首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serotype-specific capsular polysaccharide from two strains of Pasteurella haemolytica serotype T4 organisms was purified and characterized by chemical analysis and NMR spectroscopy. The polymer, a teichoic acid, has the backbone structure ----(2-glycerol-l)----(phosphate)----(6-alpha-D-galactose-1)---- and is partially O-acetylated on the C2 and C3 galactose residues. Chemical removal of O-acetyl groups from the polysaccharide destroyed both its ability to precipitate with antiserum raised against killed whole serotype T4 organisms and its ability to adhere to sheep erythrocytes in passive haemagglutination experiments. Attempts to elicit antisera using the purified polymer were unsuccessful but a partially purified material was immunogenic.  相似文献   

2.
The primary structure of teichuronic acid in Bacillus subtilis AHU 1031   总被引:3,自引:0,他引:3  
Structural studies were carried out on the acidic polysaccharide fraction obtained from lysozyme digest of the cell walls of Bacillus subtilis AHU 1031. The polysaccharide fraction contained N- acetylmannosaminuronic acid ( ManNAcA ), N-acetylglucosamine (GlcNAc), glucose, glycerol and phosphorus in a molar ratio of 2:2:4:1:1, together with glycopeptide components. The results of analyses involving Smith degradation, chromium trioxide oxidation, methylation and proton magnetic resonance spectroscopy led to the conclusion that the backbone chain of the polysaccharide has the repeating unit----6)Glc(alpha 1----3/4) ManNAcA (beta 1----4)GlcNAc(beta 1----. About 50% of the N-acetylglucosamine residues in the backbone chain seem to be substituted at C-3 by the glycosidic branches, glycerol phospho-6-glucose, while the other half seem to be substituted by glucose.  相似文献   

3.
Teichoic acid-glycopeptide complexes were isolated from lysozyme digests of the cell walls of Bacillus coagulans AHU 1631, AHU 1634, and AHU 1638, and the structure of the teichoic acid moieties and their linkage regions was studied. On treatment with hydrogen fluoride, each of the complexes gave a hexosamine-containing disaccharide, which was identified to be glucosyl(beta 1----4)N-acetylglucosamine, in addition to dephosphorylated repeating units of the teichoic acids, namely, galactosyl(alpha 1----2)glycerol and either galactosyl(alpha 1----2)[glucosyl(alpha 1----1/3)]glycerol (AHU 1638) or galactosyl(alpha 1----2)[glucosyl(beta 1----1/3)]glycerol (AHU 1631 and AHU 1634). From the results of Smith degradation, methylation analysis, and partial acid hydrolysis, the teichoic acids from these strains seem to have the same backbone chains composed of galactosyl(alpha 1----2)glycerol phosphate units joined by phosphodiester bonds at C-6 of the galactose residues. The presence of the disaccharide, glucosyl(beta 1----4)N-acetylglucosamine, in the linkage regions between teichoic acids and peptidoglycan was confirmed by the isolation of a disaccharide-linked glycopeptide fragment from each complex after treatment with mild alkali and of a teichoic acid-linked saccharide from each cell wall preparation after treatment with mild acid. Thus, it is concluded that despite structural differences in the glycosidic branches, the teichoic acids in the cell walls of the three strains are linked to peptidoglycan through a common linkage saccharide, glucosyl (beta 1----4) N-acetylglucosamine.  相似文献   

