首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The enzyme 5 alpha-reductase (5 alpha R) catalyses the reduction of testosterone (T) into the more potent androgen dihydrotestosterone (DHT). The abnormal production of DHT is associated to pathologies of the main target organs of this hormone: the prostate and the skin. Benign prostatic hyperplasia (BPH), prostate cancer, acne, androgenetic alopecia in men, and hirsutism in women appear related to the DHT production. Two isozymes of 5 alpha-reductase have been cloned, expressed and characterized (5 alpha R-1 and 5 alpha R-2). They share a poor homology, have different chromosomal localization, enzyme kinetic parameters, and tissue expression patterns. Since 5 alpha R-1 and 5 alpha R-2 are differently distributed in the androgen target organs, a different involvement of the two isozymes in the pathogenesis of prostate and skin disorders can be hypothesized. High interest has been paid to the synthesis of inhibitors of 5 alpha-reductase for the treatment of DHT related pathologies, and the selective inhibition of any single isozyme represents a great challenge for medical and pharmaceutical research in order to have more specific drugs. At present, no 5 alpha R-1 inhibitor is marketed for the treatment of 5 alpha R-1 related pathologies but pharmaceutical research is very active in this field. This paper will review the major classes of 5 alpha R inhibitors focusing in particular on non-steroidal inhibitors and on structural features that enhance the selectivity versus the type 1 isozyme. Biological tests to assess the inhibitory activity towards the two 5 alpha R isozymes will be also discussed.  相似文献   

2.
Inhibitors of human 5alpha-reductase type II are promising drug candidates for the treatment of benign prostatic hyperplasia which is associated with high prostatic DHT levels. In this study we describe the evaluation of potential inhibitors in a new cell assay. First a plasmid (pRcCMV-5alphaII) for the expression of human 5alpha-reductase type II was constructed by the use of the vector pRcCMV and transfected into the African green monkey fibroblast-like cell line COS1. By selection with G418 sulfate, ten COS1 single cell clones were obtained of which three stably exhibited high 5alpha-reductase activity. One single cell clone (COS1-5alphaIIST) was selected for further investigations. By Southern blot analysis, fluorescence in situ hybridization (FISH) and comparative PCR experiments it turned out that the expression plasmid pRcCMV-5alphaII has been integrated into the chromosome, resulting in a long-term stable expression of the foreign 5alpha-reductase gene. The newly established cell line was used for testing novel compounds on their inhibitory effect on human 5alpha-reductase type II. Using this whole cell assay, inhibitors with IC(50) values in the nanomolar range could be identified.  相似文献   

3.
4.
The enzyme 5alpha-reductase is responsible for the conversion of testosterone (T) to its more potent androgen dihydrotestosterone (DHT). This steroid had been implicated in androgen-dependent diseases such as: benign prostatic hyperplasia, prostate cancer, acne and androgenic alopecia. The inhibition of 5alpha-reductase enzyme offers a potentially useful treatment for these diseases. In this study, we report the synthesis and pharmacological evaluation of several new 3-substituted pregna-4, 16-diene-6, 20-dione derivatives. These compounds were prepared from the commercially available 16-dehydropregnenolone acetate. The biological activity of the new steroidal derivatives was determined in vivo as well as in vitro experiments. In vivo experiments, the anti-androgenic effect of the steroids was demonstrated by the decrease of the weight of the prostate gland of gonadectomized hamster treated with T plus finasteride or the new steroids. The IC50 value of these steroids was determined by measuring the conversion of radio labeled T to DHT. The results of this study carried out with 5alpha-reductase enzyme from hamster and human prostate showed that four of the six steroidal derivatives (5, 7, 9, 10) exhibited much higher 5alpha-reductase inhibitory activity, as indicated by the IC50 values than the presently used Proscar 3 (finasteride). The comparison of the weight of the hamster's prostate gland indicated that compound 5 had a comparable weight decrease as finasteride. The overall data of this study showed very clearly those compounds 5, 7, 9, 10 are good inhibitors for the 5alpha-reductase enzyme.  相似文献   

