首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Degradation of extracellular ATP by the retinal pigment epithelium   总被引:6,自引:0,他引:6  
Stimulation of ATP or adenosine receptors causes important physiological changes in retinal pigment epithelial (RPE) cells that may influence their relationship to the adjacent photoreceptors. While RPE cells have been shown to release ATP, the regulation of extracellular ATP levels and the production of dephosphorylated purines is not clear. This study examined the degradation of ATP by RPE cells and the physiological effects of the adenosine diphosphate (ADP) that result. ATP was readily broken down by both cultured human ARPE-19 cells and the apical membrane of fresh bovine RPE cells. The compounds ARL67156and -mATP inhibited this degradation in both cell types. RT-PCR analysis of ARPE-19 cells found mRNA message for multiple extracellular degradative enzymes; ectonucleotide pyrophosphatase/phosphodiesterase eNPP1, eNPP2, and eNPP3; the ectoATPase ectonucleoside triphosphate diphosphohydrolase NTPDase2, NTPDase3, and some message for NTPDase1. Considerable levels of ADP bathed RPE cells, consistent with a role for NTPDase2. ADP and ATP increased levels of intracellular Ca2+. Both responses were inhibited by thapsigargin and P2Y1 receptor inhibitor MRS 2179. Message for both P2Y1 and P2Y12 receptors was detected in ARPE-19 cells. These results suggest that extracellular degradation of ATP in subretinal space can result in the production of ADP. This ADP can stimulate P2Y receptors and augment Ca2+ signaling in the RPE. ectoapyrase; PC-1; CD39; CD39L1; P2Y1; P2Y12; ADP; ATP release; photoreceptors; retinal detachment  相似文献   

2.
Previous studies suggested indirectly that vascular endothelial cells (VECs) might be able to release intracellularly-formed adenosine. We isolated VECs from the rat soleus muscle using collagenase digestion and magnetic-activated cell sorting (MACS). The VEC preparation had >90% purity based on cell morphology, fluorescence immunostaining, and RT-PCR of endothelial markers. The kinetic properties of endothelial cytosolic 5′-nucleotidase suggested it was the AMP-preferring N-I isoform: its catalytic activity was 4 times higher than ecto-5′nucleotidase. Adenosine kinase had 50 times greater catalytic activity than adenosine deaminase, suggesting that adenosine removal in VECs is mainly through incorporation into adenine nucleotides. The maximal activities of cytosolic 5′-nucleotidase and adenosine kinase were similar. Adenosine and ATP accumulated in the medium surrounding VECs in primary culture. Hypoxia doubled the adenosine, but ATP was unchanged; AOPCP did not alter medium adenosine, suggesting that hypoxic VECs had released intracellularly-formed adenosine. Acidosis increased medium ATP, but extracellular conversion of ATP to AMP was inhibited, and adenosine remained unchanged. Acidosis in the buffer-perfused rat gracilis muscle elevated AMP and adenosine in the venous effluent, but AOPCP abolished the increase in adenosine, suggesting that adenosine is formed extracellularly by non-endothelial tissues during acidosis in vivo. Hypoxia plus acidosis increased medium ATP by a similar amount to acidosis alone and adenosine 6-fold; AOPCP returned the medium adenosine to the level seen with hypoxia alone. These data suggest that VECs release intracellularly formed adenosine in hypoxia, ATP during acidosis, and both under simulated ischaemic conditions, with further extracellular conversion of ATP to adenosine.  相似文献   

