首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In low or absence of glucose, alpha-cells generate rhythmic action potentials and secrete glucagon. alpha-Cell T-type Ca(2+) channels are believed to be pacemaker channels, which are expected to open near the resting membrane potential (around -60 mV) to initiate a small depolarization. A previous publication, however, showed that alpha-cell T-type Ca(2+) channels have an activation threshold of -40 mV, which does not appear to fulfill their role as pacemakers. In this work, we investigated the Ca(2+) channel characteristics in alpha-cells of mouse-insulin-promoter green-fluorescent-protein (MIP-GFP) mouse. The beta-cells of MIP-GFP were conveniently distinguished as green cells, while immunostaining indicated that the majority of non-green cells were alpha-cells. We found that majority of alpha-cells possessed T-type Ca(2+) channels having an activation threshold of -40 mV; these cells also had high-voltage-activated (HVA) Ca(2+) channels (activation threshold of -20 mV). A novel finding here is that a minority of alpha-cells had T-type Ca(2+) channels with an activation threshold of -60 mV. This minor population of alpha-cells was, surprisingly, devoid of HVA Ca(2+) channels. We suggest that this alpha-cell subpopulation may act as pacemaker cells in low or absence of glucose.  相似文献   

2.
Although placental transfer of maternal calcium (Ca(2+)) is a crucial process for fetal development, the biochemical mechanisms are poorly understood. In the current study, we have investigated the characteristics of Ca(2+) fluxes in relation with cell Ca(2+) homeostasis in the human placental trophoblast cell line BeWo. Time-courses of Ca(2+) uptake by BeWo cells displayed rapid initial entry (initial velocity (V(i)) of 3.42 +/- 0.35 nmol/mg protein/min) and subsequent establishment of a plateau. Ca(2+) efflux studies with (45)Ca(2+)-loaded cells also showed rapid declined of cell-associated (45)Ca(2+) with a V(i) of efflux (Ve(i)) of 3.30 +/- 0.08 nmol/mg protein/min. Further identification of membrane gates for Ca(2+) entry in BeWo cells was carried out. Expression of Ca(2+) transporter/channel CaT1 and L-type alpha(1S) subunit was showed by RT-PCR. However, mRNA for CaT2 channel and L-type alpha(1C) and alpha(1D) subunits were not revealed. Membrane systems responsible for intracellular Ca(2+) extrusion from BeWo cells were also investigated. Plasma membrane Ca(2+)-ATPases (PMCA) and Na/Ca exchangers (NCX) were detected by Western blot in BeWo cells. Expression of specific isoforms of PMCA and NCX was further investigated by RT-PCR. Messenger RNAs of four isoforms of PMCA (PMCA 1-4) were detected. The presence of messenger RNAs of two NCX isoforms (NCX1 and NCX3) was observed. Ca(2+) flux studies in Na-free incubation medium indicated that NCX played a minimal role in the cell Ca(2+) fluxes. Inorganic ions such as cadmium and manganese did not modify the Ca(2+) fluxes, however, barium increased cell-associated (45)Ca(2+) by, in part, by reducing radiolabel exit.  相似文献   

3.
Precise regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is achieved by the coordinated function of Ca(2+) channels and Ca(2+) buffers. Neuronal differentiation induces up-regulation of Ca(2+) channels. However, little is known about the effects of differentiation on the expression of the plasma membrane Ca(2+)-ATPase (PMCA), the principal Ca(2+) extrusion mechanism in neurons. In this study, we examined the regulation of PMCA expression during differentiation of the human neuroblastoma cell line IMR-32. [Ca(2+)](i) was monitored in single cells using indo-1 microfluorimetry. When the Ca(2+)-ATPase of the endoplasmic reticulum was blocked by cyclopiazonic acid, [Ca(2+)](i) recovery after small depolarization-induced Ca(2+) loads was governed primarily by PMCAs. [Ca(2+)](i) returned to baseline by a process described by a monoexponential function in undifferentiated cells (tau = 52 +/- 4 s; n = 25). After differentiation for 12-16 days, the [Ca(2+)](i) recovery rate increased by more than threefold (tau = 17 +/- 1 s; n = 31). Western blots showed a pronounced increase in expression of three major PMCA isoforms in IMR-32 cells during differentiation, including PMCA2, PMCA3 and PMCA4. These results demonstrate up-regulation of PMCAs on the functional and protein level during neuronal differentiation in vitro. Parallel amplification of Ca(2+) influx and efflux pathways may enable differentiated neurons to precisely localize Ca(2+) signals in time and space.  相似文献   