5.
Dihydrotestosterone (DHT), 5alpha-reduced metabolite of testosterone, is the most potent androgen in the epididymis. The conversion of T into DHT is carried out by 5alpha-reductase. The activity of 5alpha-reductase type 2, preferentially expressed in the epididymis can be inhibited by a finasteride (a steroid-based specific inhibitor of 5alpha-reductase type 2) which results in DHT deficiency. The aim of the study was to examine the morphology of epididymis and the immunolocalization of an androgen receptor (AR) in the initial segment, caput and cauda epididymis of rats treated with finasteride for 56 days. There were no morphological changes in the morphology of epididymal epithelium in the experimental rats. Immunostainable AR was localized in nuclei of epithelial cells, smooth muscle cells and mainly in the cytoplasm of interstitial cells in the epididymis of control rats. In the epididymis of experimental rats, AR immunostaining was noticed mainly in the cytoplasm of epithelial cells and interstitial cells. The single cells of the initial segment epithelium, basal cells and smooth muscle cells of cauda epididymis showed nuclear AR staining. In conclusion, finasteride affected the expression of the AR in the rat epididymis without changing the morphology of epididymal epithelium. Altered AR expression reflected the hormonal status within the epididymis.  相似文献   

6.
A series of umbelliferone derivatives was prepared and their 5alpha-reductase type 1 inhibitory activities were evaluated in cell culture systems. Our studies have identified a new series of potent 5alpha-reductase type 1 inhibitors and provided the basis for further development for the treatment of human endocrine disorders associated with overproduction of DHT by 5alpha-reductase type 1. The preliminary structure-activity relationship was described to elucidate the essential structural requirements.  相似文献   

7.
The conversion of testosterone (T) to 5alpha-dihydrotestosterone (DHT) has been demonstrated in Penicillium crustosum broth obtained from fermented pistachios, lemons and corn tortillas. Furthermore, the presence of 5alpha-reductase enzyme, which is responsible for this conversion, has been established by electrophoretical techniques in these cultures.5alpha-Reductase enzyme is also present in animal and human androgen-dependent tissues as well as in prostate and seminal vesicles. The increase of the conversion of T to DHT in prostate gland, has been related to some illnesses such as benign prostate hyperplasia and prostate cancer. Furthermore, treatment with 5alpha-reductase inhibitors such as finasteride reduces the prostate growth. These data have stimulated research for the synthesis of new molecules with antiandrogenic activity, whose biological effect needs to be demonstrated.The purpose of this study is to determine the inhibition pattern of 5alpha-reductase in P. crustosum by finasteride and the new steroidal compound PM-9. K(m) and V(max) values for T, were determined in the broths by Lineweaver-Burk plots using different testosterone concentrations. The inhibition pattern of finasteride and PM-9 was also determined by Lineweaver-Burk using different concentrations of T and inhibitors. Results show that finasteride and PM-9 inhibit 5alpha-reductase present in the broth in a competitive manner.  相似文献   

8.
Although the androgens, testosterone (T) and its highly active metabolite dihydrotestosterone (DHT) play a role in the development and progression of prostate cancer, the mechanism(s) are unclear. Furthermore, 5 alpha-reductase which catalyze the conversion of T to DHT, has been a target of manipulation in the treatment of prostatic cancer, hence synthetic 5 alpha-reductase activity inhibitors have shown therapeutic promise. To demonstrate that nutrients derived from dietary sources can exert similar therapeutic promise, this study was designed using benign hyperplastic cells (BHC) and malignant tumorigenic cells (MTC) derived from Lobund-Wistar (L-W) rat model of prostatic adenocarcinoma to test the effects of gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and their 15-lipoxygenase metabolites on cellular 5 alpha-reductase activity. Our data revealed: (i) that incubation of MTC with [3H]-T resulted in marked conversion to [3H]-DHT when compared to similar incubation with BHC; (ii) that DHT-enhanced activity of 5 alpha-reductase was inhibited 80% by 15S-hydroxyeicosatrienoic acid, the 15-lipoxygenase metabolite of GLA, when compared to 55% by 15S-hydroxyeicosapentaenoic acid, the 15-lipoxygenase metabolite of EPA; and (iii) that their precursor fatty acids, respectively, exerted moderate inhibition. Taken together, the study underscores the biological importance of 15-lipoxygenase metabolites of polyunsaturated fatty acids (PUFAs) in androgen metabolism.  相似文献   

