首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] plays a critical role in maintaining calcium and phosphate homeostasis and bone formation but also exhibits antiproliferative activity on many cancer cells, including prostate cancer. We have shown that the antiproliferative actions of 1,25-(OH)2D3 in the LNCaP human prostate cancer cell line are mediated in part by induction of IGF binding protein-3 (IGFBP-3). The purpose of this study was to determine the molecular mechanism involved in 1,25-(OH)2D3 regulation of IGFBP-3 expression and to identify the putative vitamin D response element (VDRE) in the IGFBP-3 promoter. We cloned approximately 6 kb of the IGFBP-3 promoter sequence and demonstrated its responsiveness to 1,25-(OH)2D3 in transactivation assays. Computer analysis identified a putative VDRE between -3296/-3282 containing the direct repeat motif GGTTCA ccg GGTGCA that is 92% identical with the rat 24-hydroxylase distal VDRE. In EMSAs, the vitamin D receptor (VDR) showed strong binding to the putative IGFBP-3 VDRE in the presence of 1,25-(OH)2D3. Supershift assays confirmed the presence of VDR in the IGFBP-3 VDRE complex. Chromatin immunoprecipitation assay demonstrated that 1,25-(OH)2D3 recruited the VDR/retinoid X receptor heterodimer to the VDRE site in the natural IGFBP-3 promoter in intact cells. In transactivation assays, the putative VDRE coupled to a heterologous simian virus 40 promoter construct was induced 2-fold by 1,25-(OH)2D3. Mutations in the VDRE resulted in a loss of inducibility confirming the critical hexameric sequence. In conclusion, we have identified a functional VDRE in the distal region of the human IGFBP-3 promoter. The induction of IGFBP-3 by 1,25-(OH)2D3 appears to be directly mediated via VDR interaction with this VDRE.  相似文献   

5.
6.
Receptor activator of NFkappa-B ligand (RANKL) is essential for osteoclast formation, function, and survival. Although RANKL mRNA and protein levels are modulated by 1,25(OH)2D3 and other osteoactive factors, regulatory mechanisms remain unclear. In this study, we show that 2 kb or 2 kb plus exon 1 of a RANKL promoter sequence conferred neither 1,25(OH)2D3 response nor tissue specificity. The histone deacetylase inhibitors trichostatin A (TSA) and sodium butyrate (SB), however, strongly increased RANKL promoter activity. A series of 5'-deleted RANKL promoter constructs from 2,020 to 110 bp showed fourfold increased activity after TSA treatment. TSA also dose dependently enhanced endogenous RANKL mRNA expression with 50 microM of TSA treatment causing equivalent RANKL expression to that seen with 1 nM 1,25(OH)2D3. Using a chromatin immunoprecipitation (ChIP) assay we showed that TSA significantly enhanced association of both acetylated histone H3 and H4 on the RANKL promoter, with H4 > H3. A similar increase in acetylated histone H4 on the RANKL gene locus was seen after 1,25(OH)2D3 treatment, but ChIP assay did not reveal localization of VDR/RXR heterodimers on the putative VDRE of the RANKL promoter. To explore the role of H4 acetylation of 1,25(OH)2D3 stimulated RANKL, we added both TSA and 1,25(OH)2D3 together. While the combination further increased acetylation of H4 on the RANKL locus, surprisingly, TSA inhibited 1,25(OH)2D3-induced RANKL mRNA expression by 70% at all doses of 1 ,25(OH)2D3 studied. These results suggest that TSA increases of endogenous expression of RANKL involve enhanced acetylation of histones on the proximal RANKL promoter. Preventing deacetylation, however, blocks 1,25(OH)2D3 action on this gene. Chromatin remodeling is therefore involved in RANKL expression.  相似文献   

7.
Vitamin D receptor (VDR) and the functionally active form of its ligand, 1,25-(OH)2D3, have been implicated in female reproduction function and myeloid leukemic cell differentiation. HOXA10 is necessary for embryo implantation and fertility, as well as hematopoeitic development. In this study, we identified a direct role of vitamin D in the regulation of HOXA10 in primary human endometrial stromal cells, the human endometrial stromal cell line (HESC), and in the human myelomonocytic cell line, U937. Treatment of primary endometrial stromal cells, or the cell lines HESC and U937 with 1,25-(OH)2D3 increased HOXA10 mRNA and protein expression. VDR mRNA and protein were detected in primary uterine stromal cells as well as HESC and U937 cells. We cloned the HOXA10 upstream regulatory sequence and two putative vitamin D response elements (VDRE) into luciferase reporter constructs and transfected primary stromal cells and HESC. One putative VDRE (P1: -385 to -434 bp upstream of HOXA10) drove reporter gene expression in response to treatment with 1,25-(OH)2D3. In EMSA, VDR demonstrated binding to the HOXA10 VDRE in the presence of 1,25-(OH)2D3. 1,25-(OH)2D3 up-regulates HOXA10 expression by binding VDR and interacting with a VDRE in the HOXA10 regulatory region. Direct regulation of HOXA10 by vitamin D has implications for fertility and myeloid differentiation.  相似文献   