4.
The operation of capacitative Ca(2+) entry (CCE) in human breast cancer (SKBR3) and non-tumorigenic (HBL100) cell lines was investigated as an alternative Ca(2+) entry route in these cells. Ca(2+) readdition after thapsigargin-induced store depletion showed activation of CCE in both cell lines. SKBR3 cells exhibited retarded store depletion and CCE decay kinetics compared to the non-tumorigenic HBL100 cells, suggesting alterations in Ca(2+) homeostasis. CCE was also highly permeable to Mn(2+) and to a lesser extent to Sr(2+), but not to Ba(2+). In HBL100 cells, CCE is contributed (30%) by a Ca(2+)/Mn(2+) permeable route insensitive to low (1 microM) Gd(3+) and a Ca(2+)/Sr(2+)/Mn(2+) permeable non-selective pathway (70%) sensitive to 1 microM Gd(3+). In SKBR3 cells, the relative contribution to CCE of both routes was opposite to that in non-tumorigenic cells.  相似文献   

5.
Interstitial cells of Cajal (ICC) are considered to be pacemaker cells in gastrointestinal tracts. ICC generate electrical rhythmicity (dihydropyridine-insensitive) as slow waves and drive spontaneous contraction of smooth muscles. Although cytosolic Ca(2+) has been assumed to play a key role in pacemaking, Ca(2+) movements in ICC have not yet been examined in detail. In the present study, using cultured cell clusters isolated from mouse small intestine, we demonstrated Ca(2+) oscillations in ICC. Fluo-4 was loaded to the cell cluster, the relative amount of cytosolic Ca(2+) was recorded, and ICC were identified by c-Kit immunoreactivity. We specifically detected Ca(2+) oscillation in ICC in the presence of dihydropyridine, which abolishes Ca(2+) oscillation in smooth muscles. The oscillation was coupled to the electrical activity corresponding to slow waves, and it depended on Ca(2+) influx through a non-selective cation channel, which was SK&F 96365-sensitive and store-operated. We further demonstrated the presence of transient receptor potential-like channel 4 (TRP4) in caveolae of ICC. Taken together, the results infer that the Ca(2+) oscillation in ICC is intimately linked to the pacemaker function and depends on Ca(2+) influx mediated by TRP4.  相似文献   

6.
Serotonin (5-hydroxytryptamine: 5-HT) affects numerous functions in the gut, such as secretion, muscle contraction, and enteric nervous activity, and therefore to clarify details of 5-HT's actions leads to good therapeutic strategies for gut functional disorders. The role of interstitial cells of Cajal (ICC), as pacemaker cells, has been recognised relatively recently. We thus investigated 5-HT actions on ICC pacemaker activity. Muscle preparations with myenteric plexus were isolated from the murine ileum. Spatio-temporal measurements of intracellular Ca(2+) and electric activities in ICC were performed by employing fluorescent Ca(2+) imaging and microelectrode array (MEA) systems, respectively. Dihydropyridine (DHP) Ca(2+) antagonists and tetrodotoxin (TTX) were applied to suppress smooth muscle and nerve activities, respectively. 5-HT significantly enhanced spontaneous Ca(2+) oscillations that are considered to underlie electric pacemaker activity in ICC. LY-278584, a 5-HT(3) receptor antagonist suppressed spontaneous Ca(2+) activity in ICC, while 2-methylserotonin (2-Me-5-HT), a 5-HT(3) receptor agonist, restored it. GR113808, a selective antagonist for 5-HT(4), and O-methyl-5-HT (O-Me-5-HT), a non-selective 5-HT receptor agonist lacking affinity for 5-HT(3) receptors, had little effect on ICC Ca(2+) activity. In MEA measurements of ICC electric activity, 5-HT and 2-Me-5-HT caused excitatory effects. RT-PCR and immunostaining confirmed expression of 5-HT(3) receptors in ICC. The results indicate that 5-HT augments ICC pacemaker activity via 5-HT(3) receptors. ICC appear to be a promising target for treatment of functional motility disorders of the gut, for example, irritable bowel syndrome.  相似文献   