3.
1. Purine compounds were examined for pharmacological activity in the rectum and oesophagus of the garden snail Helix aspersa.2. In the rectum, adenosine, AMP, ADP and ATP (above 10μM) and acetylcholine (above 1 nM) consistently caused concentration-dependent contractions. The slope of the dose-response curve for ADP in the rectum was significantly steeper than for the other purine compounds. The contractile responses to the nucleotides and acetylcholine, but not adenosine, were selectively potentiated by physostigmine (1μM). Atropine (1 μM) and tubocurarine (30 μM) failed to block the responses to the purines or acetylcholine.3. In the oesophagus, adenosine, AMP, ADP and ATP (above 10 μM) and acetylcholine (above 1 nM) caused concentration-dependent contractions that were antagonised by atropine (l μM). Tubocurarine (30 μM) failed to block the responses to the purine compounds or acetylcholine. Physostigmine (1 μM) potentiated the responses to ADP and acetylcholine but not ATP, AMP or adenosine.4. In both the rectum and the oesophagus, the synthetic analogues of purine compounds inclucling 2-chloroadenosine, α, β -methylene ATP and 2-methylthio ATP were inactive up to a concentration of 100 μM.5. Electrical field stimulation of the rectum and oesophagus produced consistent contractions which were unaffected by atropine (1 μM), tubocurarine (30 μM) or physostigmine (1 μM). These responses were not modulated by any of the purine compounds or their stable analogues.6. The responses obtained appear novel even within known invertebrate purinergic systems, suggesting a differentiation of purinoceptor subtypes in this species. There is evidence in the rectum for AMP, ADP and ATP causing the release of acetylcholine; physostigmine potentiated responses to AMP, ADP and ATP, but not to adenosine. This indicates that activity may be mediated via different types of purinoceptors, perhaps equivalent to the P1- and P2-purinoceptors identified in vertebrates.  相似文献   

4.
The role of P1 receptors and P2Y1 receptors in coronary vasodilator responses to adenine nucleotides was examined in the isolated guinea pig heart. Bolus arterial injections of nucleotides were made in hearts perfused at constant pressure. Peak increase in flow was measured before and after addition of purinoceptor antagonists. Both the P1 receptor antagonist 8-(p-sulfophenyl)theophylline and adenosine deaminase inhibited adenosine vasodilation. AMP-induced vasodilation was inhibited by P1 receptor blockade but not by adenosine deaminase or by the selective P2Y1 antagonist N6-methyl-2'-deoxyadenosine 3',5'-bisphosphate (MRS 2179). ADP-induced vasodilation was moderately inhibited by P1 receptor blockade and greatly inhibited by combined P1 and P2Y1 blockade. ATP-induced vasodilation was antagonized by P1 blockade but not by adenosine deaminase. Addition of P2Y1 blockade to P1 blockade shifted the ATP dose-response curve further rightward. It is concluded that in this preparation ATP-induced vasodilation results primarily from AMP stimulation of P1 receptors, with a smaller component from ATP or ADP acting on P2Y1 receptors. ADP-induced vasodilation is largely due to P2Y1 receptors, with a smaller contribution by AMP or adenosine acting via P1 receptors. AMP responses are mediated solely by P1 receptors. Adenosine contributes very little to vasodilation resulting from bolus intracoronary injections of ATP, ADP, or AMP.  相似文献   

5.
ADP and ATP and their analogues were evaluated as inhibitors of 5'-nucleotidase purified from heart plasma membrane. ADP analogues are more powerful inhibitors than the corresponding ATP analogues. The most powerful inhibitor found is adenosine 5'-[alpha beta-methylene]diphosphate (AOPCP) for which the enzyme shows a Ki of 5 nM at pH 7.2. Measurements of pKi values for ADP and AOPCP as a function of pH indicate that the major inhibitory species of both nucleotides is the dianion. In the physiological range of pH values, AOPCP is a more powerful inhibitor than ADP principally because a higher percentage of AOPCP exists in the dianion form. The methylenephosphonate analogue of AMP (ACP), though not a substrate, is a moderately effective inhibitor. The corresponding analogues of ADP (ACPOP) and ATP (ACPOPOP) are as good inhibitors as ADP and ATP respectively. The thiophosphate analogues of ADP all inhibit 5'-nucleotidase, although not as powerfully as ADP, the most effective of these analogues being adenosine 5'-O-(1-thiodiphosphate) diastereoisomer B (ADP[alpha S](B)]. Other nucleotides inhibit the enzyme, but none is as effective as AOPCP. Inorganic tripolyphosphate and methylenediphosphonate are better inhibitors of the enzyme than is inorganic pyrophosphate. Inorganic thiophosphate is a better inhibitor than is orthophosphate. Hill plots of the ADP and AOPCP inhibition yield slopes close to 1; Hill plots of the ATP inhibition yield slopes of about 0.6. MgADP- is not an inhibitor, and MgATP2- is at best a very weak inhibitor of the enzyme.  相似文献   