8.
9.
10.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and transforming growth factor beta (TGFbeta) potently induce 5-lipoxygenase (5-LO) in myeloid cells. We analyzed vitamin D receptor (VDR) binding to putative vitamin D response elements within the 5-LO promoter and analyzed its function by reporter gene analysis. Binding of VDR and retinoid X receptor to the promoter region was shown in DNase I footprinting, electrophoretic mobility shift and chromatin immunoprecipitation assays. However, the identified VDR binding region did not mediate induction of reporter gene activity by 1,25(OH)(2)D(3)/TGFbeta, neither in the 5-LO promoter context nor with the thymidine kinase (tk) promoter. Insertion of the rat atrial natriuretic factor VDRE in reporter plasmids containing the 5-LO promoter diminished induction by 1,25(OH)(2)D(3)/TGFbeta as compared with the tk promoter. Similarly, low inductions were obtained when cells were transiently or stably transfected with constructs containing various 5-LO promoter regions. Concerning basal promoter activity, we identified a positive regulatory region (-779 to -229), which includes the VDR binding region, in 5-LO-positive MonoMac6 cells. In summary, the VDR/RXR complex binds to putative VDREs in the 5-LO promoter, but other sequences outside the 5-LO promoter seem to be responsible or additionally required for the prominent induction of 5-LO mRNA expression by 1,25(OH)(2)D(3) and TGFbeta.  相似文献   

11.
New insights into the mechanisms of vitamin D action   总被引:17,自引:0,他引:17  
  相似文献   

12.
13.
14.
15.
16.
17.
18.
1,25 Dihydroxyvitamin D (1,25(OH)(2)D) regulates the differentiation of keratinocytes. 1,25(OH)(2)D raises intracellular free calcium (Cai) as a necessary early step toward stimulating differentiation. 1,25(OH)(2)D induces the calcium sensing receptor (CaR) in keratinocytes and enhances the calcium response of these cells. Activation of the CaR by calcium increases intracellular free calcium by a mechanism involving phospholipase C (PLC) cleavage of phosphatidylinositolbisphosphate into inositoltrisphosphate (IP(3)) and diacylglycerol (DG). 1,25(OH)(2)D induces the family of PLCs. PLC-gamma1 has a DR6 VDRE in its promoter which binds and is activated by VDR/RAR rather than VDR/RXR. The involucrin gene, which encodes a critical component of the cornified envelope, contains a DR3 VDRE in its promoter that acts in conjunction with a nearby AP-1 site. The sequential regulation of these genes is critical for the differentiation process. In undifferentiated keratinocytes, the VDR binds preferentially to the DRIP complex of coactivators. However, with differentiation DRIP 205 is no longer produced, and the VDR switches partners to the SRC family (SRC2 and 3). These studies suggest that at least part of the sequential activation of genes required during keratinocyte differentiation is regulated by the change (availability) of these different coactivator complexes.  相似文献   

19.
20.
The rapid, non-genomic actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] have been well described, however, the role of the nuclear vitamin D receptor (VDR) in this pathway remains unclear. To address this question, we used VDR(+/+) and VDR(-/-) osteoblasts isolated from wild-type and VDR null mice to study the increase in intracellular calcium ([Ca(2+)](i)) and activation of protein kinase C (PKC) induced by 1,25(OH)(2)D(3). Within 1 min of 1,25(OH)(2)D(3) (100 nM) treatment, an increase of 58 and 53 nM in [Ca(2+)](i) (n = 3) was detected in VDR(+/+) and VDR(-/-) cells, respectively. By 5 min, 1,25(OH)(2)D(3) caused a 2.1- and 1.9-fold increase (n = 6) in the phosphorylation of PKC substrate peptide acetylated-MBP(4-14) in VDR(+/+) and VDR(-/-) osteoblasts. The 1,25(OH)(2)D(3)-induced phosphorylation was abolished by GF109203X, a general PKC inhibitor, in both cell types, confirming that the secosteroid induced PKC activity. Moreover, 1,25(OH)(2)D(3) treatment resulted in the same degree of translocation of PKC-alpha and PKC-delta, but not of PKC-zeta, from cytosol to plasma membrane in both VDR(+/+) and VDR(-/-) cells. These experiments demonstrate that the 1,25(OH)(2)D(3)-induced rapid increases in [Ca(2+)](i) and PKC activity are neither mediated by, nor dependent upon, a functional nuclear VDR in mouse osteoblasts. Thus, VDR is not essential for these rapid actions of 1,25(OH)(2)D(3) in osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号