7.
We characterized changes in membrane currents and the cytosolic Ca(2+) concentration, [Ca(2+)](i), in response to caffeine, and compared them with those in response to muscarine using the perforated patch-clamp technique and fura-2 microfluorimetry in guinea-pig adrenal chromaffin cells. Catecholamine release from single voltage-clamped cells was monitored with amperometry using carbon microelectrodes. Caffeine produced a transient outward current (I(out)) at holding potentials over - 60 mV, increasing in amplitude with increasing the potentials. It also evoked a rapid increase of [Ca(2+)](i) at all potentials examined. The current-voltage relation revealed that the activation of K(+) channels was responsible for the I(out) evoked by caffeine. Both current and [Ca(2+)](i) responses were reversibly abolished by cyclopiazonic acid, an inhibitor of Ca(2+)-pump ATPase. At - 30 mV, the caffeine-induced I(out), but not [Ca(2+)](i), was partly inhibited by either charybdotoxin or apamin. In the majority of cells tested, caffeine induced a larger I(out) but a smaller [Ca(2+)](i) increase than muscarine. Caffeine and muscarine increased catecholamine release from voltage-clamped single cells concomitant with the transient increase of [Ca(2+)](i), and there was a positive correlation between them. These results indicate that caffeine activates Ca(2+)-dependent K(+) channels and catecholamine secretion due to the release of Ca(2+) from internal stores in voltage-clamped adrenal chromaffin cells of the guinea-pig. There seems to be a spatial difference between [Ca(2+)](i) increased by Ca(2+) release from caffeine-sensitive stores and that released from muscarine (inositol 1,4,5-trisphosphate)-sensitive ones.  相似文献   

8.
In neuroendocrine cells, such as adrenal chromaffin cells, the exocytosis of hormone-filled vesicles is triggered by a localized Ca(2+) increase that develops after the activation of voltage-dependent Ca(2+) channels. To reach the fusion competent state, vesicles have to go through a series of maturation steps that involve the detachment from cytoskeletal proteins, docking and priming. However, the fusion readiness of vesicles will also depend on their proximity to the calcium source. The immediately releasable pool is a small group of ready-to-fuse vesicles, whose fusion is tightly coupled to Ca(2+) entry through channels. Recent work indicates that such coupling is not produced by a random distribution between vesicles and channels, but would be the result of a specific interaction of immediately releasable vesicles with particular Ca(2+) channel subtypes. The immediately releasable pool is able to sustain, with high efficiency, the secretion triggered by the small and localized Ca(2+) gradients produced by brief depolarizations at low frequencies, like action potentials at basal conditions in adrenal chromaffin cells.  相似文献   

9.
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels that can modulate various neuronal processes by altering intracellular Ca(2+) levels. Following nAChR stimulation Ca(2+) can enter cells either directly, through the intrinsic ion channel, or indirectly following voltage-operated Ca(2+) channel (VOCC) activation; Ca(2+) levels can subsequently be amplified via Ca(2+)-induced Ca(2+) release from intracellular stores. We have used subtype-selective nAChR agonists to investigate the Ca(2+) sources contributing to alpha7 and non-alpha7 nAChR-mediated increases in intracellular Ca(2+) in PC12 cells. Application of the alpha7 nAChR positive allosteric modulator PNU 120596 (10 mum), in conjunction with the alpha7 nAChR agonist, compound A [(R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl)thiophene-2-carboxamide), 10 nm], produces a rapid increase in fluo-3 fluorescence that is prevented by the selective alpha7 nAChR antagonist alpha-bungarotoxin. The non-alpha7 nAChR agonist 5-Iodo-A-85380 produces alpha-bungarotoxin-insensitive increases in intracellular Ca(2+) (EC(50) = 11.2 mum). Using these selective agonists or KCl in conjunction with general and selective VOCC inhibitors, we demonstrate that the primary route of Ca(2+) entry following either non-alpha7 nAChR activation or KCl stimulation is via L-type VOCCs. In contrast, the alpha7 nAChR-mediated response is unaffected by VOCC blockers but is inhibited by modulators of intracellular Ca(2+) stores. These results indicate that alpha7 and non-alpha7 nAChRs are differentially coupled to Ca(2+)-induced Ca(2+) release and VOCCs, respectively.  相似文献   