4.
Water-soluble polysaccharides from Ginkgo biloba leaves.   总被引:5,自引:0,他引:5  
J Kraus 《Phytochemistry》1991,30(9):3017-3020
The water-soluble polysaccharides from dried Ginkgo biloba leaves were isolated after exhaustive extraction with organic solvents. The polysaccharide mixture could be separated into a neutral (GF1) and two acidic (GF2 and GF3) polysaccharide fractions by ion exchange chromatography. According to the Mr distribution GF1 and GF3 seemed to be homogenous, whereas GF2 could be further fractionated into two subfractions (GF2a and GF2b) by gel permeation chromatography. GF1 (Mr 23,000) showed the structural features of a branched arabinan. The main chain was composed of 1,5-linked arabinose residues and three in 12 arabinose molecules were branched via C-2 or C-3. GF2a (Mr 500,000) consisted mainly of 1,2,4-branched mannose (29%), 1,4-linked glucuronic (32%) and galacturonic (8%) acid as well as terminal rhamnose (25%). After removal of ca 70% of the terminal rhamnose the remaining polysaccharide showed a decrease in 1,2,4-branched mannose and an increase in 1,2-linked mannose indicating that at least half of the rhamnose residues were linked to mannose via C-4. GF3 (Mr 40,000) consisted of 1,4-linked galacturonic (30%) and glucuronic (16) acid, 1,3,6-branched galactose (15%), 1,2-linked (5%) and 1,2,4-branched (3.5%) rhamnose as well as 1,5-linked arabinose (11%). Rhamnose (5%) and arabinose (10%) were present as terminal groups. Mild acid hydrolysis selectively cleaved arabinose and the remaining polysaccharide showed an increased amount of 1,6-linked and terminal galactose and a decreased quantity of 1,3,6-branched galactose. These results indicated that the terminal as well as the 1,5-linked arabinose were mainly connected to galactose via C-3. The GF3 polysaccharide appeared to be a rhamnogalacturonan with arabinogalactan side chains.  相似文献   

5.
The Hindak strain of a Cryptomonas species (Cryptophyceae) produces extracellular polysaccharides. Because there is no information on the structure of these compounds in the Cryptophyceae we conducted structural studies. Gas–liquid chromatographic analyses showed that the polysaccharide is composed of fucose, rhamnose, xylose, mannose, glucose, galactose, galacturonic acid, glucuronic acid, and traces of 3-O-methyl galactose. The polysaccharide was separated into two subtractions by ion-exchange chromatography. Fraction A consisted mainly of 1,3-linked galactose units and 1,4-linked galacturonic acid. Unlike fraction B, fraction A did not have xylose, 3-O-methyl galactose, or glucuronic acid. Also, its degree of branching was low compared to that of fraction B. Only traces of sulfate were present infraction A, but fraction B was 10–15% sulfated. Protein was approximately 1% in both fractions. These polysaccharides appear to be a novel type of polymer in algae.  相似文献   

6.
S Kaya  K Yokoyama  Y Araki    E Ito 《Journal of bacteriology》1984,158(3):990-996
The structure of teichoic acid-glycopeptide complexes isolated from lysozyme digests of cell walls of Bacillus subtilis (four strains) and Bacillus licheniformis (one strain) was studied to obtain information on the structural relationship between glycerol teichoic acids and their linkage saccharides. Each preparation of the complexes contained equimolar amounts of muramic acid 6-phosphate and mannosamine in addition to glycopeptide components and glycerol teichoic acid components characteristic of the strain. Upon treatment with 47% hydrogen fluoride, these preparations gave, in common, a hexosamine-containing disaccharide, which was identified as N- acetylmannosaminyl (1----4) N-acetylglucosamine, along with large amounts of glycosylglycerols presumed to be the dephosphorylated repeating units of teichoic acid chains. The glycosylglycerol obtained from each bacterial strain was identified as follows: B. subtilis AHU 1392, glucosyl alpha (1----2)glycerol; B. subtilis AHU 1235, glucosyl beta(1----2) glycerol; B. subtilis AHU 1035 and AHU 1037, glucosyl alpha (1----6)galactosyl alpha (1----1 or 3)glycerol; B. licheniformis AHU 1371, galactosyl alpha (1----2)glycerol. By means of Smith degradation, the galactose residues in the teichoic acid-glycopeptide complexes from B. subtilis AHU 1035 and AHU 1037 and B. licheniformis AHU 1371 were shown to be involved in the backbone chains of the teichoic acid moieties. Thus, the glycerol teichoic acids in the cell walls of five bacterial strains seem to be joined to peptidoglycan through a common linkage disaccharide, N- acetylmannosaminyl (1----4)N-acetylglucosamine, irrespective of the structural diversity in the glycosidic branches and backbone chains.  相似文献   