9.
Rat costochondral growth plate chondrocytes exhibit sex-specific and cell maturation dependent responses to testosterone. Only male cells respond to testosterone, although testosterone receptors are present in both male and female cells, suggesting other mechanisms are involved. We examined the hypothesis that the sex-specific response of rat costochondral cartilage cells to testosterone requires further metabolism of the hormone to dihydrotestosterone (DHT). Resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) chondrocytes from male and female Sabra strain rats exhibited sex-specific responses to testosterone and DHT: only male cells were responsive. Testosterone and DHT treatment for 24 h caused a comparable dose-dependent increase in [3H]-thymidine incorporation in quiescent preconfluent cultures of male GC cells, and a comparable increase in alkaline phosphatase specific activity in confluent cultures. RC cells responded in a differential manner to testosterone and DHT. Testosterone decreased DNA synthesis in male RC cells but DHT had no effect and alkaline phosphatase specific activity of male RC cells was unaffected by either hormone. Inhibition of steroid 5alpha-reductase activity with finasteride (1, 5, or 10 microg/ml), reduced the response of male GC cells to testosterone in a dose-dependent manner, indicating that metabolism to DHT was required. RT-PCR showed that both male and female cells expressed mRNAs for steroid 5alpha-reductase type 1 but lacked mRNAs for the type 2 form of the enzyme. Male cells also exhibited 5alpha-reductase activity but activity of this enzyme was undetectable in female cells. These observations show that sex-specific responses of rat growth zone chondrocytes to testosterone requires the further metabolism of the hormone to DHT and that the effect of DHT in the male growth plate is maturation-state dependent. Failure of female chondrocytes to respond to testosterone may reflect differences in testosterone metabolism, since these cells possess greater ability to aromatize the hormone to estradiol.  相似文献   

10.
A eucaryotic cell assay was established to identify novel, dual and selective inhibitors of human 5alpha-reductase. For this purpose the cDNAs encoding 5alpha-reductase type I and type II were inserted into a pRcCMV vector and expressed in human embryonic kidney (HEK293) cells. Single cell clones with substantially high enzymatic activity were selected and established as permanent cell lines. KM values were determined for both isozymes. The inhibitory potency of several steroidal and non-steroidal compounds synthesized in our group, as well as finasteride and 4MA as controls, were tested by measuring the conversion of [3H]androstenedione. Reaction products were quantified by a HPLC reversed phase technique. Using the new cell assays, selective as well as novel dual 5alpha-reductase inhibitors with IC50 values between 1.0 and 2.5 microM were identified.  相似文献   

11.
Circulating dehydroepiandrosterone (DHEA) is converted to testosterone or estrogen in the target tissues. Recently, we demonstrated that skeletal muscles are capable of locally synthesizing circulating DHEA to testosterone and estrogen. Furthermore, testosterone is converted to 5alpha-dihydrotestosterone (DHT) by 5alpha-reductase and exerts biophysiological actions through binding to androgen receptors. However, it remains unclear whether skeletal muscle can synthesize DHT from testosterone and/or DHEA and whether these hormones affect glucose metabolism-related signaling pathway in skeletal muscles. We hypothesized that locally synthesized DHT from testosterone and/or DHEA activates glucose transporter-4 (GLUT-4)-regulating pathway in skeletal muscles. The aim of the present study was to clarify whether DHT is synthesized from testosterone and/or DHEA in cultured skeletal muscle cells and whether these hormones affect the GLUT-4-related signaling pathway in skeletal muscles. In the present study, the expression of 5alpha-reductase mRNA was detected in rat cultured skeletal muscle cells, and the addition of testosterone or DHEA increased intramuscular DHT concentrations. Addition of testosterone or DHEA increased GLUT-4 protein expression and its translocation. Furthermore, Akt and protein kinase C-zeta/lambda (PKC-zeta/lambda) phosphorylations, which are critical in GLUT-4-regulated signaling pathways, were enhanced by testosterone or DHEA addition. Testosterone- and DHEA-induced increases in both GLUT-4 expression and Akt and PKC-zeta/lambda phosphorylations were blocked by a DHT inhibitor. Finally, the activities of phosphofructokinase and hexokinase, main glycolytic enzymes, were enhanced by testosterone or DHEA addition. These findings suggest that skeletal muscle is capable of synthesizing DHT from testosterone, and that DHT activates the glucose metabolism-related signaling pathway in skeletal muscle cells.  相似文献   

