首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seventeen arginine auxotrophic mutants of Sinorhizobium meliloti Rmd201 were isolated by random transposon Tn5 mutagenesis using Tn5 delivery vector pGS9. Based on intermediate feeding studies, these mutants were designated as argA/argB/argC/argD/argE (ornithine auxotrophs), argF/argI, argG and argH mutants. The ornithine auxotrophs induced ineffective nodules whereas all other arginine auxotrophs induced fully effective nodules on alfalfa plants. In comparison to the parental strain induced nodule, only a few nodule cells infected with rhizobia were seen in the nitrogen fixation zone of the nodule induced by the ornithine auxotroph. TEM studies showed that the bacteroids in the nitrogen fixation zone of ornithine auxotroph induced nodule were mostly spherical or oval unlike the elongated bacteroids in the nitrogen fixation zone of the parental strain induced nodule. These results indicate that ornithine or an intermediate of ornithine biosynthesis, or a chemical factor derived from one of these compounds is required for the normal development of nitrogen fixation zone and transformation of rhizobial bacteria into bacteroids during symbiosis of S. meliloti with alfalfa plants.  相似文献   

2.
Ten isoleucine+valine and three leucine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5 followed by screening of Tn5 derivatives on minimal medium supplemented with modified Holliday pools. Based on intermediate feeding, intermediate accumulation and cross-feeding studies, isoleucine+valine and leucine auxotrophs were designated as ilvB/ilvG, ilvC and ilvD, and leuC/leuD and leuB mutants, respectively. Symbiotic properties of all ilvD mutants with alfalfa plants were similar to those of the parental strain. The ilvB/ilvG and ilvC mutants were Nod-. Inoculation of alfalfa plants with ilvB/ilvG mutant did not result in root hair curling and infection thread formation. The ilvC mutants were capable of curling root hairs but did not induce infection thread formation. All leucine auxotrophs were Nod+ Fix-. Supplementation of leucine to the plant nutrient medium did not restore symbiotic effectiveness to the auxotrophs. Histological studies revealed that the nodules induced by the leucine auxotrophs did not develop fully like those induced by the parental strain. The nodules induced by leuB mutants were structurally more advanced than the leuC/leuD mutant induced nodules. These results indicate that ilvB/ilvG, ilvC and one or two leu genes of S. meliloti may have a role in symbiosis. The position of ilv genes on the chromosomal map of S. meliloti was found to be near ade-15 marker.  相似文献   

3.
Twenty one cysteine and 13 methionine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5. The cysteine auxotrophs were sulfite reductase mutants and each of these auxotrophs had a mutation in cysI/cysJ gene. The methionine auxotrophs were metA/metZ, metE and metF mutants. One hundred per cent co-transfer of Tn5-induced kanamycin resistance and auxotrophy from each Tn5-induced auxotrophic mutant indicated that each mutant cell most likely had a single Tn5 insertion. However, the presence of more than one Tn5 insertions in the auxotrophs used in our study cannot be ruled out. All cysteine and methionine auxotrophs induced nodules on alfalfa plants. The nodules induced by cysteine auxotrophs were fully effective like those of the parental strain-induced nodules, whereas the nodules induced by methionine auxotrophs were completely ineffective. The supplementation of methionine to the plant nutrient medium completely restored symbiotic effectiveness to the methionine auxotrophs. These results indicated that the alfalfa host provides cysteine but not methionine to rhizobia during symbiosis. Histological studies showed that the defective symbiosis of methionine auxotrophs with alfalfa plants was due to reduced number of infected nodule cells and incomplete transformation of bacteroids.  相似文献   