10.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

11.
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which arelocated both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.  相似文献   

12.
Plasma membrane Ca(2+) channels in immunocytes from the mussel Mytilus galloprovincialis exposed to 50 Hz sine wave magnetic fields (MFs) of various strengths were studied. At levels of 300 microT and above, MFs reduce shape changes in immunocytes induced by the chemotactic substance N-formyl-Meth-Leu-Phe, and this effect involves L-type Ca(2+) channels. Upon the addition of the Ca(2+) blocker verapamil to molluscan immunocytes exposed to MFs results in a synergistic cytotoxic action, while in the presence of the Ca(2+) opener SDZ-202, 791, a reactivation of the cells is observed. This suggests that, as previously reported for potassium channels, the damage to Ca(2+) channels induced by short exposure to MF at appropriate intensities is not permanent.  相似文献   

13.
Microfluorimetric measurements of intracellular calcium ion concentration [Ca(2+)](i) were employed to examine the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. Activation of muscarinic receptors evoked rises in [Ca(2+)](i) which were enhanced in chronically hypoxic cells. Transient rises of [Ca(2+)](i) evoked in Ca(2+)-free solutions were greater and decayed more slowly following exposure to chronic hypoxia. In control cells, these transient rises of [Ca(2+)](i) were also enhanced and slowed by removal of external Na(+), whereas the same manoeuvre did not affect responses in chronically hypoxic cells. Capacitative Ca(2+) entry, observed when re-applying Ca(2+) following depletion of intracellular stores, was suppressed in chronically hypoxic cells. Western blots revealed that presenilin-1 levels were unaffected by chronic hypoxia. Exposure of cells to amyloid beta peptide (1-40) also increased transient [Ca(2+)](i) rises, but did not mimic any other effects of chronic hypoxia. Our results indicate that chronic hypoxia causes increased filling of intracellular Ca(2+) stores, suppressed expression or activity of Na(+)/Ca(2+) exchange and reduced capacitative Ca(2+) entry. These effects are not attributable to increased amyloid beta peptide or presenilin-1 levels, but are likely to be important in adaptive cellular remodelling in response to prolonged hypoxic or ischemic episodes.  相似文献   

14.
We have investigated the mechanisms by which activation of cannabinoid receptors reduces glutamate release from cerebrocortical nerve terminals. Glutamate release evoked by depolarization of nerve terminals with high KCl (30 mmol/L) involves N and P/Q type Ca(2+)channel activation. However, this release of glutamate is independent of Na(+) or K(+) channel activation as it was unaffected by blockers of these channels (tetrodotoxin -TTX- or tetraethylammonium TEA). Under these conditions in which only Ca(2+) channels contribute to pre-synaptic activity, the activation of cannabinoid receptors with WIN55,212-2 moderately reduced glutamate release (26.4 +/- 1.2%) by a mechanism that in this in vitro model is resistant to TTX and consistent with the inhibition of Ca(2+) channels. However, when nerve terminals are stimulated with low KCl concentrations (5-10 mmol/L) glutamate release is affected by both Ca(2+) antagonists and also by TTX and TEA, indicating the participation of Na(+) and K(+) channel firing in addition to Ca(2+) channel activation. Interestingly, stimulation of nerve terminals with low KCl concentrations uncovered a mechanism that further inhibited glutamate release (81.78 +/- 4.9%) and that was fully reversed by TEA. This additional mechanism is TTX-sensitive and consistent with the activation of K(+) channels. Furthermore, Ca(2+) imaging of single boutons demonstrated that the two pre-synaptic mechanisms by which cannabinoid receptors reduce glutamate release operate in distinct populations of nerve terminals.  相似文献   

