首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Reservoirs modify riverine ecosystems worldwide, and often with deleterious impacts on native biota. The immediate effects of reservoirs on native fish species below dams and in impounded reaches have received considerable attention, but it is unclear how reservoirs may affect fish species at larger spatial and temporal scales. Documented declines of stream fish populations in direct tributaries of reservoirs suggest reservoir pools may reduce gene flow among historically connected populations. 2. Because of increased predator densities in reservoirs and the extent of habitat alteration in impounded reaches, I predicted reservoir habitats would reduce gene flow among small‐bodied fish populations separated by reservoir habitat. I used microsatellite markers to assess the spatial genetic structure of populations of the red shiner (Cyprinella lutrensis), in a reservoir‐fragmented stream network (Lake Texoma, U.S.A.). I also tested the prediction that populations in two direct tributaries that have experienced population declines would have low genetic diversity. Individuals were collected from six sites upstream of the reservoir, three sites in the reservoir and three sites in direct tributaries of the reservoir during 2008 and 2009. 3. Results indicate that most populations were isolated by distance with little divergence among populations. In one direct tributary population, however, there was substantial genetic divergence, and genetic diversity was significantly lower than in other populations. Gene flow also seemed to be lower in reservoir habitats than in intact stream habitats, suggesting reservoir habitats may be reducing gene flow among the reservoir‐separated populations. These results indicate that reservoirs may reduce gene flow among reservoir‐fragmented stream fish populations, altering the evolutionary trajectories of fragmented populations.  相似文献   

2.
Interacting species of pollinator–host systems, especially the obligate ones, are sensitive to habitat fragmentation, due to the nature of mutual dependence. Comparative studies of genetic structure can provide insights into how habitat fragmentation contributes to patterns of genetic divergence among populations of the interacting species. In this study, we used microsatellites to analyse genetic variation in Chinese populations of a typical mutualistic system – Ficus pumila and its obligate pollinator Wiebesia sp. 1 – in a naturally fragmented landscape. The plants and wasps showed discordant patterns of genetic variation and geographical divergence. There was no significant positive relationship in genetic diversity between the two species. Significant isolation‐by‐distance (IBD) patterns occurred across the populations of F. pumila and Wiebesia sp. 1 as whole, and IBD also occurred among island populations of the wasps, but not the plants. However, there was no significant positive relationship in genetic differentiation between them. The pollinator populations had significantly lower genetic variation in small habitat patches than in larger patches, and three island pollinator populations showed evidence of a recent bottleneck event. No effects of patch size or genetic bottlenecks were evident in the plant populations. Collectively, the results indicate that, in more fragmented habitats, the pollinators, but not the plants, have experienced reduced genetic variation. The contrasting patterns have multiple potential causes, including differences in longevity and hence number of generations experiencing fragmentation; different dispersal patterns, with the host's genes dispersed as seeds as well as a result of pollen dispersal via the pollinator; asymmetrical responses to fluctuations in partner populations; and co‐existence of a rare second pollinating wasp on some islands. These results indicate that strongly interdependent species may respond in markedly different ways to habitat fragmentation.  相似文献   

3.
The intensification of agricultural land use over wide parts of Europe has led to the decline of semi-natural habitats, such as extensively used meadows, with those that remain often being small and isolated. These rapid changes in land use during recent decades have strongly affected populations inhabiting these ecosystems. Increasing habitat deterioration and declining permeability of the surrounding landscape matrix disrupt the gene flow within metapopulations. The burnet moth species Zygaena loti has suffered strongly from recent habitat fragmentation, as reflected by its declining abundance. We have studied its population genetic structure and found a high level of genetic diversity in some of the populations analysed, while others display low genetic diversity and a lack of heterozygosity. Zygaena loti was formerly highly abundant in meadows and along the skirts of forests. However, the species is currently restricted to isolated habitat remnants, which is reflected by the high genetic divergence among populations (F ST: 0.136). Species distribution modelling as well as the spatial examination of panmictic clusters within the study area strongly support a scattered population structure for this species. We suggest that populations with a high level of genetic diversity still represent the former genetic structure of interconnected populations, while populations with low numbers of alleles, high F IS values, and a lack of heterozygosity display the negative effects of reduced interconnectivity. A continuous exchange of individuals is necessary to maintain high genetic variability. Based on these results, we draw the general conclusion that more common taxa with originally large population networks and high genetic diversity suffer stronger from sudden habitat fragmentation than highly specialised species with lower genetic diversity which have persisted in isolated patches for long periods of time.  相似文献   

