首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparative genome hybridization of the Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica populations have shown that genome content is highly conserved, with relatively few genes in the F. tularensis subsp. tularensis genome being absent in other F. tularensis subspecies. To determine if organization of the genome differs between global populations of F. tularensis subsp. tularensis and F. tularensis subsp. holarctica, we have used paired-end sequence mapping (PESM) to identify regions of the genome where synteny is broken. The PESM approach compares the physical distances between paired-end sequencing reads of a library of a wild-type reference F. tularensis subsp. holarctica strain to the predicted lengths between the reads based on map coordinates of two different F. tularensis genome sequences. A total of 17 different continuous regions were identified in the F. tularensis subsp. holarctica genome (CR(holar)(c)(tica)) which are noncontiguous in the F. tularensis subsp. tularensis genome. Six of the 17 different CR(holarctica) are positioned as adjacent pairs in the F. tularensis subsp. tularensis genome sequence but are translocated in F. tularensis subsp. holarctica, implying that their arrangements are ancestral in F. tularensis subsp. tularensis and derived in F. tularensis subsp. holarctica. PCR analysis of the CR(holarctica) in 88 additional F. tularensis subsp. tularensis and F. tularensis subsp. holarctica isolates showed that the arrangements of the CR(holarctica) are highly conserved, particularly in F. tularensis subsp. holarctica, consistent with the hypothesis that global populations of F. tularensis subsp. holarctica have recently experienced a periodic selection event or they have emerged from a recent clonal expansion. Two unique F. tularensis subsp. tularensis-like strains were also observed which likely are derived from evolutionary intermediates and may represent a new taxonomic unit.  相似文献   

2.
3.
Liu J  Zogaj X  Barker JR  Klose KE 《BioTechniques》2007,43(4):487-90, 492
Francisella tularensis is one of the most deadly bacterial agents, yet most of the genetic determinants of pathogenesis are still unknown. We have developed an efficient targeted mutagenesis strategy in the model organism F. tularensis subsp. novicida by utilizing universal priming of optimized antibiotic resistance cassettes and splicing by overlap extension (SOE). This process enables fast and efficient construction of targeted insertion mutations in F. tularensis subsp. novicida that have characteristics of nonpolar mutations; optimized targeted mutagenesis strategies will promote the study of this mysterious bacterium and facilitate vaccine development against tularemia. Moreover the general strategy of gene disruption by PCR-based antibiotic resistance cassette insertion is broadly applicable to many bacterial species.  相似文献   

4.
The facultative intracellular pathogen Francisella tularensis is the causative agent of the serious infectious disease tularemia. Despite intensive research, the virulence factors and pathogenetic mechanisms remain largely unknown. To identify novel putative virulence factors, we carried out a comparative proteome analysis of fractions enriched for membrane-associated proteins isolated from the highly virulent subspecies tularensis strain SCHU S4 and three representatives of subspecies holarctica of different virulence including the live vaccine strain. We identified six proteins uniquely expressed and four proteins expressed at significantly higher levels by SCHU S4 compared to the ssp. holarctica strains. Four other protein spots represented mass and charge variants and seven spots were charge variants of proteins occurring in the ssp. holarctica strains. The genes encoding proteins of particular interest were examined by sequencing in order to confirm and explain the findings of the proteome analysis. Our studies suggest that the subspecies tularensis-specific proteins represent novel potential virulence factors.  相似文献   

5.
Puiu D  Salzberg SL 《PloS one》2008,3(10):e3427
Francisella tularensis is a highly infectious human intracellular pathogen that is the causative agent of tularemia. It occurs in several major subtypes, including the live vaccine strain holarctica (type B). F. tularensis is classified as category A biodefense agent in part because a relatively small number of organisms can cause severe illness. Three complete genomes of subspecies holarctica have been sequenced and deposited in public archives, of which OSU18 was the first and the only strain for which a scientific publication has appeared. We re-assembled the OSU18 strain using both de novo and comparative assembly techniques, and found that the published sequence has two large inversion mis-assemblies. We generated a corrected assembly of the entire genome along with detailed information on the placement of individual reads within the assembly. This assembly will provide a more accurate basis for future comparative studies of this pathogen.  相似文献   