4.
Three genes encoding heme hydroperoxidases (katA, katB, and katC) have been identified in the soil bacterium Sinorhizobium meliloti. The recombinant proteins were overexpressed in Escherichia coli and purified in order to achieve a spectral and kinetic characterization. The three proteins contain heme b with high-spin Fe(III). KatB is an acidic bifunctional homodimeric catalase-peroxidase exhibiting both catalase (k(cat) = 2400 s(-1)) and peroxidase activity and having a high affinity for hydrogen peroxide (apparent K(M) = 1.6 mM). KatA and KatC are acidic monofunctional homotetrameric catalases. Although different in size (KatA is a small subunit catalase while KatC is a large subunit catalase) both enzymes exhibit the same heme type and a similar affinity for H(2)O(2) (apparent K(M) values of 160 and 150 mM). However, the turnover rate of KatA (k(cat) = 279000 s(-1)) exceeds that of KatC (k(cat) = 3100 s(-1)) significantly. The kinetic parameters are in good agreement with the physiological role of these heme proteins. KatB is the housekeeping hydroperoxidase exhibiting the highest affinity for hydrogen peroxide, while KatA has the lowest H(2)O(2) affinity but the highest k(cat)/K(M) value (1.75 x 10(6) M(-1) s(-1)), in agreement with the hydrogen peroxide inducibility of the encoding gene. Moreover, the lower catalytic efficiency of KatC (2.1 x 10(4) M(-1) s(-1)) appears to be enough for growing in the stationary phase and/or under heat or salt stress (conditions that are known to favor katC expression).  相似文献   

5.
Twenty three pyrimidine auxotrophs of Sinorhizobium meliloti Rmd201 were generated by random mutagenesis with transposon Tn5. On the basis of biochemical characters these auxotrophic mutants were classified into car, pyrC and pyrE/pyrF categories. All auxotrophs induced white nodules which were ineffective in nitrogen fixation. Light and electron microscopic studies revealed that the nodules induced by pyrC mutants were more developed than the nodules of car mutants. Similarly the nodules induced by pyrE/pyrF mutants had more advanced structural features than the nodules of pyrC mutants. The nodule development in case of pyrE/pyrF mutants was not to the extent observed in the parental strain. These results indicated that some of the intermediates and/or enzymes of pyrimidine biosynthetic pathway of S. meliloti play a key role in bacteroidal transformation and nodule development.  相似文献   

6.
ExoM is a beta(1-4)-glucosyltransferase involved in the assembly of the repeat unit of the exopolysaccharide succinoglycan from Sinorhizobium meliloti. By comparing the sequence of ExoM to those of other members of the Pfam Glyco Domain 2 family, most notably SpsA (Bacillus subtilis) for whom the three-dimensional structure has been resolved, three potentially important aspartic acid residues of ExoM were identified. Single substitutions of each of the Asp amino acids at positions 44, 96, and 187 with Ala resulted in the loss of mutant recombinant protein activity in vitro as well as the loss of succinoglycan production in an in vivo rescue assay. Mutants harboring Glu instead of Asp-44 or Asp-96 possessed no in vitro activity but could restore succinoglycan production in vivo. However, replacement of Asp-187 with Glu completely inactivated ExoM as judged by both the in vitro and in vivo assays. These results indicate that Asp-44, Asp-96, and Asp-187 are essential for the activity of ExoM. Furthermore, these data are consistent with the functions proposed for each of the analogous aspartic acids of SpsA based on the SpsA-UDP structure, namely, that Asp-44 and Asp-96 are involved in UDP substrate binding and that Asp-187 is the catalytic base in the glycosyltransferase reaction.  相似文献   

7.
Aromatic amino acid auxotrophs of the methanol-utilizing yeast Hansenula polymorpha were effectively selected by the use of nystatin and a medium that inhibits the growth of tyrosine auxotrophs. The procedure resulted in a frequency of aromatic auxotrophs of 2% of survivors and an enrichment of 20-fold. The new procedure also takes less time than traditional procedures. Of the auxotrophic mutants isolated, two-thirds required tyrosine and the remainder were tyrosine-phenylalanine double auxotrophs.  相似文献   

8.
The relationship between whole-cell redox potential, cytochrome composition in free-living culture and symbiotic activity of Sinorhizobium meliloti was studied. Three Tn5-induced mutants with increased cellular redox potential were generated. Stationary cultures of mutants Tb9 and Tb16 in contrast to the parental strain produced the b-type terminal oxidase that may be similar to the symbiotically essential cytochrome oxidase cbb3 of Bradyrhizobium japonicum. Increase in the symbiotic effectiveness of all three mutants and in O2 consumption rate in free-living cultures was observed. Mutants Tb1 and Tb16 were also characterized by an increase in fixNOQP gene expression. Consequently, the mutations probably affect at least two different steps of rhizobial respiratory metabolism operating both in free-living cells and endosymbiotic forms.  相似文献   

