunctional mechanism which involves activation of L-type Ca++ channels.  相似文献   

18.
Our previous studies concluded that stimulation of the nucleus of the solitary tract (NTS) A2a receptors evokes preferential hindlimb vasodilation mainly via inducing increases in preganglionic sympathetic nerve activity (pre-ASNA) directed to the adrenal medulla. This increase in pre-ASNA causes the release of epinephrine and subsequent activation of beta-adrenergic receptors that are preferentially located in the skeletal muscle vasculature. Selective activation of NTS A1 adenosine receptors evokes variable, mostly pressor effects and increases pre-ASNA, as well as lumbar sympathetic activity, which is directed to the hindlimb. These counteracting factors may have opposite effects on the hindlimb vasculature resulting in mixed vascular responses. Therefore, in chloralose-urethane-anesthetized rats, we evaluated the contribution of vasodilator versus vasoconstrictor effects of stimulation of NTS A1 receptors on the hindlimb vasculature. We compared the changes in iliac vascular conductance evoked by microinejctions into the NTS of the selective A1 receptor agonist N6-cyclopentyladenosine (330 pmol in 50 nl volume) in intact animals with the responses evoked after beta-adrenergic blockade, bilateral adrenalectomy, bilateral lumbar sympathectomy, and combined adrenalectomy + lumbar sympathectomy. In intact animals, stimulation of NTS A1 receptors evoked variable effects: increases and decreases in mean arterial pressure and iliac conductance with prevailing pressor and vasoconstrictor effects. Peripheral beta-adrenergic receptor blockade and bilateral adrenalectomy eliminated the depressor component of the responses, markedly potentiated iliac vasoconstriction, and tended to increase the pressor responses. Lumbar sympathectomy tended to decrease the pressor and vasoconstrictor responses. After bilateral adrenalectomy plus lumbar sympathectomy, a marked vasoconstriction in iliac vascular bed still persisted, suggesting that the vasoconstrictor component of the response to stimulation of NTS A1 receptors is mediated mostly via circulating factors (e.g., vasopressin, angiotensin II, or circulating catecholamines released from other sympathetic terminals). These data strongly suggest that stimulation of NTS A1 receptors exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and beta-adrenergic vasodilation versus vasoconstriction mediated by neural and humoral factors.  相似文献   

19.
Previous studies on the effect of repeated electro-acupuncture (EA) treatments in rats with steriod-induced polycystic ovaries (PCO), EA has been shown to modulate nerve growth factor (NGF) concentration in the ovaries as well as corticotropin releasing factor (CRF) in the median eminence (ME). In the present study we tested the hypothesis that repeated EA treatments modulates sympathetic nerve activity in rats with PCO. This was done by analysing endothelin-1 (ET-1), a potent vasoconstrictor involved in ovarian functions, as well as NGF and NGF mRNA expression involved in the pathophysiological process underlying steroid-induced PCO.The main result in the present study was that concentrations of ET-1 in the ovaries were significantly lower in the PCO group receiving EA compared with the healthy control group (p < 0.05). In the hypothalamus, however, ET-1 concentrations were found to be significantly higher in the PCO group receiving EA than in the healthy control group (p < 0.05). Concentrations of ovarian NGF protein were significantly higher in the PCO control group compared with the healthy control group (p < 0.001), and these concentrations decreased significantly after repeated EA treatments compared with those in the PCO control group (p < 0.05) and were found to be the same as those in the healthy control group. In conclusion, these results indicate that EA modulates the neuroendocrinological state of the ovaries, most likely by modulating the sympathetic nerve activity in the ovaries, which may be a factor in the maintenance of steroid-induced PCO.  相似文献   

20.
The adrenergic receptor subtypes mediating the response to sympathetic nerve stimulation in the pulmonary vascular bed of the cat were investigated under conditions of controlled blood flow and constant left atrial pressure. The increase in lobar vascular resistance in response to sympathetic nerve stimulation was reduced by prazosin and to a lesser extent by yohimbine, the respective alpha 1- and alpha 2-adrenoceptor antagonists. Moreover, in animals pretreated with a beta-adrenoceptor antagonist to prevent an interaction between alpha- and beta 2-adrenoceptors, responses to nerve stimulation were reduced by prazosin, but yohimbine had no significant effect. On the other hand, in animals pretreated with a beta-adrenoceptor antagonist, yohimbine had an inhibitory effect on responses to tyramine and to norepinephrine. Propranolol had no significant effect on the response to nerve stimulation, whereas ICI 118551, a selective beta 2-adrenoceptor antagonist, enhanced responses to nerve stimulation and injected norepinephrine. The present data suggest that neuronally released norepinephrine increases pulmonary vascular resistance in the cat by acting mainly on alpha 1-adrenoceptors and to a lesser extent on postjunctional alpha 2-adrenoceptors but that this effect is counteracted by an action on presynaptic alpha 2-receptors. The present studies also suggest that neuronally released norepinephrine acts on beta 2-adrenoceptors and that the response to sympathetic nerve stimulation represents the net effect of the adrenergic transmitter on alpha 1-, alpha 2-, and beta 2-adrenoceptors in the pulmonary vascular bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号