6.
ATP and adenosine are important extracellular regulators of glomerular functions. In this study, ATP release from glomeruli suspension and its extracellular metabolism were investigated. Basal extraglomerular ATP concentration (1nM) increased several fold during inhibition of ecto-ATPase activity, reflecting the basal ATP release rate. Mechanical perturbation increased the amounts of ATP released from glomeruli. ATP added to glomeruli was almost completely degraded within 20 minutes. In that time, AMP was the main product of extracellular ATP metabolism. Significant accumulation of AMP was observed after 5 min (194 +/-16 microM) and 20 min (271 +/-11 microM), whereas at the same time concentration of adenosine was only 10 muM. A competitive inhibitor of ecto-5-nucleotidase alpha-beta-methylene-ADP (AOPCP), decreased extraglomerular ATP and adenosine concentration by 80% and 50%, respectively. Similarly, AMP (100 microM) also markedly reduced extraglomerular ATP accumulation, whereas IMP, its deamination product, was not effective. P1, P5-diadenosine pentaphosphate (Ap5A) - an inhibitor of ecto-adenylate kinase prevented significantly the disappearance of ATP from extraglomerular media caused by AMP. These findings demonstrate that the decrease in extracellular ATP concentration observed after addition of AOPCP or AMP is caused by the presence of ecto-adenylate kinase activity in the glomeruli. The enzyme catalyses reversible reaction 2ADP<->ATP+AMP, and a rise in the AMP concentration can lead to fall in ATP level. The present study provides evidence the extraglomerular accumulation of ATP reflects both release of ATP from glomeruli cells and its metabolism by ecto-enzymes. Our data suggest that AMP, produced from ATP in the Bowman's capsular space, might plays a dual role as a substrate for ecto-adenylate kinase and ecto-nucleotidase reactions being responsible for the regulation of intracapsular ATP and adenosine concentration. We conclude that AMP degrading and converting ecto-enzymes effectively determine the balance between ATP and adenosine concentration and thus the activation of P2 and/or adenosine receptors.  相似文献   

7.
5'-Nucleotidase I (N-I) from rabbit heart was purified to homogeneity. After ammonium sulfate precipitation, the purification involved chromatography on phosphocellulose, DEAE-Sepharose, AMP-agarose, and ADP-agarose. The pure enzyme has a specific activity of 318 mumol (mg of protein)-1 min-1. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate yields a subunit molecular weight of 40,000. N-I is activated by ADP but not by ATP, in contrast to the 5'-nucleotidase (N-II) purified by Itoh et al. (1986), which is activated by ATP and, less well, by ADP. N-I displays sigmoidal saturation kinetics in the absence of ADP and hyperbolic kinetics in the presence of ADP. Partially purified N-I was previously shown to prefer AMP over IMP as substrate (Truong et al., 1988); this has been confirmed for pure N-I. Comparison of AMP and ADP concentrations reported to occur in heart with the kinetic behavior of N-I implicates N-I as the enzyme responsible for producing adenosine under conditions leading to a rise in ADP and AMP, such as hypoxia or increased workload. N-I is not activated by the ADP analogue adenosine 5'-methylenediphosphonate (AOPCP) and is only weakly inhibited by relatively high concentrations of AOPCP, in contrast to 5'-nucleotidase from plasma membrane, which is powerfully inhibited by this analogue. N-I shows an absolute dependence on Mg2+ ions. Mn2+ and Co2+ ions can replace Mg2+ ions as activator; Ni2+ and Fe2+ are much less effective, while Ca2+, Ba2+, Zn2+, and Cu2+ fail to activate the enzyme.  相似文献   