12.
Steroid 5alpha-reductase (5-AR) catalyses the reduction of testosterone (T) to dihydrotestosterone (DHT). The 5alpha-reductase found in human benign prostatic hyperplasia (BPH) has been compared with that found in human breast skin tissue in respect of sensitivity to inhibition by Finasteride and Epristeride. Kinetic studies showed the presence of two isoforms of 5alpha-reductase in benign prostatic hyperplasia indicated by low and high Km isoforms for testosterone, while female breast skin tissue contained only one isoform. The isoforms differ in their affinity for the inhibitors Finasteride and Epristeride, both compounds being more effective for the low Km 5alpha-reductase isoform than the high Km 5alpha-reductase of prostatic tissue, with Finasteride displaying competitive inhibition and Epristeride uncompetitive. Finasteride and Epristeride are also inhibitors of skin 5alpha-reductase, which possesses a comparable Ki for Finasteride to that of the low Km prostatic enzyme, but Epristeride was a less potent inhibitor of the skin enzyme relative to the prostate isoform. These results suggest that the inhibitors have therapeutic potential, other than for treatment of benign prostatic hyperplasia, for treating skin disorders influenced by the action of dihydrotestosterone and warrant further investigation.  相似文献   

13.
Epididymal nuclear 4-ene steroid 5 alpha-reductase catalyses the bisubstrate reaction between testosterone and NADPH to produce 5 alpha-dihydrotestosterone (DHT) and NADP+. Previous studies from this laboratory have demonstrated that the 4-ene steroid 5 alpha-reductase reaction proceeds through the direct transfer of protons from NADPH to testosterone, and that while the product DHT does not affect 4-ene steroid 5 alpha-reductase activity, NADP+ is a potent inhibitor of this enzyme. In the present studies we have investigated the mechanism of 4-ene steroid 5 alpha-reductase with respect to the binding of the substrates, testosterone and NADPH. Kinetic analyses revealed that testosterone does not alter the Kmapp for NADPH, and that NADPH does not alter the Kmapp for testosterone. These findings excluded the possibility that the mechanism of 4-ene steroid 5 alpha-reductase is of the ping-pong variety, and that the sequential addition of both substrates is required before any products are released. The lack of change in Kmapp, observed for either substrate, further suggests that both testosterone and NADPH are able to bind to the free enzyme, negating the possibility that substrate addition occurs in an ordered manner. Indeed the kinetic profiles are entirely consistent with the mechanism of 4-ene steroid 5 alpha-reductase being a rapid equilibrium random sequential process in which the binding of the first substrate has no affect on the binding of the second. Mean values for the dissociation constants, Ktestosterone and KNADPH, were 200 nmol/l and 50 nmol/l, respectively. These findings, coupled with those from earlier studies, suggest that the mechanism of epididymal nuclear 4-ene steroid 5 alpha-reductase is a rapid equilibrium random bireactant process, with the possible dead-end complex: testosterone-4-ene steroid 5 alpha-reductase-NADP+.  相似文献   

14.
N-acetyltransferase (NAT) activity in the Harderian glands of intact and gonadectomized male and female Syrian hamsters was evaluated. The exogenous administration of 5 alpha-dihydrotestosterone (DHT) to castrated males and intact females produced an increase in NAT values, which reached the values present in the glands of intact males. The administration of a 5 alpha-reductase inhibitor to intact males led to a decrease in NAT activity, suggesting that testosterone is converted in DHT within the glands. It is concluded that NAT activity in the Syrian hamster Harderian glands is under androgenic control, the active steroid being DHT.  相似文献   

