首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D Sung  H Kang 《Nucleic acids research》1998,26(6):1369-1372
Mutational effects on frameshifting efficiency of the RNA pseudoknot involved in ribosomal frameshifting in simian retrovirus-1 (SRV-1) have been investigated. The primary sequence and the proposed secondary structure of the SRV-1 pseudoknot are similar to those of other efficient frameshifting pseudoknots in mouse mammary tumor virus (MMTV) and feline immunodeficiency virus (FIV), where an unpaired adenine nucleotide intercalates between stem 1 and stem 2. In SRV-1 pseudoknot, the adenine nucleotide in between stem 1 and stem 2 has a potential to form an A*U base pair with the last uridine nucleotide in the loop 2, resulting in a continuous A-form helix with coaxially stacked stem 1 and stem 2. To test whether this A*U base pairing and coaxial stacking of stem 1 and stem 2 is absolutely required for efficient frameshifting in SRV-1, a series of mutants changing this potential A.U base pair to either G.C base pair or A.A, A.G, A.C, G.A, G.G mismatch is generated, and their frameshifting efficiencies are investigated in vitro using rabbit reticulocyte lysate translation assay. The frameshifting abilities of these mutant pseudoknots are similar to that of the wild-type pseudoknot, suggesting that the A*U base pair in between stem 1 and stem 2 is not necessary to promote efficient frameshifting in SRV-1. These results reveal that coaxial stacking of stem 1 and stem 2 with a Watson-Crick A.U base pair in between two stems is not a required structural feature of the pseudoknot for promoting efficient frameshifting in SRV-1. Our mutational data suggest that SRV-1 pseudoknot adopts similar structural features common to other efficient frameshifting pseudoknots as observed in MMTV and FIV.  相似文献   

2.
Ribosomal frameshifting, a translational mechanism used during retroviral replication, involves a directed change in reading frame at a specific site at a defined frequency. Such programmed frameshifting at the mouse mammary tumor virus (MMTV) gag-pro shift site requires two mRNA signals: a heptanucleotide shifty sequence and a pseudoknot structure positioned downstream. Using in vitro translation assays and enzymatic and chemical probes for RNA structure, we have defined features of the pseudoknot that promote efficient frameshifting. Heterologous RNA structures, e.g. a hairpin, a tRNA or a synthetic pseudoknot, substituted downstream of the shifty site fail to promote frameshifting, suggesting that specific features of the MMTV pseudoknot are important for function. Site-directed mutations of the MMTV pseudoknot indicate that the pseudoknot junction, including an unpaired adenine nucleotide between the two stems, provides a specific structural determinant for efficient frameshifting. Pseudoknots derived from other retroviruses (i.e. the feline immunodeficiency virus and the simian retrovirus type 1) also promote frameshifting at the MMTV gag-pro shift site, dependent on the same structure at the junction of the two stems.  相似文献   

3.
The equilibrium unfolding pathway of a 41-nucleotide frameshifting RNA pseudoknot from the gag-pro junction of mouse intracisternal A-type particles (mIAP), an endogenous retrovirus, has been determined through analysis of dual optical wavelength, equilibrium thermal melting profiles and differential scanning calorimetry. The mIAP pseudoknot is an H-type pseudoknot proposed to have structural features in common with the gag-pro frameshifting pseudoknots from simian retrovirus-1 (SRV-1) and mouse mammary tumor virus (MMTV). In particular, the mIAP pseudoknot is proposed to contain an unpaired adenosine base at the junction of the two helical stems (A15), as well as one in the middle of stem 2 (A35). A mutational analysis of stem 1 hairpins and compensatory base-pair substitutions incorporated into helical stem 2 was used to assign optical melting transitions to molecular unfolding events. The optical melting profile of the wild-type RNA is most simply described by four sequential two-state unfolding transitions. Stem 2 melts first in two closely coupled low-enthalpy transitions at low tmin which the stem 3' to A35, unfolds first, followed by unfolding of the remainder of the helical stem. The third unfolding transition is associated with some type of stacking interactions in the stem 1 hairpin loop not present in the pseudoknot. The fourth transition is assigned to unfolding of stem 1. In all RNAs investigated, DeltaHvH approximately DeltaHcal, suggesting that DeltaCpfor unfolding is small. A35 has the thermodynamic properties expected for an extrahelical, unpaired nucleotide. Deletion of A15 destabilizes the stem 2 unfolding transition in the context of both the wild-type and DeltaA35 mutant RNAs only slightly, by DeltaDeltaG degrees approximately 1 kcal mol-1(at 37 degrees C). The DeltaA15 RNA is considerably more susceptible to thermal denaturation in the presence of moderate urea concentrations than is the wild-type RNA, further evidence of a detectable global destabilization of the molecule. Interestingly, substitution of the nine loop 2 nucleotides with uridine residues induces a more pronounced destabilization of the molecule (DeltaDeltaG degrees approximately 2.0 kcal mol-1), a long-range, non-nearest neighbor effect. These findings provide the thermodynamic basis with which to further refine the relationship between efficient ribosomal frameshifting and pseudoknot structure and stability.  相似文献   