8.
Extracellular ATP is a potent agonist of surfactant phosphatidylcholine (PC) exocytosis from type II pneumocytes in culture. We studied P1 and P2 receptor signal transduction in type II pneumocytes. The EC50 for ATP on PC exocytosis was 10(-6) M, whereas the EC50 for ADP, AMP, adenosine, and the nonmetabolizable ATP analogue alpha,beta-methylene ATP was 10(-4) M. The rank order of agonists for PC exocytosis was ATP greater than ADP greater than AMP greater than adenosine greater than alpha,beta-methylene ATP. The rank order of agonists for phosphatidylinositol (PI) hydrolysis was ATP greater than ADP, whereas AMP, adenosine, and alpha,beta-methylene ATP did not stimulate PI hydrolysis. ATP (10(-4) M) caused a 15-fold increase in adenosine 3',5'-cyclic monophosphate (cAMP) production, and the nonmetabolizable adenosine analogue 5'-N-ethylcarboxyamidoadenosine (10(-6) M) increased cAMP production threefold. The effects of both these agonists on cAMP production were completely inhibited by the adenosine antagonist 8-phenyltheophylline (10(-5) M). The effects of ATP (10(-4) M) on PC exocytosis were inhibited 38% by 10(-5) M 8-phenyltheophylline. Thus, ATP regulates PC exocytosis by activating P2 receptors, which stimulate PI hydrolysis to inositol phosphate, as well as by activating P1 receptors, which stimulate cAMP production. Interactions between the P1 and P2 pathways may explain the high potency of extracellular ATP as an agonist of PC exocytosis.  相似文献   

9.
The controversial subject of mitochondrial 5'-nucleotidase in the liver was studied employing density gradient fractionation combined with a method for analyzing the distribution profiles of marker enzymes based on multiple regression analysis. Triton WR-1339 was used to improve the separation of mitochondria from lysosomes by the gradient centrifugation technique. Adenosine production was examined further using acetate to increase intramitochondrial AMP, and thus adenosine production, in incubations with gradient centrifugation-purified mitochondria. Distribution analysis of the crude homogenate showed that 5'-nucleotidase activity exists in the mitochondrial fraction. To increase the resolution of this approach with respect to mitochondria, a crude mitochondrial fraction was also studied. In this case the relative mitochondrial activity decreased but 5'-nucleotidase activity was still clearly detectable. The mitochondrial 5'-nucleotidase exhibited a Km of 94 microM and a Vmax of 31 nmol/min per mg protein for AMP. The kinetic data for the Mg2+, ATP, ADP and AOPCP sensitivity of the enzyme showed that it differs from the plasma membrane, lysosome and cytosol 5'-nucleotidases. AOPCP was only a moderate inhibitor, and ATP was a more potent inhibitor than ADP at a 1 mM concentration. The enzyme also showed a requirement of Mg2+. Acetate caused the conversion of intramitochondrial adenylates to AMP and the formation of adenosine. Adenosine concentration increased in the extramitochondrial space in a time-dependent manner, but only trace amounts of nucleotides were detected. The data show that 5'-nucleotidase activity producing adenosine exists in rat liver mitochondria and a concentration-dependent adenosine output from mitochondria by diffusion or facilitated diffusion is also suggested.  相似文献   

10.
Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca(2+)](i) via Ca(2+) influx through plasma membrane channels as well as Ca(2+) mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca(2+) responses in both cytosolic and nuclear compartments. An increase in [Ca(2+)](i) was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca(2+) responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.  相似文献   

11.
Intact astrocytes cultured from newborn rat cerebral cortex rapidly converted extracellular ATP to ADP. The ATPase responsible was apparently not saturated, even at 750 microM ATP. In contrast, the conversion of ADP to AMP was slow, and the reaction was limiting for the subsequent dephosphorylation process. Adenosine formation was the only fate for AMP. The reaction was catalyzed by 5'-nucleotidase with an apparent Km of 55 microM for AMP and appeared to be inhibited by high concentrations of ATP and ADP. Astrocytes were able to take up adenosine with an apparent Km value of 45 microM. Uptake was inhibited by dipyridamole but not by anti-5'-nucleotidase IgG. The results support the proposal that astrocytes play a role in modulating synaptic events involving ATP and adenosine.  相似文献   