4.
Habitat fragmentation and its genetic consequences are a critically important issue in evaluating the evolutionary penalties of human habitat modification. Here, we examine the genetic structure and diversity in naturally subdivided and artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi), a small fish restricted to discrete coastal lagoons and estuaries in California, USA. We use five naturally fragmented coastal populations from a 300‐ km spatial scale as a standard to assess migration and drift relative to eight artificially fragmented bay populations from a 30‐ km spatial scale. Using nine microsatellite loci in 621 individuals, and a 522‐base fragment of mitochondrial DNA control region from 103 individuals, we found striking differences in the relative influences of migration and drift on genetic variation at these two scales. Overall, the artificially fragmented populations exhibited a consistent pattern of higher genetic differentiation and significantly lower genetic diversity relative to the naturally fragmented populations. Thus, even in a species characterized by habitat isolation and subdivision, further artificial fragmentation appears to result in substantial population genetic consequences and may not be sustainable.  相似文献   

5.
Endangered species worldwide exist in remnant populations, often within fragmented landscapes. Although assessment of genetic diversity in fragmented habitats is very important for conservation purposes, it is usually impossible to evaluate the amount of diversity that has actually been lost. Here, we compared population structure and levels of genetic diversity within populations of spotted suslik Spermophilus suslicus, inhabiting two different parts of the species range characterized by different levels of habitat connectivity. We used microsatellites to analyze 10 critically endangered populations located at the western part of the range, where suslik habitat have been severely devastated due to agriculture industrialization. Their genetic composition was compared with four populations from the eastern part of the range where the species still occupies habitat with reasonable levels of connectivity. In the western region, we detected extreme population structure (F ST = 0.20) and levels of genetic diversity (Allelic richness ranged from 1.45 to 3.07) characteristic for highly endangered populations. Alternatively, in the eastern region we found significantly higher allelic richness (from 5.09 to 5.81) and insignificant population structure (F ST = 0.03). As we identified a strong correlation between genetic and geographic distance and a lack of private alleles in the western region, we conclude that extreme population structure and lower genetic diversity is due to recent habitat loss. Results from this study provide guidelines for conservation and management of this highly endangered species.  相似文献   

6.
We investigated the association of habitat fragmentation with genetic structure of male black grouse Tetrao tetrix. Using 14 microsatellites, we compared the genetic differentiation of males among nine localities in continuous lowland habitats in Finland to the genetic differentiation among 14 localities in fragmented habitats in the Alps (France, Switzerland and Italy). In both areas, we found significant genetic differentiation. However, the average differentiation, measured as theta, was more than three times higher in the Alps than in Finland. The greater differentiation found in the Alps is probably due to the presence of mountain ridges rising above natural habitats of the species, which form barriers to gene flow, and to a higher influence of genetic drift resulting from lower effective sizes in highly fragmented habitats. The detection of isolation by distance in the Alps suggests that gene flow among populations does occur. The genetic variability measured as gene diversity HE and allelic richness A was lower in the Alps than in Finland. This could result from the higher fragmentation and/or from the fact that populations in the Alps are isolated from the main species range and have a lower effective size than in Finland. This study suggests that habitat fragmentation can affect genetic structure of avian species with relatively high dispersal propensities.  相似文献   