4.
5.
Simian retrovirus type-1 uses programmed ribosomal frameshifting to control expression of the Gag-Pol polyprotein from overlapping gag and pol open-reading frames. The frameshifting signal consists of a heptanucleotide slippery sequence and a downstream-located 12-base pair pseudoknot. The solution structure of this pseudoknot, previously solved by NMR [Michiels,P.J., Versleijen,A.A., Verlaan,P.W., Pleij,C.W., Hilbers,C.W. and Heus,H.A. (2001) Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J. Mol. Biol., 310, 1109–1123] has a classical H-type fold and forms an extended triple helix by interactions between loop 2 and the minor groove of stem 1 involving base–base and base–sugar contacts. A mutational analysis was performed to test the functional importance of the triple helix for −1 frameshifting in vitro. Changing bases in L2 or base pairs in S1 involved in a base triple resulted in a 2- to 5-fold decrease in frameshifting efficiency. Alterations in the length of L2 had adverse effects on frameshifting. The in vitro effects were well reproduced in vivo, although the effect of enlarging L2 was more dramatic in vivo. The putative role of refolding kinetics of frameshifter pseudoknots is discussed. Overall, the data emphasize the role of the triple helix in −1 frameshifting.  相似文献   

6.
The simian retrovirus-1 (SRV-1) gag-pro frameshift signal was identified in previous work, and the overall structure of the pseudoknot involved was confirmed (ten Dam E, Brierley I, Inglis S, Pleij C, 1994, Nucleic Acids Res 22:2304-2310). Here we report on the importance of specific elements within the pseudoknot. Some mutations in stem S1 that maintain base pairing have reduced frameshift efficiencies. This indicates that base pairing in itself is not sufficient. In contrast, frameshifting correlates qualitatively with the calculated stability of mutations in S2. The stems thus play different roles in the frameshift event. The nature of the base in L1 has little influence on frameshift efficiency. It is however required to bridge S2; deleting it lowers frameshifting from 23 to 9%. In L2, frameshift efficiency was not affected in a mutant that changed 10 to 12 bases. This makes it unlikely that the primary sequence of L2 plays a role in -1 frameshifting, in contrast to readthrough in Moloney murine leukemia virus (Wills N, Gesteland R, Atkins J, 1994, EMBO J 13:4137-4144). Deletions of 2 and 3 bases gave more frameshifting than the wild type, probably reflecting the increased stability of the pseudoknot due to a shorter loop L2. Deleting even more bases reduces frameshifting compared to wild-type levels. At this point, stress will build up in L2, and this will reduce overall pseudoknot stability.  相似文献   