6.
Tularemia is caused by two subspecies of Francisella tularensis, F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). F. tularensis subsp. tularensis is further subdivided into two genetically distinct populations (A.I and A.II) that differ with respect to geographical location, anatomical source of recovered isolates, and disease outcome. Using two human clinical isolates, suppression subtractive hybridization was performed to identify 13 genomic regions of difference between A.I and A.II strains. Two PCR assays, one to identify A.I and A.II as well as to discriminate between F. tularensis subsp. holarctica and F. novicida and another specific for A.I, were developed. This is the first report to identify and characterize conserved genomic differences between A.I and A.II.  相似文献   

7.
Migratory shorebirds use, among many, the East Atlantic Flyway that links breeding areas as north as Tundra habitats to aquatic wintering grounds in West Africa. As a consequence, they are potentially important in the spread of global zoonotic diseases transmitted by ticks, such as Lyme borreliosis and tularemia—two diseases previously detected in Portugal. In this study, we looked at the infection status of seven populations of shorebirds during their migration, breeding, or wintering in the Portuguese wetlands to access if they carry these pathogens and to discuss their potential risk in the Portuguese wetlands. A total of 212 migratory shorebirds captured in the Tagus and Sado estuaries; key staging and wintering sites in this flyway and important breeding areas for some species were analyzed for the presence of Borrelia burgdorferi sensu lato and Francisella tularensis. In the present study, B. garinii was identified in seven (3%) specimens (five black-tailed godwits Limosa limosa, one common redshank Tringa totanus, and one little stint Calidris minuta), whereas F. tularensis subsp. holarctica was identified in one (0.4%) little stint. To our knowledge, this is the first evidence that shorebirds that migrate through or winter in Portugal transport these pathogens, potentially contributing for their introduction along the flyway, including the Mediterranean region.  相似文献   

8.
9.
Francisella tularensis is the causative agent of tularaemia, a disease which occurs naturally in some countries in the northern hemisphere. Recently, there has been a high level of interest in devising vaccines against the bacterium because of the potential for it to be used as a bioterrorism agent. Previous human volunteer studies have shown that a strain of F. tularensis [the live vaccine strain (LVS)] that has been attenuated by laboratory passage is effective in humans as a vaccine against airborne disease. However, for a variety of reasons it seems unlikely that the LVS strain will be licensed for use in humans. Against this background there is an effort to devise a licensable vaccine against tularaemia. The prospects for a killed whole-cell subunit of live attenuated vaccine are reviewed. A rationally attenuated mutant seems the most likely route to a new tularaemia vaccine.  相似文献   

10.
Under conditions of artificial water biocenosis a virulent strain of F. tularensis could be detected in fresh water shrimps and mollusks for about a month, in Conepoda for up to 20 days and in Chydorus sphaericus for up to 7 days from the moment of the aquaria water contamination. In silt F. tularensis could be detected for a longer period (up to 2 months). Daphnia, Oligochaeta and C. sphaericus appeared to be unfavorable environment for this microorganism. The virulence level of F. tularensis microbial cells decreased in paralell with prolongation of their stay in water biocenosis. The presence of water biota favours F. tularensis preservation in water reservoirs for a longer time.  相似文献   