7.
It is difficult to assess the relative influence of anthropogenic processes (e.g., habitat fragmentation) versus species’ biology on the level of genetic differentiation among populations when species are restricted in their distribution to fragmented habitats. This issue is particularly problematic for Australian rock-wallabies (Petrogale sp.), where most previous studies have examined threatened species in anthropogenically fragmented habitats. The short-eared rock-wallaby (Petrogale brachyotis) provides an opportunity to assess natural population structure and gene flow in relatively continuous habitat across north-western Australia. This region has reported widespread declines in small-to-medium sized mammals, making data regarding the influence of habitat connectivity on genetic diversity important for broad-scale management. Using non-invasive and standard methods, 12 microsatellite loci and mitochondrial DNA were compared to examine patterns of population structure and dispersal among populations of P. brachyotis in the Kimberley, Western Australia. Low genetic differentiation was detected between populations separated by up to 67?km. The inferred genetic connectivity of these populations suggests that in suitable habitat P. brachyotis can potentially disperse far greater distances than previously reported for rock-wallabies in more fragmented habitat. Like other Petrogale species male-biased dispersal was detected. These findings suggest that a complete understanding of population biology may not be achieved solely by the study of fragmented populations in disturbed environments and that management strategies may need to draw on studies of populations (or related species) in undisturbed areas of contiguous habitat.  相似文献   

8.
Although typically considered as a forest specialist species, the European pine marten (Martes martes) is an example of a number of species that have recently been found to also live in fragmented landscapes. Considering that habitat fragmentation and loss is a major threat to the persistence of mammal species in such landscapes, we investigated the association between habitat characteristics and genetic diversity across four pine marten populations occupying contrasting landscapes in France with different degrees of forest availability and fragmentation. Bayesian and multivariate clustering methods evidenced the presence of three genetic clusters and isolation by distance between populations was found at the national scale. We found an overall moderate level of genetic variability, but no evidence of a bottleneck or deficit in heterozygosity in any of the populations. No pattern of isolation by distance was found within the populations, except in the one located in the Pyrenean Mountains which appeared partly isolated from other continental populations and also showed a lower level of genetic diversity. No obvious association between the pattern of genetic variability and the pattern of forested habitat characteristics was found. We discuss the possibility that pine martens show greater behavioural plasticity than typically expected allowing them to adapt to different habitat types.  相似文献   

9.
Natural habitats, and the populations they sustain, are becoming increasingly fragmented by human activities. Parallels between ‘true’ islands and ‘habitat’ islands suggest that standing levels of individual genetic diversity in naturally fragmented populations may predict the genetic fate of their anthropogenically fragmented counterparts, but this hypothesis remains largely untested. We compared neutral-locus genetic diversity of individual song sparrows (Melospiza melodia) breeding in a naturally fragmented landscape (small coastal islands) to that of song sparrows in similar-sized ‘urban islands’ separated by roads and housing developments rather than by water. Individuals on coastal islands were more heterozygous and less inbred than those in urban islands. Estimates of population genetic structuring (assessed by pairwise genetic differentiation and Bayesian clustering methods) and contemporary dispersal (based on assignment tests) revealed little structure within either landscape, suggesting that lack of connectivity at the geographic scale we investigated cannot explain the reduced heterozygosity of urban birds. However, within-site genetic similarity was higher in the urban than the coastal landscape. Assuming that historic genetic diversity was similar in these two environments, our findings suggest that anthropogenically fragmented populations may lose genetic diversity faster than their naturally fragmented counterparts.  相似文献   

10.
陈小勇 《生态学报》2000,20(5):884-892
生境片断化是指大而连续的生境变成空间隔离的小种群的现象。生境片断化对植物种群遗传效应包括生境片断化过程中的取样效应及其后的小种群效应(遗传漂变、近交等)。理论研究表明,生境片断化后,植物种群的遗传变异程度将降低,而残留的小种群间的遗传分化程度将升高。然而对一些植物的研究表明,生境片断化对植物种群的遗传效应要受其他一些因素的影响,如世代长度、片断化时间、片断种群的大小、基因流的改变等。最后,针对生境  相似文献   