7.
RNA pseudoknots play important roles in many biological processes. In the simian retrovirus type-1 (SRV-1) a pseudoknot together with a heptanucleotide slippery sequence are responsible for programmed ribosomal frameshifting, a translational recoding mechanism used to control expression of the Gag-Pol polyprotein from overlapping gag and pol open reading frames. Here we present the three-dimensional structure of the SRV-1 pseudoknot determined by NMR. The structure has a classical H-type fold and forms a triple helix by interactions between loop 2 and the minor groove of stem 1 involving base-base and base-sugar interactions and a ribose zipper motif, not identified in pseudoknots so far. Further stabilization is provided by a stack of five adenine bases and a uracil in loop 2, enforcing a cytidine to bulge. The two stems of the pseudoknot stack upon each other, demonstrating that a pseudoknot without an intercalated base at the junction can induce efficient frameshifting. Results of mutagenesis data are explained in context with the present three-dimensional structure. The two base-pairs at the junction of stem 1 and 2 have a helical twist of approximately 49 degrees, allowing proper alignment and close approach of the three different strands at the junction. In addition to the overwound junction the structure is somewhat kinked between stem 1 and 2, assisting the single adenosine in spanning the major groove of stem 2. Geometrical models are presented that reveal the importance of the magnitude of the helical twist at the junction in determining the overall architecture of classical pseudoknots, in particular related to the opening of the minor groove of stem 1 and the orientation of stem 2, which determines the number of loop 1 nucleotides that span its major groove.  相似文献   

8.
Mutational and NMR methods were used to investigate features of sequence, structure, and dynamics that are associated with the ability of a pseudoknot to stimulate a -1 frameshift. In vitro frameshift assays were performed on retroviral gag-pro frameshift-stimulating pseudoknots and their derivatives, a pseudoknot from the gene 32 mRNA of bacteriophage T2 that is not naturally associated with frameshifting, and hybrids of these pseudoknots. Results show that the gag-pro pseudoknot from human endogenous retrovirus-K10 (HERV) stimulates a -1 frameshift with an efficiency similar to that of the closely related retrovirus MMTV. The bacteriophage T2 mRNA pseudoknot was found to be a poor stimulator of frameshifting, supporting a hypothesis that the retroviral pseudoknots have distinctive properties that make them efficient frameshift stimulators. A hybrid, designed by combining features of the bacteriophage and retroviral pseudoknots, was found to stimulate frameshifting while retaining significant structural similarity to the nonframeshifting bacteriophage pseudoknot. Mutational analyses of the retroviral and hybrid pseudoknots were used to evaluate the effects of an unpaired (wedged) adenosine at the junction of the pseudoknot stems, changing the base pairs near the junction of the two stems, and changing the identity of the loop 2 nucleotide nearest the junction of the stems. Pseudoknots both with and without the wedged adenosine can stimulate frameshifting, though the identities of the nucleotides near the stem1/stem2 junction do influence efficiency. NMR data showed that the bacteriophage and hybrid pseudoknots are similar in their local structure at the junction of the stems, indicating that pseudoknots that are similar in this structural feature can differ radically in their ability to stimulate frameshifting. NMR methods were used to compare the internal motions of the bacteriophage T2 pseudoknot and representative frameshifting pseudoknots. The stems of the investigated pseudoknots are similarly well ordered on the time scales to which nitrogen-15 relaxation data are sensitive; however, solvent exchange rates for protons at the junction of the two stems of the nonframeshifting bacteriophage pseudoknot are significantly slower than the analogous protons in the representative frameshifting pseudoknots.  相似文献   

9.
Messenger RNA encoded signals that are involved in programmed -1 ribosomal frameshifting (-1 PRF) are typically two-stemmed hairpin (H)-type pseudoknots (pks). We previously described an unusual three-stemmed pseudoknot from the severe acute respiratory syndrome (SARS) coronavirus (CoV) that stimulated -1 PRF. The conserved existence of a third stem–loop suggested an important hitherto unknown function. Here we present new information describing structure and function of the third stem of the SARS pseudoknot. We uncovered RNA dimerization through a palindromic sequence embedded in the SARS-CoV Stem 3. Further in vitro analysis revealed that SARS-CoV RNA dimers assemble through ‘kissing’ loop–loop interactions. We also show that loop–loop kissing complex formation becomes more efficient at physiological temperature and in the presence of magnesium. When the palindromic sequence was mutated, in vitro RNA dimerization was abolished, and frameshifting was reduced from 15 to 5.7%. Furthermore, the inability to dimerize caused by the silent codon change in Stem 3 of SARS-CoV changed the viral growth kinetics and affected the levels of genomic and subgenomic RNA in infected cells. These results suggest that the homodimeric RNA complex formed by the SARS pseudoknot occurs in the cellular environment and that loop–loop kissing interactions involving Stem 3 modulate -1 PRF and play a role in subgenomic and full-length RNA synthesis.  相似文献   