12.
Abstract: The alteration in energy metabolic products was analyzed in cultured retinal cells submitted to oxidative stress, hypoxia, glucopenia, or ischemia-like conditions. Ischemia highly reduced cellular ATP and increased AMP formation, without significant changes in ADP. Ischemia induced a significant increase in extracellular adenosine (ADO) and hypoxanthine (HYP), and to a lesser extent inosine (INO). Glucopenia reduced cellular ATP by about two- to threefold, which was not compensated for by AMP formation. Under glucopenia, extracellular ADO and HYP were significantly increased, although a major increase in extracellular INO was observed. 5-(4-Nitrobenzyl)-6-thioinosine (10 µ M ) reduced extracellular ADO during glucopenia or ischemia by ∼80%, indicating that ADO accumulation occurs mainly via the transporter. Intracellular ATP, ADP, or AMP and extracellular ADO, INO, or HYP were not apparently changed after oxidative stress or hypoxia. Nevertheless, in the presence of 10 µ M erythro -9-(2-hydroxy-3-nonyl)adenosine, oxidative stress was shown to increase significantly the accumulation of ADO, which was reduced in the presence of 200 µ M α,β-methyleneadenosine 5'-diphosphate, suggesting that ADO accumulation after oxidative stress may result from extracellular degradation of adenine nucleotides. The increase in ADO accumulation resulting from the depletion of cellular ATP was directly related to the release of endogenous glutamate occurring through a Ca2+-independent pathway after ischemia. Increased metabolic products derived from ATP are suggested to exert a modulating effect against excitotoxic neuronal death.  相似文献   

13.
Adenine nucleosides and nucleotides are important signaling molecules involved in control of key mechanisms of xenotransplant rejection. Extracellular pathway that converts ATP and ADP to AMP, and AMP to adenosine mainly mediated by ecto-nucleoside triphosphate diphosphohydrolase 1, (ENTPD1 or CD39) and ecto-5′-nucleotidase (E5NT or CD73) respectively, is considered as important target for xenograft protection. To clarify feasibility of combined expression of human ENTPD1 and E5NT and to study its functional effect we transfected pig endothelial cell line (PIEC) with both genes together. To do this we have produced a dicistronic construct bearing F2A sequence in frame between human E5NT and human ENTPD1 coding sequences. PIEC cells were mock-transfected as transfection control or transfected with plasmids encoding human ENTPD1 or human E5NT. PIEC cells were exposed to 50 μM ATP or 50 μM ADP or 50 μM AMP. Conversion of extracellular substrates into products (ATP/ADP/AMP/adenosine) was measured by HPLC in the media collected at specific time intervals. Following addition of AMP, production of adenosine in the medium of E5NT/ENTPD1- and E5NT- transfected cells increased to 14.2 ± 1.1 and 24.5 ± 3.4 μM respectively while it remained below 1 μM in controls and in ENTPD1-transfected cells. A marked increase of adenosine formation from ADP or ATP was observed only in E5NT/ENTPD1-transfected cells (11.7 ± 0.1 and 5.7 ± 2.2 μM respectively) but not in any other condition studied. This study indicates feasibility and functionality of combined expression of human E5NT and ENTPD1 in pig endothelial cells using F2A sequence bearing construct.  相似文献   