15.
Lakatta EG 《Cell calcium》2004,35(6):629-642
The ability of the heart to acutely beat faster and stronger is central to the vertebrate survival instinct. Released neurotransmitters, norepinephrine and epinephrine, bind to beta-adrenergic receptors (beta-AR) on pacemaker cells comprising the sinoatrial node, and to beta-AR on ventricular myocytes to modulate cellular mechanisms that govern the frequency and amplitude, respectively, of the duty cycles of these cells. While a role for sarcoplasmic reticulum Ca(2+) cycling via SERCA2 and ryanodine receptors (RyR) has long been appreciated with respect to cardiac inotropy, recent evidence also implicates Ca(2+) cycling with respect to chronotropy. In spontaneously beating primary sinoatrial nodal pacemaker cells, RyR Ca(2+) releases occurring during diastolic depolarization activate the Na(+)-Ca(2+) exchanger (NCX) to produce an inward current that enhances their diastolic depolarization rate, and thus increases their beating rate. beta-AR stimulation synchronizes RyR activation and Ca(2+) release to effect an increased beating rate in pacemaker cells and contraction amplitude in myocytes: in pacemaker cells, the beta-AR stimulation synchronization of RyR activation occurs during the diastolic depolarization, and augments the NCX inward current; in ventricular myocytes, beta-AR stimulation synchronizes the openings of unitary L-type Ca(2+) channel activation following the action potential, and also synchronizes RyR Ca(2+) releases following depolarization, and in the absence of depolarization, both leading to the generation of a global cytosolic Ca(i) transient of increased amplitude and accelerated kinetics. Thus, beta-AR stimulation induced synchronization of RyR activation (recruitment of additional RyRs to fire) and of the ensuing Ca(2+) release cause the heart to beat both stronger and faster, and is thus, a common mechanism that links both the maximum achievable cardiac inotropy and chronotropy.  相似文献   

16.
Functional expression of T-type Ca(2+) channels is developmentally regulated in chick nodose neurons. In this study we have tested the hypothesis that extrinsic factors regulate the expression of T-type Ca(2+) channels in vitro. Voltage-gated Ca(2+) currents were measured using whole-cell patch clamp recordings in E7 nodose neurons cultured under various conditions. Culture of E7 nodose neurons for 48 h with a heart extract induced the expression of T-type Ca(2+) channels without any significant effect on HVA currents. T-type Ca(2+) channel expression was not stimulated by survival promoting factors such as BDNF. The stimulatory effect of heart extract was mediated by a heat-labile, trypsin-sensitive factor. Various hematopoietic cytokines including CNTF and LIF mimic the stimulatory effect of heart extract on T-type Ca(2+) channel expression. The stimulatory effect of heart extract and CNTF requires at least 12 h continuous exposure to reach maximal expression and is not altered by culture of nodose neurons with the protein synthesis inhibitor anisomycin, suggesting that T-type Ca(2+) channel expression is regulated by a posttranslational mechanism. Disruption of the Golgi apparatus with brefeldin-A inhibits the stimulatory effect of heart extract and CNTF suggesting that protein trafficking regulates the functional expression of T-type Ca(2+) channels. Heart extract- or CNTF-evoked stimulation of T-type Ca(2+) channel expression is blocked by the Jak/STAT and MAP kinase blockers, AG490 and U0126, respectively. This study provides new insights into the electrical differentiation of placode-derived sensory neurons and the role of extrinsic factors in regulating the functional expression of Ca(2+) channels.  相似文献   