10.
A hairpin-type messenger RNA pseudoknot from pea enation mosaic virus RNA1 (PEMV-1) regulates the efficiency of programmed -1 ribosomal frameshifting. The solution structure and 15N relaxation rates reveal that the PEMV-1 pseudoknot is a compact-folded structure composed almost entirely of RNA triple helix. A three nucleotide reverse turn in loop 1 positions a protonated cytidine, C(10), in the correct orientation to form an A((n-1)).C(+).G-C(n) major groove base quadruple, like that found in the beet western yellows virus pseudoknot and the hepatitis delta virus ribozyme, despite distinct structural contexts. A novel loop 2-loop 1 A.U Hoogsteen base-pair stacks on the C(10)(+).G(28) base-pair of the A(12).C(10)(+).G(28)-C(13) quadruple and forms a wedge between the pseudoknot stems stabilizing a bent and over-rotated global conformation. Substitution of key nucleotides that stabilize the unique conformation of the PEMV-1 pseudoknot greatly reduces ribosomal frameshifting efficacy.  相似文献   

11.
We have examined the effect of a downstream secondary structure (the stem–loop sequence found downstream on the MMTV gag-pro frameshift site) on frameshifting at a bacterial shifty site (U UUC AUA) that responds strongly to a isoleucine-tRNA limitation. Our findings are as follows: (i) the downstream stem–loop has little effect on frameshifting in growing, unstarved cells; (ii) the stem–loop increases the frameshifting effect of isoleucine-tRNA limitation about fourfold, and this synergism is maximal with a distance of 5–9 nucleotides between the 'hungry' AUA codon and the stem–loop; and (iii) a stem–loop of different sequence at the same position has the same effect.  相似文献   

12.
RNA pseudoknots are structural elements that participate in a variety of biological processes. At -1 ribosomal frameshifting sites, several types of pseudoknot have been identified which differ in their organisation and functionality. The pseudoknot found in infectious bronchitis virus (IBV) is typical of those that possess a long stem 1 of 11-12 bp and a long loop 2 (30-164 nt). A second group of pseudoknots are distinguishable that contain stems of only 5 to 7 bp and shorter loops. The NMR structure of one such pseudoknot, that of mouse mammary tumor virus (MMTV), has revealed that it is kinked at the stem 1-stem 2 junction, and that this kinked conformation is essential for efficient frameshifting. We recently investigated the effect on frameshifting of modulating stem 1 length and stability in IBV-based pseudoknots, and found that a stem 1 with at least 11 bp was needed for efficient frameshifting. Here, we describe the sequence manipulations that are necessary to bypass the requirement for an 11 bp stem 1 and to convert a short non-functional IBV-derived pseudoknot into a highly efficient, kinked frameshifter pseudoknot. Simple insertion of an adenine residue at the stem 1-stem 2 junction (an essential feature of a kinked pseudoknot) was not sufficient to create a functional pseudoknot. An additional change was needed: efficient frameshifting was recovered only when the last nucleotide of loop 2 was changed from a G to an A. The requirement for an A at the end of loop 2 is consistent with a loop-helix contact similar to those described in other RNA tertiary structures. A mutational analysis of both partners of the proposed interaction, the loop 2 terminal adenine residue and two G.C pairs near the top of stem 1, revealed that the interaction was essential for efficient frameshifting. The specific requirement for a 3'-terminal A residue was lost when loop 2 was increased from 8 to 14 nt, suggesting that the loop-helix contact may be required only in those pseudoknots with a short loop 2.  相似文献   