7.
We have derived oligosaccharides from the capsular polysaccharide of type III group B Streptococcus by enzymatic hydrolysis of a specific backbone glycosidic bond utilizing an endo-beta-galactosidase from Flavobacterium keratolyticus. Enzymatic digestion of the polysaccharide produced oligosaccharide fragments of one or more pentasaccharide repeating units. On the basis of 13C NMR, 1H NMR, and methylation analyses, it was established that the smallest digestion fragment was alpha-D-NeupNAc-(2----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----6 )]- beta-D-GlcpNAc-(1----3)-beta-D-Gal. The isolation of this oligosaccharide is consistent with the susceptibility of the beta-D-Galp-(1----4)-beta-D-Glcp linkage in the backbone of the type III group B streptococcal polysaccharide and confirms that the polysaccharide is composed of a pentasaccharide repeating unit. High resolution 13C NMR spectroscopic studies indicated that, as in the case of the pentasaccharide, the terminal sialic acid residues of the type III group B streptococcal polysaccharide were linked to O-3 and not to O-6 of its branch beta-D-galactopyranosyl residues as had been previously reported (Jennings, H. J., Rosell, K.-G., and Kasper, D. L. (1980) Can. J. Chem. 58, 112-120). This linkage was confirmed in an independent methylation analysis of the type III group B streptococcal polysaccharide. Thin layer chromatogram binding assay and radioactive antigen binding assays with radiolabeled oligosaccharides demonstrated the single repeating unit pentasaccharide oligosaccharide to be poorly antigenic. Increasing oligosaccharide size to a decasaccharide consisting of two repeating units resulted in an 8-fold increase in antigen binding in the direct radioactive antigen binding assay. The results suggest that a region of the immunodeterminant site critical for antibody binding is located in the backbone of the polysaccharide and involves the beta-D-galactopyranose-(1----4) beta-D-glucopyranose bond.  相似文献   

8.
The lipoteichoic acids from Bifidobacterium bifidum spp. pennsylvanicum were extracted from cytoplasmic membranes or from disintegrated bacteria with aqueous phenol and purified by gel chromatography. The lipoteichoic acid preparations contained phosphate, glycerol, galactose, glucose and fatty acids in a molar ratio of 1.0:1.0:1.3:1.2:0.3. Chemical analysis and NMR studies of the native preparations and of products from various acid and alkaline hydrolysis procedures gave evidence for the structure of two lipoteichoic acids. The lipid anchor appeared to be 3-O-(6'-(sn-glycero-1-phosphoryl)diacyl-beta-D-galactofuranosyl)-sn-1, 2-diacylglycerol. The polar part showed two structural features not previously described for lipoteichoic acids. A 1,2-(instead of the usual 1,3-) phosphodiester-linked sn-glycerol phosphate chain is only used substituted at the terminal glycerol unit with a linear polysaccharide, containing either beta(1----5)-linked D-galactofuranosyl groups or beta(1----6)-linked D-glucopyranosyl groups.  相似文献   

9.
An anti-complementary arabinogalactan (AGIIb-1), isolated from the roots of Angelica acutiloba Kitagawa, has been subjected to methylation analysis, digestion with alpha-L-arabinofuranosidase, controlled Smith-degradation, and partial acid hydrolysis. AGIIb-1 consisted of arabinose, galactose, rhamnose, galacturonic acid, and glucuronic acid in the molar ratios 1.8-2.2:1.0:0.2-0.3:0.2-0.4:0.1. AGIIb-1 contained mainly an arabino-3,6-galactan moiety, and most of the Ara was present as alpha-L-arabinofuranosyl residues in the non-reducing terminals and the highly polymerised and branched side-chains which were attached mainly to positions 3 and 6 of (1----6)- and (1----3)-linked Gal, respectively. Some Ara-containing chains were also attached to (1----4)-linked Gal residues. The 13C-n.m.r. data for AGIIb-1 showed that the Galp was beta. Mild acid hydrolysis of AGIIb-1 yielded several linear and highly branched arabino-oligosaccharides, a neutral arabinogalactan, and two acidic arabinogalactans. Some arabino-oligosaccharides contained a (1----4)-linked Arap at the reducing terminal. The neutral arabinogalactan contained (1----3)-, (1----4)-, and (1----6)-linked and 3,6-di-O-substituted Gal, whereas the acidic arabinogalactans contained, in addition, non-reducing terminal GlcA, (1----4)-linked GalA, and 2,4-di-O-substituted Rha. The anti-complementary activity was decreased when AGIIb-1 was partially hydrolysed with mild acid (10mM HCl, 100 degrees, 10 min), but treatment with exo-alpha-L-arabinofuranosidase markedly enhanced the activity.  相似文献   