15.
F Kamel  L C Krey 《Steroids》1991,56(1):22-29
Dispersed rat pituitary cells were exposed to [1,2,6,7-3H]testosterone ([3H]T, 10(-8) M) to assess the role of 5 alpha-reduction in T regulation of gonadotroph secretion. After 4 to 48 hours of exposure, [3H]T metabolites isolated by thin-layer chromatography were characterized in medium and cell homogenates as well as bound to androgen receptors salt-extracted from purified nuclear pellets. Receptor-bound 5 alpha-[3H]dihydrotestosterone ([3H]DHT)/total [3H]androgens rose progressively from 16% at 4 hours to more than 50% at 48 hours. Coincubation with 4-MA (10- to 1,000-fold molar excess) or testosterone-17 beta-carboxylic acid (TCA; 1,000-fold excess) reduced receptor-bound [3H]DHT/[3H]androgen to less than 10% and 20%, respectively, but elevated [3H]T-receptor levels. Despite inhibiting 5 alpha-reductase activity, TCA and 4-MA had no effect on T suppression of gonadotropin-releasing hormone-stimulated luteinizing hormone secretion or T enhancement of total (cell + secreted) follicle-stimulating hormone levels. The results suggest that 5 alpha-reduction to DHT is not essential for the expression of the direct influences of T on gonadotropin synthesis and secretion in rat gonadotrophs.  相似文献   

16.
Dihydrotestosterone (DHT) originates via irreversible reduction of testosterone by catalytic activity of 5alpha-reductase enzyme and it is demonstratively the most effective androgen. Androgens influence adipose tissue in men either directly by stimulation of the androgen receptor or indirectly, after aromatization, by acting at the estrogen receptor. DHT as a non-aromatizable androgen could be responsible for a male type fat distribution. The theory of non-aromatizable androgens as a potential cause of a male type obesity development has been studied intensively. However, physiological levels of DHT inhibit growth of mature adipocytes. In animal models, substitution of DHT in males after gonadectomy has a positive effect on body composition as a testosterone therapy. Thus, DHT within physiological range positively influences body composition. However, there are pathological conditions with an abundance of DHT, e.g. androgenic alopecia and benign prostatic hyperplasia. These diseases are considered as risk factors for development of metabolic syndrome or atherosclerosis. In obese people, DHT metabolism in adipose tissue is altered. Local abundance of non-aromatizable androgen has a negative effect on adipose tissue and it could be involved in pathogenesis of metabolic and cardiovascular diseases. Increased DHT levels, compared to physiological levels, have negative effect on development of cardiovascular diseases. Difference between the effect of physiological and increased level brings about certain paradox.  相似文献   

17.
Type I and type II steroid 5alpha-reductases (5alpha-R) catalyze the conversion of testosterone (T) to dihydrotestosterone (DHT). LY320236 is a benzoquinolinone (BQ) that inhibits 5alpha-R activity in human scalp skin (Ki(typeI)=28.7+/-1.87 nM) and prostatic homogenates (Ki(typeII)=10.6+/-4.5 nM). Lineweaver-Burk, Dixon, and non-linear analysis methods were used to evaluate the kinetics of 5alpha-R inhibition by LY320236. Non-linear modeling of experimental data evaluated V(max) in the presence or absence of LY320236. Experimental data modeled to the following equation 1v=+ fixing the In0c value equal to 1.0 or 0 are consistent with non-competitive or competitive inhibition, respectively. LY320236 is a competitive inhibitor of type I 5alpha-R (In0c=0, Ki=3.39+/-0.38, RMSE = 1.300) and a non-competitive inhibitor of type II 5alpha-R (In0c=1, Ki=29. 7+/-3.4, RMSE = 0.0592). These data are in agreement with linear transformation of the data using Lineweaver-Burk and Dixon analyses. These enzyme kinetic data support the contention that the BQ LY320236 is a potent dual inhibitor with differing modes of activity against the two known human 5alpha-reductase isozymes. LY320236 represents a class of non-steroidal 5alpha-R inhibitors with potential therapeutic utility in treating a variety of androgen dependent disorders.  相似文献   

18.