13.
An efficient −1 programmed ribosomal frameshifting (PRF) signal requires an RNA slippery sequence and a downstream RNA stimulator, and the hairpin-type pseudoknot is the most common stimulator. However, a pseudoknot is not sufficient to promote −1 PRF. hTPK-DU177, a pseudoknot derived from human telomerase RNA, shares structural similarities with several −1 PRF pseudoknots and is used to dissect the roles of distinct structural features in the stimulator of −1 PRF. Structure-based mutagenesis on hTPK-DU177 reveals that the −1 PRF efficiency of this stimulator can be modulated by sequential removal of base–triple interactions surrounding the helical junction. Further analysis of the junction-flanking base triples indicates that specific stem–loop interactions and their relative positions to the helical junction play crucial roles for the −1 PRF activity of this pseudoknot. Intriguingly, a bimolecular pseudoknot approach based on hTPK-DU177 reveals that continuing triplex structure spanning the helical junction, lacking one of the loop-closure features embedded in pseudoknot topology, can stimulate −1 PRF. Therefore, the triplex structure is an essential determinant for the DU177 pseudoknot to stimulate −1 PRF. Furthermore, it suggests that −1 PRF, induced by an in-trans RNA via specific base–triple interactions with messenger RNAs, can be a plausible regulatory function for non-coding RNAs.  相似文献   

14.
The stimulatory RNA of the Visna-Maedi virus (VMV) -1 ribosomal frameshifting signal has not previously been characterized but can be modeled either as a two-stem helix, reminiscent of the HIV-1 frameshift-stimulatory RNA, or as an RNA pseudoknot. The pseudoknot is unusual in that it would include a 7 nucleotide loop (termed here an interstem element [ISE]) between the two stems. In almost all frameshift-promoting pseudoknots, ISEs are absent or comprise a single adenosine residue. Using a combination of RNA structure probing, site directed mutagenesis, NMR, and phylogenetic sequence comparisons, we show here that the VMV stimulatory RNA is indeed a pseudoknot, conforming closely to the modeled structure, and that the ISE is essential for frameshifting. Pseudoknot function was predictably sensitive to changes in the length of the ISE, yet altering its sequence to alternate pyrimidine/purine bases was also detrimental to frameshifting, perhaps through modulation of local tertiary interactions. How the ISE is placed in the context of an appropriate helical junction conformation is not known, but its presence impacts on other elements of the pseudoknot, for example, the necessity for a longer than expected loop 1. This may be required to accommodate an increased flexibility of the pseudoknot brought about by the ISE. In support of this, (1)H NMR analysis at increasing temperatures revealed that stem 2 of the VMV pseudoknot is more labile than stem 1, perhaps as a consequence of its connection to stem 1 solely via flexible single-stranded loops.  相似文献   

15.
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 A crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson-Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.  相似文献   

16.
The ribosomal frameshifting signal present in the genomic RNA of the coronavirus infectious bronchitis virus (IBV) contains a classic hairpin-type RNA pseudoknot that is believed to possess coaxially stacked stems of 11 bp (stem 1) and 6 bp (stem 2). We investigated the influence of stem 1 length on the frameshift process by measuring the frameshift efficiency in vitro of a series of IBV-based pseudoknots whose stem 1 length was varied from 4 to 13 bp in single base-pair increments. Efficient frameshifting depended upon the presence of a minimum of 11 bp; pseudoknots with a shorter stem 1 were either non-functional or had reduced frameshift efficiency, despite the fact that a number of them had a stem 1 with a predicted stability equal to or greater than that of the wild-type IBV pseudoknot. An upper limit for stem 1 length was not determined, but pseudoknots containing a 12 or 13 bp stem 1 were fully functional. Structure probing analysis was carried out on RNAs containing either a ten or 11 bp stem 1; these experiments confirmed that both RNAs formed pseudoknots and appeared to be indistinguishable in conformation. Thus the difference in frameshifting efficiency seen with the two structures was not simply due to an inability of the 10 bp stem 1 construct to fold into a pseudoknot. In an attempt to identify other parameters which could account for the poor functionality of the shorter stem 1-containing pseudoknots, we investigated, in the context of the 10 bp stem 1 construct, the influence on frameshifting of altering the slippery sequence-pseudoknot spacing distance, loop 2 length, and the number of G residues at the bottom of the 5'-arm of stem 1. For each parameter, it was possible to find a condition where a modest stimulation of frameshifting was observable (about twofold, from seven to a maximal 17 %), but we were unable to find a situation where frameshifting approached the levels seen with 11 bp stem 1 constructs (48-57 %). Furthermore, in the next smaller construct (9 bp stem 1), changing the bottom four base-pairs to G.C (the optimal base composition) only stimulated frameshifting from 3 to 6 %, an efficiency about tenfold lower than seen with the 11 bp construct. Thus stem 1 length is a major factor in determining the functionality of this class of pseudoknot and this has implications for models of the frameshift process.  相似文献   