10.
Structural studies were carried out on two kinds of teichuronic acid-glycopeptide complexes (designated as TU-GP-I and TU-GP-II) isolated from lysozyme digest of N-acetylated cell walls of Bacillus megaterium AHU 1375 by ion-exchange chromatography and gel chromatography. TU-GP-I, accounting for about 25% of the cell walls, contained N-acetylmannosaminuronic acid, N-acetylglucosamine, glucose, galactose, glycerol, and phosphorus in an approximate molar ratio of 1:1:2:1:0.5:0.5, together with small amounts of glycopeptide components. TU-GP-II, accounting for about 9% of the cell walls, contained glucuronic acid, glucose, and fucose in a molar ratio of about 2:1.5:1, together with small amounts of glycopeptide components. The results of analyses involving Smith degradation, chromium oxidation, methylation, acetolysis, and H-NMR measurement led to the conclusion that the polysaccharide chain of TU-GP-I comprised repeating units,----6) Glc(alpha 1----3)-ManNAcUA(beta 1----4)[Gal(alpha 1----3)][Glc(beta 1----6)]GlcNAc(beta 1----. About half of the repeating units were substituted by glycerophosphoryl residues at C-6 of the beta-glucosyl residues linked to the N-acetylglucosamine residues. By means of a similar procedure, the polysaccharide chain of TU-GP-II was shown to comprise repeating units,----4)GlcUA(alpha 1----3)GlcUA(alpha 1----3)Glc(alpha 1----3)Fuc(alpha 1----, of which about half were substituted by alpha-glucosyl residues at C-3 of the 4-substituted glucuronosyl residues.  相似文献   

11.
Regenerating spheroplasts of Candida albicans formed organized glucan nets in liquid culture. The nets consisted of interwoven microfibrils about 50 nm wide, but of an undetermined length. Partial acid hydrolysis of the polysaccharide showed the presence of chains of beta(1----3)- and beta(1----6)-linked glucose residues, but no intrachain beta(1----3) and beta(1----6) linkages. Periodate oxidation and GLC of the methylated glucan indicated a highly branched polymer (9.5% branch points). Sequential enzymic degradation of the isolated nets confirmed the presence of chains of beta(1----3)- and beta(1----6)-linked glucose residues. Degradation by (1----3)-beta- and (1----6)-beta-glucanase released 23% (w/w) and 30% (w/w) respectively of the carbohydrate as glucose equivalents. The residual material was degraded by chitinase. Equal amounts of N-acetylglucosamine and glucose equivalents were detected in the chitinase hydrolysate, suggesting a possible linkage between glucan and chitin. Our data indicate that the cell wall of C. albicans contains at least two highly branched glucans with predominantly beta(1----3) or beta(1----6) linkages.  相似文献   