11.
In contrast to many declining plant species Saxifraga tridactylites extended its distribution range in the man-made landscape of central Europe. The species naturally colonizes rocks and calcareous grasslands, but has also spread enormously in anthropogenic habitats such as railway constructions during the last decades. To analyze the genetic structure of the species 216 individuals from 8 populations in natural and 5 populations in man-made habitats were studied using AFLPs. The molecular analysis resulted in 250 scorable fragments. Population variability, measured as Nei’s gene diversity, Shannon’s Information Index and percentage of polymorphic bands, was slightly but not significantly higher in populations from natural habitats and was not correlated with population size. Mantel test indicated no significant correlation between pairwise genetic (ΦPT) and geographic distances. An analysis of molecular variance revealed significant differentiation between the two habitat types. About 9% variability were observed between natural and man-made habitats, 21% among populations within these two habitats and 70% within populations. In a neighbour joining cluster analysis populations from natural and man-made habitats were clearly separated from each other. Populations of S. tridactylites from man-made habitats do, therefore, not suffer from reduced genetic diversity. The observed genetic differentiation between populations from man-made and natural habitats could be due to reduced gene flow and/or habitat specific selection. However, the results of the study clearly demonstrate human impact on the genetic structure of plant populations in man-made landscapes.  相似文献   

12.

Aim

Our goal was to assess the conservation status of the understudied and naturally uncommon habitat specialist, the golden mouse (Ochrotomys nuttalli), at the edge of its range where its historically fragmented habitat has been subjected to severe loss.

Location

Peninsular Florida, north of approximately 27° latitude, USA.

Methods

We used data gathered from museum collections, regional biologists, geographic information systems (GIS) layers, field surveys and DNA sequencing to determine the habitats that best explain the distribution of the species, examine changes in the geographic extent of both the species and its habitats, and compare genetic differentiation between populations occupying disjunct regions. The results from these multiple analyses were combined to assess the conservation status of the species.

Results

Golden mouse occurrence records align well with the distribution of hardwood habitats in Florida. These habitats occur naturally as ‘islands’, but have become increasingly fragmented by anthropogenic land use. Despite habitat loss, the location of the southern range periphery has remained relatively unchanged in location over the past century. Genetic analysis reveals a history of limited dispersal of females among habitat ‘islands’ that likely predates anthropogenic landscape fragmentation. This pattern suggests that isolated populations that are extirpated will have little to no chance of successful recolonization.

Main conclusions

The combined results from multiple analyses produced a more complete picture of the threats faced by this previously data‐deficient species than any single analysis would have. Although the species' southern range limit cannot be shown to have retracted in the face of human expansion, habitat fragmentation clearly has put the species at increased risk. Conservation and management of hardwood habitats are critical to the persistence of the golden mouse at the edge of its range.  相似文献   

13.
Because patchiness of food sources or nesting opportunities frequently limits gene flow, specialists often exhibit distinct population structures in fragmented habitats. We studied the influence of habitat fragmentation on population structure in the solitary bee Andrena vaga, an early spring species that nests exclusively in sandy soil and feeds strictly on willows (Salix spp.). Because the homogenous habitat of the German floodplains, where the species was studied previously, resulted in the species’ weak population structure, we expected more structured populations in central Europe, where the sandy soils essential for nesting are highly fragmented. We analysed 387 females from 21 localities in the Czech Republic and Slovakia using nine microsatellite loci, and we inferred population structure using landscape genetics and Bayesian clustering methods. Contrary to our expectations, habitat fragmentation did not result in increased genetic isolation at the localities; however, two differentiated groups of localities, separated by a wide clinal zone of admixture, were detected within the study area. The observed pattern suggests that dispersive ability of A. vaga compensates the species dependence on unstable fragmented habitats. We propose that the population structure may mirror a secondary contact formed by the expansion of two populations that had been separated in the past. We emphasise the necessity of knowing the studied species’ population history before making conclusions concerning correlations between habitat and population structure, especially in areas of known suture zones created by the secondary contact of populations expanding from separate refugia.  相似文献   