Background  

Finasteride is a competitive inhibitor of 5 alpha-reductase enzyme, and is used for treatment of benign prostatic hyperplasia and androgenetic alopecia. Animal studies have shown that finasteride might induce behavioral changes. Additionally, some cases of finasteride-induced depression have been reported in humans. The purpose of this study was to examine whether depressive symptoms or anxiety might be induced by finasteride administration.  相似文献   

19.
We have investigated the effects of two 4-ene-steroid 5 alpha-reductase inhibitors, diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide (4-MA) and (4R)-5,10-seco-19-norpregna-4, 5-diene-3,10,20-trione (SECO), on testicular and epididymal androgen biosynthesis. Kinetic analyses revealed that both compounds inhibited epididymal DHT biosynthesis. 4-MA was a competitive inhibitor of epididymal nuclear and microsomal 4-ene-steroid 5 alpha-reductases (3-oxo-5 alpha-steroid: NADP 4-ene-oxidoreductase EC 1.3.1.22) with Kiapp values of 12.8 and 15.1 nmol/l compared to the respective Kmapp values of 185 and 240 nmol/l. Values for the Vmaxapp were always within 70-130% of the control. SECO at 1.0 mumol/l, also inhibited epididymal nuclear and microsomal 4-ene-steroid-5 alpha-reductases, causing respectively 2.9 and 5.2-fold increases in Kmapp. The Vmaxapp values were unchanged. However, SECO concentrations of 5 and 25 mumol/l abolished 4-ene-steroid 5 alpha-reductase activity at all testosterone concentrations. To examine the specificity of these compounds, we investigated their effects on the enzymes that convert pregnenolone to testosterone. Rat testis microsomes converted pregnenolone to testosterone via the 4-ene-3-oxo pathway, with the major metabolites being progesterone, 17-hydroxyprogesterone, 4-androstenedione and testosterone; some 17-hydroxypregnenolone was also formed. Very small amounts of dehydroepiandrosterone (DHA) and 5-androstenediol were detected. SECO, at a concentration that completely inhibited epididymal 4-ene-steroid 5 alpha-reductase activity, did not alter the metabolic profile of pregnenolone metabolism. However, 4-MA prevented the appearance of 4-ene steroids, and large quantities of 17-hydroxypregnenolone and DHA accumulated, suggesting that inhibition of the 3 beta-hydroxysteroid: NAD(P)+ oxidoreductase (EC 1.1.1.51) and 3-oxosteroid 5-ene-4-ene-isomerase (EC 5.3.3.1) [3 beta-hydroxysteroid dehydrogenase-isomerase] was occurring. Optimal conditions for the microsomal conversion of DHA to 4-androstenedione were determined; kinetic analyses of the 3 beta-hydroxysteroid dehydrogenase-isomerase activity revealed that 4-MA inhibited this reaction non-competitively, reducing Vmaxapp values to 25% of the control. The Kiapp determined from the intercept replot, was 121 nmol/l, and the Kmapp was always between 90 and 130% of the control value. It is concluded that SECO is more specific than 4-MA in its effects on androgen biosynthesis in the testis and epididymis and that both these drugs should provide useful tools in assessments of the relative contributions of 5 alpha-reduced androgens to androgen dependent processes.  相似文献   

20.
We have recently observed that cigarette smoking affects plasma androgen concentrations. The effects of nicotine and cotinine, two products of cigarette smoking, on testosterone metabolism were determined. The activity of delta 4 steroid 5 alpha-reductase, which converts testosterone to 5 alpha-dihydrotestosterone (DHT) was measured in isolated dog prostate nuclei using testosterone (0-200 nM) as substrate and NADPH as cofactor. Activity of 3 alpha-hydroxysteroid dehydrogenase (HSD), which converts DHT to 3 alpha-androstanediol (3 alpha-diol) and is a reversible enzyme, was measured in isolated dog prostate microsomes with DHT (0-20 microM) as substrate and NADPH as cofactor. When microsomal fractions were incubated for 1 hour with and without nicotine (0-50 microM) and cotinine (0-100 microM), enzyme activity of HSD was significantly suppressed (p less than 0.001). The Vmax was not affected significantly (p greater than 0.60) and Km increased with increasing concentrations of nicotine and cotinine (p less than 0.05). Both nicotine and cotinine are competitive inhibitors of HSD in dog prostate microsomes with Ki's of 61 and 89 microM, respectively. The apparent 5 alpha-reductase activity was unaffected by nicotine and cotinine. The inhibitors produced a marked effect on activity of HSD when used in concentrations achieved in humans who smoke cigarettes. The results suggest that nicotine and cotinine are competitive inhibitors of the HSD, an important enzyme involved in the metabolism of DHT and produce an accumulation of DHT. These products of cigarette smoking could alter androgen action in tissue such as skin and prostate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号