12.
Structure of a streptococcal adhesin carbohydrate receptor   总被引:3,自引:0,他引:3  
Interactions between complementary protein and carbohydrate structures on different genera of human oral bacteria have been implicated in the formation of dental plaque. The carbohydrate receptor on Streptococcus sanguis H1 (one of the primary colonizing species) that is specific for the adhesin on Capnocytophaga ochracea ATCC 33596 (a secondary colonizer) has been isolated from the streptococcal cell wall, purified, and structurally characterized. The hexasaccharide repeating unit of the polysaccharide was purified by reverse-phase, amino-bonded silica, and gel permeation high performance liquid chromatography. Earlier studies established that the repeating unit was a hexasaccharide composed of rhamnose, galactose, and glucose in the ration of 2:3:1, respectively. In the present study, determination of absolute configuration by gas chromatography of the trimethylsilyl (+)-2-butyl glycosides revealed that the rhamnose residues were of the L configuration while the hexoses were all D. 252Californium plasma desorption mass spectrometry of the native, the acetylated and the reduced and acetylated hexasaccharide determined that the molecular mass of the native hexasaccharide was 959, and that the 2 rhamnose residues were linked to each other at the nonreducing terminus of the linear molecule. Methylation analysis revealed the positions of the glycosidic linkages in the hexasaccharide and showed that a galactose residue was present at the reducing end. The structural characterization of the hexasaccharide was completed by one and two dimensional 1H and 13C NMR spectroscopy. Complete 1H and 13C assignments for each glycosyl residue were established by two-dimensional (1H,1H) correlation spectroscopy, homonuclear Hartmann-Hahn, and (13C,1H) correlation experiments. The configurations of the glycosidic linkages were inferred from the chemical shifts and coupling constants of the anomeric 1H and 13C resonances. The sequence of the glycosyl residues was determined by a heteronuclear multiple bond correlation experiment. These data show that the structure of the hexasaccharide repeating unit derived from the cell wall polysaccharide of S. sanguis H1 is: alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----3)-alpha-D-Galp- (1----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----3)-alpha/beta-D-Gal.  相似文献   

13.
A cell-wall preparation from the cells of Elsinoe leucospila, which produces elsinan extracellularly when grown on sucrose or glucose-potato extract medium, was fractionated systematically. The heteropolysaccharide that was released by treatment with Actinase E digestion, comprised D-mannose, D-galactose, and D-glucose (molar ratio, 1.5:1.0:0.1). Methylation, mild acid hydrolysis, and 13C-NMR studies suggested that the polysaccharide contains a backbone of alpha-(1----6)-linked D-mannose residues having two kinds of side chains, one attached at the O-4 with single or short beta-(1----6)-linked D-galactofuranosyl residues, and the other attached at O-2 with short side chains, most probably, of alpha-(1----3)-linked D-mannopyranosyl residues. A moderately branched D-glucan fraction, obtained from the cold alkali extract, was fractionated to give an antitumor-active purified beta-(1----3)-glucan having branches of single beta-D-glucosyl groups, one out of eight D-glucose residues being substituted at the O-6.  相似文献   

14.
The released polysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02 was separated into two main fractions byanion-exchange chromatography. The major fraction consisted of glucose,fucose, mannose, arabinose and glucuronic acid. Judging from thechromatography on Sepharose 2B, the major fraction was not furtherfractionated, and its apparent molecular weight was above 2.0 × 106 Da.The minor fraction consisted of rhamnose, mannose, fucose,glucose, galactose and glucuronic acid, with traces of arabinose.Methylation and GC-MS spectrometry analyses of the major fractionrevealed the presence of 1-linked glucose, 1,3-linked glucose, 1,3-linkedfucose, 1,4-linked fucose, 1,3-linked arabinose, 1,2,4-linked mannose,1,3,6-linked mannose, 1-linked glucuronic acid and 1,3-linked glucuronicacid residues. The major fraction was thought to originate from capsularpolysaccharide. The released polysaccharides, obtained from cultures atdifferent age of culture, showed no striking variations in themonosaccharide composition and the relative proportions of themonosaccharides. However, the proportions of galactose and rhamnose inthe released polysaccharides, obtained from cultures under different salinity,were significantly different. The released polysaccharide also exhibitedgelling properties and strong affinity for metal ions.  相似文献   