14.
Zhang X  Shi MM  Shen DW  Chen XY 《PloS one》2012,7(6):e39146
Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of F(ST) were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity.  相似文献   

15.
We describe a scenario of plant speciation across a relict forest archipelago in South Africa involving Pleistocene habitat expansion-contraction cycles, dispersal and adaptation to lower temperatures. This is the first population level study using molecular data in South African forests and has significant implications for conservation efforts in this area. Populations of the mesophytic forest floor herbs Streptocarpus primulifolius sensu lato and Streptocarpus rexii were sampled throughout their range in the naturally fragmented forests of eastern South Africa in order to investigate population genetic and phylogenetic patterns within the species complex, using nuclear microsatellites, nuclear ribosomal ITS (internal transcribed spacer) sequences and chloroplast genome sequences. S. primulifolius harbours high levels of genetic diversity at both the nuclear (mean HE = 0.50) and the chloroplast level (each population fixed for a unique haplotype). This is consistent with populations of these coastal species being Pleistocene relicts. In contrast, populations of S. rexii in cooler habitats at higher altitudes and lower latitudes harbour little or no nuclear genetic diversity (mean HE = 0.09) and most share a common chloroplast haplotype. The split of S. rexii from populations intermediate between the two species (S. cf. primulifolius) occurred between 0 and 0.44 million years ago according to the calibrated ITS phylogeny of the taxa. The low genetic diversity and homogeneity of S. rexii is congruent with this species having reached its current range during the Holocene. We found no evidence of monophyly of any of the taxa in this study, which we consider a consequence of recent evolution in a fragmented habitat.  相似文献   

16.
Disentangling the molecular mechanisms of adaptation in natural plant populations in response to different environmental conditions is a central topic in evolutionary biology. In the present study, we investigated a wind-pollinated woody species of Changbai Mountain of northeastern China, namely, Betula ermanii Cham. This woody species B. ermanii is not only a dominant species in subalpine forest (SF), but it also occurs in the alpine tundra (AT) regions. This attribute indicates that it may play important roles in the two contrast habitats. In order to evaluate the influences of different habitats on differentiation in B. ermanii, we assessed the genetic and epigenetic population structure in selected populations from two contrasting habitats by using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP techniques. According to our results, the AT group not only exhibits higher genetic and epigenetic diversity than the SF group but also shows greater population genetic and epigenetic differentiation. In addition, the analysis of cytosine methylation levels also revealed that the AT group exhibits higher degrees of genome methylation than the SF group. Taken together, our results indicate that populations from two contrasting habitats show significantly different genetic and epigenetic population structures. Along with other potential explanations, these findings suggest that environmental conditions could play an important role in facilitating adaptive evolution in B. ermanii.  相似文献   

17.
Habitat fragmentation may severely affect survival of social insect populations as the number of nests per population, not the number of individuals, represents population size, hence they may be particularly prone to loss of genetic diversity. Erosion of genetic diversity may be particularly significant among social Hymenoptera such as bumblebees (Bombus spp.), as this group may be susceptible to diploid male production, a suggested direct cost of inbreeding. Here, for the first time, we assess genetic diversity and population structuring of a threatened bumblebee species (Bombus sylvarum) which exists in highly fragmented habitat (rather than oceanic) islands. Effective population sizes, estimated from identified sisterhoods, were very low (range 21-72) suggesting that isolated populations will be vulnerable to loss of genetic variation through drift. Evidence of significant genetic structuring between populations (theta = 0.084) was found, but evidence of a bottleneck was detected in only one population. Comparison across highly fragmented UK populations and a continental population (where this species is more widespread) revealed significant differences in allelic richness attributable to a high degree of genetic diversity in the continental population. While not directly related to population size, this is perhaps explained by the high degree of isolation between UK populations relative to continental populations. We suggest that populations now existing on isolated habitat islands were probably linked by stepping-stone populations prior to recent habitat loss.  相似文献   