11.
Francisella tularensis subspecies tularensis (type A) and holarctica (type B) are of clinical importance in causing tularemia. Molecular typing methods have further separated type A strains into three genetically distinct clades, A1a, A1b and A2. Epidemiological analyses of human infections in the United States suggest that A1b infections are associated with a significantly higher mortality rate as compared to infections caused by A1a, A2 and type B. To determine if genetic differences as defined by molecular typing directly correlate with differences in virulence, A1a, A1b, A2 and type B strains were compared in C57BL/6 mice. Here we demonstrate significant differences between survival curves for infections caused by A1b versus A1a, A2 and type B, with A1b infected mice dying earlier than mice infected with A1a, A2 or type B; these results were conserved among multiple strains. Differences were also detected among type A clades as well as between type A clades and type B with respect to bacterial burdens, and gross anatomy in infected mice. Our results indicate that clades defined within F. tularensis subsp. tularensis by molecular typing methods correlate with virulence differences, with A1b strains more virulent than A1a, A2 and type B strains. These findings indicate type A strains are not equivalent with respect to virulence and have important implications for public health as well as basic research programs.  相似文献   

12.
Wang X  Ribeiro AA  Guan Z  McGrath SC  Cotter RJ  Raetz CR 《Biochemistry》2006,45(48):14427-14440
Francisella tularensis subsp. novicida U112 phospholipids, extracted without hydrolysis, consist mainly of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and two lipid A species, designated A1 and A2. These lipid A species, present in a ratio of 7:1, comprise 15% of the total phospholipids, as judged by 32Pi labeling. Although lipopolysaccharide is detectable in F. tularensis subsp. novicida U112, less than 5% of the total lipid A is covalently linked to it. A1 and A2 were analyzed by electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry, gas chromatography/mass spectrometry, and NMR spectroscopy. Both compounds are disaccharides of glucosamine, acylated with primary 3-hydroxystearoyl chains at positions 2, 3, and 2' and a secondary palmitoyl residue at position 2'. Minor isobaric species and some lipid A molecules containing a 3-hydroxypalmitoyl chain in place of 3-hydroxystearate are also present. The 4'- and 3'-positions of A1 and A2 are not derivatized, and 3-deoxy-d-manno-octulosonic acid (Kdo) is not detectable. The 1-phosphate groups of both A1 and A2 are modified with an alpha-linked galactosamine residue, as shown by NMR spectroscopy and gas chromatography/mass spectrometry. An alpha-linked glucose moiety is attached to the 6'-position of A2. The lipid A released by mild acid hydrolysis of F. tularensis subsp. novicida lipopolysaccharide consists solely of component A1. F. tularensis subsp. novicida mutants lacking the arnT gene do not contain a galactosamine residue on their lipid A. Formation of free lipid A in F. tularensis subsp. novicida might be initiated by an unusual Kdo hydrolase present in the membranes of this organism.  相似文献   

13.
The structure of the lipid A and core region of the lipopolysaccharide (LPS) from Francisella tularensis (ATCC 29684) was analysed using NMR, mass spectrometry and chemical methods. The LPS contains a beta-GlcN-(1-6)-GlcN lipid A backbone, but has a number of unusual structural features; it apparently has no substituent at O-1 of the reducing end GlcN residue in the lipid part in the major part of the population, no substituents at O-3 and O-4 of beta-GlcN, and no substituent at O-4 of the Kdo residue. The largest oligosaccharide, isolated after strong alkaline deacylation of NaBH4 reduced LPS had the following structure: where Delta-GalNA-(1-3)-beta-QuiNAc represents a modified fragment of the O-chain repeating unit. Two shorter oligosaccharides lacking the O-chain fragment were also identified. A minor amount of the disaccharide beta-GlcN-(1-6)-alpha-GlcN-1-P was isolated from the same reaction mixture, indicating the presence of free lipid A, unsubstituted by Kdo and with phosphate at the reducing end. The lipid A, isolated from the products of mild acid hydrolysis, had the structure 2-N-(3-O-acyl4-acyl2)-beta-GlcN-(1-6)-2-N-acyl1-3-O-acyl3-GlcN where acyl1, acyl2 and acyl3 are 3-hydroxyhexadecanoic or 3-hydroxyoctadecanoic acids, acyl4 is tetradecanoic or (minor) hexadecanoic acids. No phosphate substituents were found in this compound. OH-1 of the reducing end glucosamine, and OH-3 and OH-4 of the nonreducing end glucosamine residues were not substituted. LPS of F. tularensis exhibits unusual biological properties, including low endoxicity, which may be related to its unusual lipid A structure.  相似文献   