15.
The chemical structure of Campylobacter jejuni CCUG 10936 lipid A was elucidated. The hydrophilic backbone of the lipid A was shown to consist of three (1----6)-linked bisphosphorylated hexosamine disaccharides. Neglecting the phosphorylation pattern, a D-glucosamine (2-amino-2-deoxy-D-glucose) disaccharide [beta-D-glucosaminyl-(1----6)-D-glucosamine], a hybrid disaccharide of 2,3-diamino-2,3-dideoxy-D-glucose and D-glucosamine [2,3-diamino-2,3-dideoxy-beta-D-glucopyranosyl-(1----6)-D-glucosamine], and a 2,3-diamino-2,3-dideoxy-D-glucose disaccharide were present in a molar ratio of 1:6:1.2. Although the backbones are bisphosphorylated, heterogeneity exists in the substitution of the polar head groups. Phosphorylethanolamine is alpha-glycosidically bound to the reducing sugar residue of the backbone, though C-1 is also non-stoichiometrically substituted by diphosphorylethanolamine. Position 4' of the non-reducing sugar residue carries an ester-bound phosphate group or is non-stoichiometrically substituted by diphosphorylethanolamine. By methylation analysis it was shown that position 6' is the attachment site for the polysaccharide moiety in lipopolysaccharide. These backbone species carry up to six molecules of ester- and amide-bound fatty acids. Four molecules of (R)-3-hydroxytetradecanoic acid are linked directly to the lipid A backbone (at positions 2, 3, 2', and 3'). Laser desorption mass spectrometry showed that both (R)-3-hydroxytetradecanoic acids linked to the non-reducing sugar unit carry, at their 3-hydroxyl group, either two molecules of hexadecanoic acid or one molecule of tetradecanoic and one of hexadecanoic acid. It also suggested that the (R)-3-(tetradecanoyloxy)-tetradecanoic acid was attached at position 2', whereas (R)-3-(hexadecanoyloxy)-tetradecanoic acid was attached at position 3', or at positions 2' and 3'. Therefore, the occurrence of three backbone disaccharides differing in amino sugar composition and presence of a hybrid disaccharide differentiate the lipid A of this C. jejuni strain from enterobacterial and other lipids A described previously.  相似文献   

16.
A receptor for bacteriophages of lactic acid bacteria, including Lactococcus lactis subsp. cremoris KH, was found on the cell wall and not on the cell membrane, as determined by a phage-binding assay of sodium dodecyl sulfate- and mutanolysin-treated cell walls. The cell wall carbohydrates of L. lactis subsp. cremoris KH were analyzed by gas chromatography and mass spectrometry and found to contain rhamnose, galactose, glucose and N-acetylglucosamine. Similar analysis of mutants that were reduced in the ability to bind phages kh, 643, c2, ml3, and 1 indicated that galactose was essential for binding all phages. In addition, rhamnose was required for binding phages kh and ml3. Inhibition studies of phage binding by using two different lectins with a specificity for galactose indicated that phage kh may not bind directly to galactose. Rather, galactose may be an essential structural component located in the vicinity of the receptor. Incubation of any of the five phages with rhamnose or of phage kh with purified cell walls inactivated the phages. Inactivation required divalent cations and was irreversible. Inactivation of phages was stereospecific for rhamnose, as neither L-(+)- nor D-(-)-fucose (the stereoisomers of rhamnose) inhibited the phage. Furthermore, phage infection of a culture was completely inhibited by the addition of rhamnose to the medium. Therefore, the receptor for phage kh appears to be a rhamnose component of the extracellular wall polysaccharide.  相似文献   

17.
A receptor for bacteriophages of lactic acid bacteria, including Lactococcus lactis subsp. cremoris KH, was found on the cell wall and not on the cell membrane, as determined by a phage-binding assay of sodium dodecyl sulfate- and mutanolysin-treated cell walls. The cell wall carbohydrates of L. lactis subsp. cremoris KH were analyzed by gas chromatography and mass spectrometry and found to contain rhamnose, galactose, glucose and N-acetylglucosamine. Similar analysis of mutants that were reduced in the ability to bind phages kh, 643, c2, ml3, and 1 indicated that galactose was essential for binding all phages. In addition, rhamnose was required for binding phages kh and ml3. Inhibition studies of phage binding by using two different lectins with a specificity for galactose indicated that phage kh may not bind directly to galactose. Rather, galactose may be an essential structural component located in the vicinity of the receptor. Incubation of any of the five phages with rhamnose or of phage kh with purified cell walls inactivated the phages. Inactivation required divalent cations and was irreversible. Inactivation of phages was stereospecific for rhamnose, as neither L-(+)- nor D-(-)-fucose (the stereoisomers of rhamnose) inhibited the phage. Furthermore, phage infection of a culture was completely inhibited by the addition of rhamnose to the medium. Therefore, the receptor for phage kh appears to be a rhamnose component of the extracellular wall polysaccharide.  相似文献   