18.
Kümmerli R  Keller L 《Molecular ecology》2007,16(21):4493-4503
The theory of inclusive fitness provides a powerful explanation for reproductive altruism in social insects, whereby workers gain inclusive fitness benefit by rearing the brood of related queens. Some ant species, however, have unicolonial population structures where multiple nests, each containing numerous queens, are interconnected and individuals move freely between nests. In such cases, nestmate relatedness values may often be indistinguishable from zero, which is problematic for inclusive fitness-based explanations of reproductive altruism. We conducted a detailed population genetic study in the polygynous ant Formica exsecta, which has been suggested to form unicolonial populations in its native habitat. Analyses based on adult workers indeed confirmed a genetic structuring consistent with a unicolonial population structure. However, at the population level the genetic structuring inferred from worker pupae was not consistent with a unicolonial population structure, but rather suggested a multicolonial population structure of extended family-based nests. These contrasting patterns suggest limited queen dispersal and free adult worker dispersal. That workers indeed disperse as adults was confirmed by mark-recapture measures showing consistent worker movement between nests. Together, these findings describe a new form of social organization, which possibly also characterizes other ant species forming unicolonial populations in their native habitats. Moreover, the genetic analyses also revealed that while worker nestmate relatedness was indistinguishable from zero at a small geographical scale, it was significantly positive at the population level. This highlights the need to consider the relevant geographical scale when investigating the role of inclusive fitness as a selective force maintaining reproductive altruism.  相似文献   

19.
Studies examining the effects of anthropogenic habitat fragmentation on both neutral and adaptive genetic variability are still scarce. We compared tadpole fitness-related traits (viz. survival probability and body size) among populations of the common frog (Rana temporaria) from fragmented (F) and continuous (C) habitats that differed significantly in population sizes (C > F) and genetic diversity (C > F) in neutral genetic markers. Using data from common garden experiments, we found a significant positive relationship between the mean values of the fitness related traits and the amount of microsatellite variation in a given population. While genetic differentiation in neutral marker loci (F(ST)) tended to be more pronounced in the fragmented than in the continuous habitat, genetic differentiation in quantitative traits (Q(ST)) exceeded that in neutral marker traits in the continuous habitat (i.e. Q(ST) > F(ST)), but not in the fragmented habitat (i.e. Q(ST) approximately F(ST)). These results suggest that the impact of random genetic drift relative to natural selection was higher in the fragmented landscape where populations were small, and had lower genetic diversity and fitness as compared to populations in the more continuous landscape. The findings highlight the potential importance of habitat fragmentation in impairing future adaptive potential of natural populations.  相似文献   

20.
It is challenging to unravel the history of organisms with highly scattered populations. Such species may have fragmented distributions because extant populations are remnants of a previously more continuous range, or because the species has narrow habitat requirements in combination with good dispersal capacity (naturally or vector borne). The northern pine processionary moth Thaumetopoea pinivora has a scattered distribution with fragmented populations in two separate regions, northern and south-western Europe. The aims of this study were to explore the glacial and postglacial history of T. pinivora, and add to the understanding of its current distribution and level of contemporary gene flow. We surveyed published records of its occurrence and analysed individuals from a representative subset of populations across the range. A 633 bp long fragment of the mtDNA COI gene was sequenced and nine polymorphic microsatellite loci were genotyped. Only nine nucleotide sites were polymorphic in the COI gene and 90% of the individuals from across its whole range shared the same haplotype. The microsatellite diversity gradually declined towards the north, and unique alleles were found in only three of the northern and three of southern sites. Genetic structuring did not indicate complete isolation among regions, but an increase of genetic isolation by geographic distance. Approximate Bayesian model choice suggested recent divergence during the postglacial period, but glacial refugia remain unidentified. The progressive reduction of suitable habitats is suggested to explain the genetic structure of the populations and we suggest that T. pinivora is a cold-tolerant relict species, with situation-dependent dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号