14.
The lipoprotein encoded by the Francisella tularensis subsp. tularensis locus FTT1103 is essential for virulence; an FTT1103 deletion mutant is defective in uptake and intracellular survival, and mice survive high dose challenges of greater than 10(8) bacteria. This protein has two conserved domains; one is found in a class of virulence proteins called macrophage infectivity potentiator (Mip) proteins, and the other in oxidoreductase Disulfide Bond formation protein A (DsbA)-related proteins. We have designated the protein encoded by FTT1103 as FipB for Francisellainfectivity potentiator protein B. The locus FTT1102 (fipA), which is upstream of fipB, also has similarity to same conserved Mip domain. Deletion and site-specific mutants of fipA and fipB were constructed in the Schu S4 strain, and characterized with respect to intracellular replication and in vivo virulence. A nonpolar fipA mutant demonstrated reduced survival in host cells, but was only slightly attenuated in vivo. Although FipB protein was present in a fipA mutant, the abundance of the three isoforms of FipB was altered, suggesting that FipA has a role in post-translational modification of FipB. Similar to many DsbA homologues, FipB contains a cysteine-any amino acid-any amino acid-cysteine (CXXC) motif. This motif was found to be important for FipB's role in virulence; a deletion mutant complemented with a gene encoding a FipB protein in which the first cysteine was changed to an alanine residue (AXXC) failed to restore intracellular survival or in vivo virulence. Complementation with a gene that encoded a CXXA containing FipB protein was significantly defective in intracellular growth; however, only slightly attenuated in vivo.  相似文献   

15.
16.
Francisella tularensis subsp. holarctica is widely disseminated in North America and the boreal and temperate regions of the Eurasian continent. Comparative genomic analyses identified a 1.59-kb genomic deletion specific to F. tularensis subsp. holarctica isolates from Spain and France. Phylogenetic analysis of strains carrying this deletion by multiple-locus variable-number tandem repeat analysis showed that the strains comprise a highly related set of genotypes, implying that these strains were recently introduced or recently emerged by clonal expansion in France and the Iberian Peninsula.  相似文献   

17.
Francisella tularensis subsp. holarctica is widely disseminated in North America and the boreal and temperate regions of the Eurasian continent. Comparative genomic analyses identified a 1.59-kb genomic deletion specific to F. tularensis subsp. holarctica isolates from Spain and France. Phylogenetic analysis of strains carrying this deletion by multiple-locus variable-number tandem repeat analysis showed that the strains comprise a highly related set of genotypes, implying that these strains were recently introduced or recently emerged by clonal expansion in France and the Iberian Peninsula.  相似文献   

18.
We have sequenced fragments of five metabolic housekeeping genes and two genes encoding outer membrane proteins from 81 isolates of Francisella tularensis, representing all four subspecies. Phylogenetic clustering of gene sequences from F. tularensis subsp. tularensis and F. tularensis subsp. holarctica aligned well with subspecies affiliations. In contrast, F. tularensis subsp. novicida and F. tularensis subsp. mediasiatica were indicated to be phylogenetically incoherent taxa. Incongruent gene trees and mosaic structures of housekeeping genes provided evidence for genetic recombination in F. tularensis.  相似文献   

19.
The study of the persistence potential of 64 F. tularensis strains isolated from different sources was carried out. The wide spread of the antilysozyme, antilactoferrin and anticomplementory activities of F. tularensis were detected. F. tularensis, isolated from ticks and water, were characterized by the highest level of the expression of antilysozyme activity, while anticomplementory and antilactoferrin activities of the infective agents were characteristic of those microorganisms which were isolated from rodents and their excrements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号