17.
The pseudoknot is an important RNA structural element that provides an excellent model system for studying the contributions of tertiary interactions to RNA stability and to folding kinetics. RNA pseudoknots are also of interest because of their key role in the control of ribosomal frameshifting by viral RNAs. Their mechanical properties are directly relevant to their unfolding by ribosomes during translation. We have used optical tweezers to study the kinetics and thermodynamics of mechanical unfolding and refolding of single RNA molecules. Here we describe the unfolding of the frameshifting pseudoknot from infectious bronchitis virus (IBV), three constituent hairpins, and three mutants of the IBV pseudoknot. All four pseudoknots cause −1 programmed ribosomal frameshifting. We have measured the free energies and rates of mechanical unfolding and refolding of the four frameshifting pseudoknots. Our results show that the IBV pseudoknot requires a higher force than its corresponding hairpins to unfold. Furthermore, its rate of unfolding changes little with increasing force, in contrast with the rate of hairpin unfolding. The presence of Mg2+ significantly increases the kinetic barriers to unfolding the IBV pseudoknot, but has only a minor effect on the hairpin unfolding. The greater mechanical stability of pseudoknots compared to hairpins, and their kinetic insensitivity to force supports the hypothesis that −1 frameshifting depends on the difficulty of unfolding the mRNA.  相似文献   

18.
The structures of four different RNA pseudoknots that provide one of the signals required for ribosomal frameshifting in mouse mammary tumor virus have been determined by NMR. The RNA pseudoknots have similar sequences and assume similar secondary structures, but show significantly different frameshifting efficiencies. The three-dimensional structures of one frameshifting and one non-frameshifting RNA pseudoknot had been determined previously by our group. Here we determine the structures of two new RNA pseudoknots, and relate the structures of all four pseudoknots to their frameshifting abilities. The two efficient frameshifting pseudoknots adopt characteristic bent conformations with stem 1 bending towards the major groove of stem 2. In contrast, the two poor frameshifting pseudoknots have structures very different from each other and from the efficient frameshifters. One has linear, coaxially stacked stems, the other has stems twisted and bent, but in the opposite direction to the efficient frameshifters. Changes in loop size that favor bending (shorter loops) increase frameshifting efficiency; longer loops that allow linear arrangement of the stems decrease frameshifting. Frameshifting pseudoknots in feline immunodeficiency virus and simian retrovirus have different loop sequences, but the sequences at their stem junctions imply the same bent conformation as in the mouse mammary tumor viral RNA. The requirement for a precise pseudoknot conformation for efficient frameshifting strongly implies that a specific interaction occurs between the viral RNA pseudoknot and the host protein-synthesizing machinery.  相似文献   

19.
The 2A protein of Theiler''s murine encephalomyelitis virus (TMEV) acts as a switch to stimulate programmed –1 ribosomal frameshifting (PRF) during infection. Here, we present the X-ray crystal structure of TMEV 2A and define how it recognises the stimulatory RNA element. We demonstrate a critical role for bases upstream of the originally predicted stem–loop, providing evidence for a pseudoknot-like conformation and suggesting that the recognition of this pseudoknot by beta-shell proteins is a conserved feature in cardioviruses. Through examination of PRF in TMEV-infected cells by ribosome profiling, we identify a series of ribosomal pauses around the site of PRF induced by the 2A-pseudoknot complex. Careful normalisation of ribosomal profiling data with a 2A knockout virus facilitated the identification, through disome analysis, of ribosome stacking at the TMEV frameshifting signal. These experiments provide unparalleled detail of the molecular mechanisms underpinning Theilovirus protein-stimulated frameshifting.  相似文献   

20.
RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3′ direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) −1 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate−1 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for−1 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing−1 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study’s findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号