9.
Aromatic amino acid auxotrophs of the methanol-utilizing yeast Hansenula polymorpha were effectively selected by the use of nystatin and a medium that inhibits the growth of tyrosine auxotrophs. The procedure resulted in a frequency of aromatic auxotrophs of 2% of survivors and an enrichment of 20-fold. The new procedure also takes less time than traditional procedures. Of the auxotrophic mutants isolated, two-thirds required tyrosine and the remainder were tyrosine-phenylalanine double auxotrophs.  相似文献   

10.
A mutation in the ilvC gene of Sinorhizobium meliloti 1021 determines a symbiotically defective phenotype. ilvC mutants obtained from different S. meliloti wild-type strains are able to induce root hair deformation on alfalfa roots and show variable activation of the common nodulation genes nodABC. All of these mutants are noninfective. The presence of extra copies of nodD3-syrM in an IlvC- background does not promote nod expression but allows the detection of low levels of Nod factor production. The sulphation of the Nod factor metabolites, however, is not affected. Furthermore, IlvC- strains induce a specific pattern of starch accumulation on alfalfa roots as well as of early nodulin expression. Hence, the pleiotropic action of the ilvC gene in S. meliloti may reveal novel complexities involved in the symbiotic interaction.  相似文献   

11.
12.
A paradigm change in the treatment of cancer is urgently needed. Bacteria offer many advantages, including natural cytotoxity, motility, chemotaxis and a relative large genome to manipulate for tumor targeting. Salmonella, Clostridium, Bifodobacterium and Escherichia coli have been shown to control tumor growth and promote survival in animal models. We have developed an effective bacterial cancer therapy by engineering Salmonella typhimurium amino acid auxotrophs which grow in viable as well as necrotic areas of tumors, but not normal tissue. The S. typhimurium A1-R mutant, which is auxotrophic for leu-arg, is tumor-seeking and has antitumor efficacy against the major types of cancer. The approach described here is a significant improvement over previous bacterial tumor-therapy strategies that require combination with toxic chemotherapy.  相似文献   

13.
Rhizobia form a symbiotic relationship with plants of the legume family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. We have examined the importance of glutathione (GSH) during free-living growth and symbiosis of Sinorhizobium meliloti. An S. meliloti mutant strain (SmgshA) which is unable to synthesize GSH due to a gene disruption in gshA, encoding the enzyme for the first step in the biosynthesis of GSH, was unable to grow under nonstress conditions, precluding any nodulation. In contrast, an S. meliloti strain (SmgshB) with gshB, encoding the enzyme involved in the second step in GSH synthesis, deleted was able to grow, indicating that gamma-glutamylcysteine, the dipeptide intermediate, can partially substitute for GSH. However, the SmgshB strain showed a delayed-nodulation phenotype coupled to a 75% reduction in the nitrogen fixation capacity. This phenotype was linked to abnormal nodule development. Both the SmgshA and SmgshB mutant strains exhibited higher catalase activity than the wild-type S. meliloti strain, suggesting that both mutant strains are under oxidative stress. Taken together, these results show that GSH plays a critical role in the growth of S. meliloti and during its interaction with the plant partner.  相似文献   

14.
The Sinorhizobium meliloti nlpD gene consists of 1,539 nucleotides and codes for 512 amino acids. Expression of the nlpD gene as a histidine-tagged protein in Escherichia coli resulted in the production of a 57-kDa protein. The deduced polypeptide sequence of NlpD contains one unusual hexamer repeat (KVQRGQ), one tetramer (TVTV) and two direct and inverted trimer repeats (KAA, AAK). The N-terminal amino acid residues displayed similarity with signal peptides of secreted bacterial lipoproteins. Mutations of the S. meliloti nlpD gene caused decreased survival of cells in the stationary phase.  相似文献   