14.
Spinach chloroplasts were able to photophosphorylate the ADP analog alpha,beta-methylene adenosine 5'-diphosphate (AOPCP). Phosphorylation of AOPCP was catalyzed by chloroplasts that were washed or dialyzed to remove free endogenous nucleotides. In the presence of glucose, hexokinase, AOPCP and 32Pi, the 32P label was incorporated into alpha,beta-methylene adenosine 5'-triphosphate (AOPCPOP). In contrast to photophosphorylation of AOPCP, the ATP analog AOPCPOP was a poor substrate for the ATP-Pi exchange reaction and its hydrolysis was neither stimulated by light and dithiothreitol nor inhibited by Dio-9. Photophosphorylation of AOPCP was inhibited by the alpha,beta- and beta,gamma-substituted methylene analogs of ATP, while phosphorylation of ADP was unaffected by them. The ATP-Pi exchange was also unaffected by both ATP analogs, while the weak AOPCPOP-Pi exchange was inhibited by the beta,gamma-methylene analog of ATP. Direct interaction of methylene analogs with the chloroplast coupling factor ATPase was indicated by the enzymatic hydrolysis of AOPCPOP on polyacrylamide gels.  相似文献   

15.
ATP can be released from endothelial cells, and this release is increased by intraluminal flow in blood vessels. In the present study, the effect of extracellular ATP (1 microM) on flow-induced vasodilatation was investigated in isolated and pressurized rat small mesenteric arteries. In the absence of extracellular ATP, only 46% of arteries developed dilatation in response to flow, and this response was both transient and unstable. In marked contrast, with ATP present, all vessels developed a prolonged and stable dilatation in response to flow. Even in the vessels that failed to respond to flow in the absence of ATP, dilatation could be stimulated once ATP was present. The ability of ATP to facilitate flow-induced vasodilatation was mimicked by UTP (1 microM), a P2Y agonist, or 3'-O-(4-benzoyl)benzoyl ATP (BzATP; 10 microM), an agonist for P2X1, P2X7, and P2Y11 purinoceptors. The involvement of P2X7 purinoceptors was further supported by the inhibitory effect of KN-62 (1 microM), a P2X7 antagonist, on the action of BzATP. P2X1 and P2X3 purinoceptors were not involved because their receptor agonist alpha,beta-methylene ATP had no effect. The facilitating effect of ATP on flow dilatation was also attenuated by the combined application of reactive blue 2 (100 microM), a P2Y antagonist, and suramin (100 microM), a nonselective P2X and P2Y antagonist. Furthermore, flow-induced dilatation obtained in the presence of ATP was reproducible. In contrast, in the additional presence of the ectonucleotidase inhibitor ARL-67156 (10 microM), although the first dilatation was normal, the responses to the second and later exposures to flow were greatly attenuated. The nonhydrolyzable ATP analogs adenosine-5'-(3-thiotriphosphate)trilithium salt (1 microM) and adenosine 5'-(beta,gamma-imido) triphosphate tetralithium salt hydrate (10 microM) had similar effects to those of ARL-67156. These data suggest that ATP acts through both P2X and P2Y purinoceptors to facilitate flow-induced vasodilatation and that ectonucleotidases prevent this effect by degrading ATP on the endothelial cell surface.  相似文献   

16.
The physiological mechanisms that regulate reactive hyperemia are not fully understood. We postulated that the endothelial P2Y1 receptor that release vasodilatory factors in response to ADP might play a vital role in the regulation of coronary flow. Intracoronary flow was measured with a Doppler flow-wire in a porcine model. 2-MeSADP (10–5 M), ATP (10–4 M) or UTP (10–4 M) alone or as co-infusion with a selective P2Y1 receptor blocker, MRS 2179 (10–3 M) was locally delivered through the tip of a coronary angioplasty balloon. In separate pigs the coronary artery was occluded with the balloon for 10 min. During the first and tenth minutes of coronary ischemia, 2.5 ml of MRS 2179 (10–3 M) was delivered distal to the occlusion in 8 pigs, 10 pigs were used as controls. MRS 2179 fully inhibited the 2-MeSADP-mediated coronary flow increase (P < 0.05) with no effect on UTP, indicating selective P2Y1 inhibition. ATP-mediated flow increase was significantly inhibited by MRS 2179. During reactive hyperemia following coronary occlusion, flow increased by nearly sevenfold. MRS 2179, however, reduced the post-ischemic hyperemia by a mean of 46% during the period 1–2.5 min following balloon deflation (P < 0.05), which corresponds to peak velocity flow during reperfusion. In conclusion, MRS 2179, a selective P2Y1 receptor blocker, significantly reduces the increased coronary flow caused both by 2-MeSADP and reactive hyperemia in coronary arteries. Thus, ADP acting on the endothelial P2Y1 receptor may play a major role in coronary flow during post-ischemic hyperemia.  相似文献   