18.
The gelling polysaccharide produced by a species of Enterobacter (NCIB 11870) contains L-fucose, D-glucose, and D-glucuronic acid in the ratios 1:2:1. Analysis of the methylated and methylated, carboxyl-reduced polysaccharide revealed terminal non-reducing glucose, (1----3)-linked fucose, (1----3,1----4)-linked glucose, and (1----4)-linked glucuronic acid in the ratios 1:1:1.2:0.8. From the results of Smith degradation of the polysaccharide and spectroscopic studies of the acidic tetra- and octa-saccharides produced by bacteriophage-induced enzymic depolymerization of the polysaccharide, the following tetrasaccharide repeating-unit is proposed. (Formula: see text). This repeating-unit is identical to that of the capsular polysaccharide produced by Klebsiella aerogenes serotype K54 except for the absence of O-acetyl groups. The effects of the O-acetyl groups on the secondary structure and rheological properties of these polysaccharides are discussed.  相似文献   

19.
The carbohydrate binding specificity of Mr = 30,000 lectin (CBP30) from baby hamster kidney (BHK) cells has been studied by inhibition of binding of the radiolabeled lectin to asialofetuin-Sepharose using model oligosaccharides and glycopeptides. CBP30 binds type I or II Gal beta(1----3(4))GlcNAc chains but not Gal(beta 1----3)GalNAc. The inhibitory potency of straight chain polylactosamine structures or complex-type branched glycans is increased in proportion to the number of Gal(beta 1----3(4)) units present. Fucosylation or sialylation of terminal galactose residues or further substitution by (alpha 1----3)-linked galactose or N-acetylgalactosamine does not affect binding whereas substitution of the penultimate N-acetylglucosamine residue drastically reduces binding. Thus, blood group A, H type I or H type II structures, shows high affinity whereas Lex, Lea, and Leb structures bind poorly. CBP30 binds to murine Engelbreth-Holm-Swarm (EHS) tumor laminin and human amniotic fluid fibronectin but not human plasma fibronectin. Binding involves polylactosamine glycans as well as tri- and tetraantennary complex-type glycans present in EHS laminin and amniotic fluid fibronectin but absent in plasma fibronectin. Proteolytic fragments of EHS laminin (E1X/Nd, P1, E8, and E3) bind CBP30, but only fragment E8 supports attachment and spreading of BHK cells. BHK cell adhesion to EHS laminin or fragment E8 was not disturbed by CBP30-specific antibodies, but at relatively high concentrations (45 micrograms/ml) CBP30 inhibited spreading and partially attachment of cells on laminin.  相似文献   

20.
The cold-water extract from the skin of Opuntia ficus-indica fruits was fractionated by anion-exchange chromatography. The major fraction, which was purified by size exclusion chromatography, consisted of a polysaccharide composed of galactose and arabinose residues in the ratio 6.3:3.3, with traces of rhamnose, xylose and glucose, but no uronic acid. The results of methylation analysis, supported by (13)C NMR spectroscopy, indicated that this polysaccharide corresponded to an arabinogalactan having a backbone of (1-->4)-linked beta-D-galactopyranosyl residues with 39.5% of these units branched at O-3. The side-groups consisted either of single L-arabinofuranosyl units or L-arabinofuranosyl alpha-(1-->5)-linked disaccharides. This polysaccharide is thus an arabinogalactan that can be classified in the type I of the arabinogalactan family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号