15.
16.
Variation in genome size and content is common among bacterial strains. Identifying these naturally occurring differences can accelerate our understanding of bacterial attributes, such as ecological specialization and genome evolution. In this study, we used representational difference analysis to identify potentially novel sequences not present in the sequenced laboratory strain Rm1021 of the nitrogen-fixing bacterium Sinorhizobium meliloti. Using strain Rm1021 as the driver and the type strain of S. meliloti ATCC 9930, which has a genome size approximately 370 kilobases bigger than that of strain Rm1021, as the tester, we identified several groups of sequences in the ATCC 9930 genome not present in strain Rm1021. Among the 85 novel DNA fragments examined, 55 showed no obvious homologs anywhere in the public databases. Of the remaining 30 sequences, 24 contained homologs to the Rm1021 genome as well as unique segments not found in Rm1021, 3 contained sequences homologous to those published for another S. meliloti strain but absent in Rm1021, 2 contained sequences homologous to other symbiotic nitrogen-fixing bacteria (Rhizobium etli and Bradyrhizobium japonicum), and 1 contained a sequence homologous to a gene in a non-nitrogen-fixing species, Pseudomonas sp. NK87. Using PCR, we assayed the distribution of 12 of the above 85 novel sequences in a collection of 59 natural S. meliloti strains. The distribution varied widely among the 12 novel DNA fragments, from 1.7% to 72.9%. No apparent correlation was found between the distribution of these novel DNA sequences and their genotypes obtained using multilocus enzyme electrophoresis. Our results suggest potentially high rates of gene gain and loss in S. meliloti genomes.  相似文献   

17.
Sinorhizobium meliloti has two nonspecific periplasmic acid phosphatases. The NapD enzyme has been previously described, and a second acid phosphatase, NapE, is described in this report. NapE was partially purified from an S. meliloti napD mutant and characterized with respect to molecular mass and substrate range. As predicted from SDS-PAGE analysis, the subunit molecular mass of NapE is approximately 35.8 kDa and gel filtration experiments estimated the native molecular mass to be approximately 70 kDa, indicating that the active enzyme is a homodimer. NapE demonstrated significant activity with p-nitrophenyl phosphate, phenyl phosphate, and alpha-naphthyl-phosphate. The pH optimum was between 4.5 and 5.0. The gene encoding NapE was also sequenced and the inferred amino acid sequence from the predicted ORF was found to be 60% identical and 75% similar to that encoded by napD. An S. meliloti napE mutant was constructed and assessed for symbiotic competence. This mutant did not differ from the wild-type parent strain in nodulation and symbiotic efficiency.  相似文献   

18.
19.
The NAD(+)-dependent malic enzyme (DME) and the NADP(+)-dependent malic enzyme (TME) of Sinorhizobium meliloti are representatives of a distinct class of malic enzymes that contain a 440-amino-acid N-terminal region homologous to other malic enzymes and a 330-amino-acid C-terminal region with similarity to phosphotransacetylase enzymes (PTA). We have shown previously that dme mutants of S. meliloti fail to fix N(2) (Fix(-)) in alfalfa root nodules, whereas tme mutants are unimpaired in their N(2)-fixing ability (Fix(+)). Here we report that the amount of DME protein in bacteroids is 10 times greater than that of TME. We therefore investigated whether increased TME activity in nodules would allow TME to function in place of DME. The tme gene was placed under the control of the dme promoter, and despite elevated levels of TME within bacteroids, no symbiotic nitrogen fixation occurred in dme mutant strains. Conversely, expression of dme from the tme promoter resulted in a large reduction in DME activity and symbiotic N(2) fixation. Hence, TME cannot replace the symbiotic requirement for DME. In further experiments we investigated the DME PTA-like domain and showed that it is not required for N(2) fixation. Thus, expression of a DME C-terminal deletion derivative or the Escherichia coli NAD(+)-dependent malic enzyme (sfcA), both of which lack the PTA-like region, restored wild-type N(2) fixation to a dme mutant. Our results have defined the symbiotic requirements for malic enzyme and raise the possibility that a constant high ratio of NADPH + H(+) to NADP in nitrogen-fixing bacteroids prevents TME from functioning in N(2)-fixing bacteroids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号