17.
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.  相似文献   

18.
Human placental adenosine kinase. Kinetic mechanism and inhibition   总被引:4,自引:0,他引:4  
The kinetic properties of human placental adenosine kinase, purified 3600-fold, were studied. The reaction velocity had an absolute requirement for magnesium and varied with the pH. Maximal activity was observed at pH 6.5 with a Mg2+:ATP ranging from 1:1 to 2:1. High concentrations of Mg2+ or free ATP were inhibitory. Double reciprocal plots of initial velocity studies yielded intersecting lines for both adenosine and MgATP2-. The Michaelis constant was 0.4 micro M for adenosine and 75 micro M for MgATP2-. Inhibition by adenosine was observed at concentrations greater than 2.5 micro M. AMP was a competitive inhibitor with respect to adenosine and a noncompetitive inhibitor with respect to ATP. ADP was a noncompetitive inhibitor with respect to adenosine and ATP. Hyperbolic inhibition was observed during noncompetitive inhibition of adenosine kinase by AMP and ADP. Other purine and pyrimidine nucleoside mono-, di-, and triphosphates were poor inhibitors in general. S-Adenosylhomocysteine and 2'-deoxyadenosine inhibited adenosine kinase. The data suggest that (a) MgATP2- is the true substrate of adenosine kinase, and both pH and [Mg2+] may regulate its activity; (b) the kinetic mechanisms of adenosine kinase is Ordered Bi Bi; and (c) adenosine kinase may be regulated by the concentrations of its products, AMP and ADP, but is relatively insensitive to other purine and pyrimidine nucleotides.  相似文献   

19.
1. Leishmania major promastigotes showed a large decrease in ATP and increases in ADP and AMP contents after 4 min of anaerobiosis. 2. When ADP was added to intact promastigotes, it was completely metabolized, apparently by its conversion to adenosine extracellularly followed by adenosine uptake, further metabolism intracellularly, and release of hypoxanthine. Under anaerobic conditions, adenosine uptake was strongly inhibited and ADP degradation was stopped at adenosine. 3. Under both aerobic and anaerobic conditions, ATP was released into the medium. ATP release was specific, since ADP and AMP were not detectable extracellularly even when their external degradation was inhibited with molybdate.  相似文献   

20.
Arnost Horak  Saul Zalik 《BBA》1976,430(1):135-144
Spinach chloroplasts were able to photophosphorylate the ADP analog α,β-methylene adenosine 5′-diphosphate (AOPCP). Phosphorylation of AOPCP was catalyzed by chloroplasts that were washed or dialyzed to remove free endogenous nucleotides. In the presence of glucose, hexokinase, AOPCP and 32Pi, the 32P label was incorporated into α,β-methylene adenosine 5′-triphosphate (AOPCPOP).In contrast to photophosphorylation of AOPCP, the ATP analog AOPCPOP was a poor substrate for the ATP-Pi exchange reaction and its hydrolysis was neither stimulated by light and dithiothreitol nor inhibited by Dio-9.Photophosphorylation of AOPCP was inhibited by the α,β- and β,γ-substituted methylene analogs of ATP, while phosphorylation of ADP was unaffected by them. The ATP-Pi exchange was also unaffected by both ATP analogs, while the weak AOPCPOP-Pi exchange was inhibited by the β,γ-methylene analog of ATP.Direct interaction of methylene analogs with the chloroplast coupling factor ATPase was indicated by the enzymatic hydrolysis of AOPCPOP on polyacrylamide gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号