17.
The relative importance of mitochondria, the Na(+)/Ca(2+) exchanger (NCX) and the endoplasmic reticulum (ER) in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) were examined in bovine chromaffin cells using fura-2 for average [Ca(2+)](i) and amperometry for secretory activity, which reflects the local Ca(2+) concentration near the exocytotic sites. Chromaffin cells were stimulated by a high concentration of K(+) when the three Ca(2+) removal mechanisms were individually or simultaneously inhibited. When the mitochondrial Ca(2+) uptake was inhibited, the [Ca(2+)](i) decayed at a significantly slower rate and the secretory activity was higher than the control cells. The NCX appears to function only in the initial phase of [Ca(2+)](i) decay and when the ER Ca(2+) pump is blocked. Similarly, the ER had a significant effect on the [Ca(2+)](i) decay and on the secretion only when the NCX was blocked. Inhibition of all three mechanisms leads to a substantial delay in [Ca(2+)](i) recovery and an increase in the secretion. The results suggest that the three mechanisms work together in the regulation of the Ca(2+) near the Ca(2+) channels and exocytotic sites and therefore modulate the secretory activity. When Ca(2+) diffuses away from the exocytotic sites, the mitochondrial Ca(2+) uptake becomes the dominant mechanism.  相似文献   

18.
Treatment of Arabidopsis thaliana cells with oligogalacturonides (OG) initiates a transient production of reactive oxygen species (ROS), the concentration of which in the medium peaks after about 20 min of treatment. The analysis of OG effects on Ca (2+) fluxes shows that OG influence both Ca (2+) influx and Ca (2+) efflux (measured as (45)Ca (2+) fluxes) in a complex way. During the first 10 - 15 min, OG stimulate Ca (2+) influx and decrease its efflux, while at successive times of treatment, OG cause an increase of Ca (2+) efflux and a slight decrease of its influx. Treatment with sub- micro M concentrations of eosin yellow (EY), which selectively inhibits the Ca (2+)-ATPase of plasma membrane (PM), completely prevents the OG-induced increase in Ca (2+) efflux. EY also suppresses the transient feature of OG-induced ROS accumulation, keeping the level of ROS in the medium high. The biochemical analysis of PM purified from OG-treated cells indicates that treatment with OG for 15 to 45 min induces a significant decrease in Ca (2+)-ATPase activation by exogenous calmodulin (CaM), and markedly increases the amount of CaM associated with the PM. During the same time span, OG do not influence the expression of At-ACA8, the main isoform of PM Ca (2+)-ATPase in suspension-cultured A. thaliana cells, and of CaM genes. Overall, the reported results demonstrate that the PM Ca (2+)-ATPase is involved in the response of plant cells to OG and is essential in regulation of the oxidative burst.  相似文献   

19.
Interstitial cells of Cajal in the urethra   总被引:7,自引:0,他引:7  
The smooth muscle layer of the urethra generates spontaneous myogenic tone that is thought to make a major contribution to urinary continence. The mechanisms underlying generation of tone remain unclear, however recent studies from our laboratory highlighted a role for a specialised population of pacemaker cells which we originally referred to as interstitial cells (IC) and now term ICC. Urethra ICC possess an electrical pacemaker mechanism characterised by rhythmic activation of Ca(2+)-activated Cl(-) channels leading to spontaneous transient inward currents (STICs) under voltage clamp and spontaneous transient depolarisations (STDs) under current clamp conditions. Both STICS and STDs are now known to be associated with spontaneous Ca(2+) oscillations that result from a complex interplay between release of Ca(2+) from intracellular stores and Ca(2+) influx across the plasma membrane. In this review we will consider some of the precise mechanisms involved in the generation of pacemaker activity and discuss how these are modulated by excitatory and inhibitory neurotransmitters.  相似文献   

20.
Rui Y  Li R  Liu Y  Zhu S  Yu X  Sheng Z  Xie Z 《Cell biology international》2006,30(9):733-740
The effects of beta amyloid (Abeta) on cytoplasmic Ca(2+) ([Ca(2+)](c)) have been studied extensively, but the current literature on this aspect is confusing. We reported that 20 microM Abeta(25-35) significantly inhibited the synchronized spontaneous cytoplasmic Ca(2+) transients immediately after application, whereas it had little effect on the baseline [Ca(2+)](c) concentration in neurons. Abeta(1-42) had a similar effect on the Ca(2+) transients as Abeta(25-35), while it increased baseline [Ca(2+)](c) concentration gradually. However, Abeta(1-40) had little effect on either Ca(2+) transients or baseline [Ca(2+)](c). Such differential effects of Abeta on Ca(2+) signals might explain, at least partially, the confusing observations from the previous studies and provide important therapeutic implications for preventing or reversing early neuron damage in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号