首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  1. Download : Download high-res image (80KB)
  2. Download : Download full-size image
  相似文献   

2.
The T-sensor is a microfluidic analytical device that operates at low Reynolds numbers to ensure entirely laminar flow. Diffusion of molecules between streams flowing side by side may be observed directly. The pressure-driven velocity profile in the duct-shaped device influences diffusive transport in ways that affect the use of the T-sensor to measure molecular properties. The primary effect is a position-dependent variation in the extent of diffusion that occurs due to the distribution of residence time among different fluid laminae. A more detailed characterization reveals that resultant secondary concentration gradients yield variations in the scaling behavior between diffusive displacement and elapsed time in different regions of the channel. In this study, the time-dependent evolution of analyte distribution has been quantified using a combination of one- and two-dimensional models. The results include an accurate portrayal of the shape of the interdiffusion region in a representative T-sensor assay, calculation of the diffusive scaling law across the width of the channel, and quantification of artifacts that occur when making diffusion coefficient measurements in the T-sensor.  相似文献   

3.
The effects of liver enzymes on drug activities are important considerations in the drug discovery process. Frequently, liver microsomes are used to simulate first-pass metabolism in the liver; however, there are significant disadvantages to the microsome system. As an alternative, a simple cell-based, high-throughput system that allows for examination of metabolite activity is described. Using multiparameter flow cytometry and the low-volume, high-sample format of 96-well plates, it is possible to rapidly evaluate a dose-response curve for metabolites based on variables including initial compound concentrations, hepatocyte cell line metabolic activities, and time. Using HepG2 cells as a surrogate for hepatic metabolism of a potential therapeutic, the impact of metabolites on Jurkat cell death was measured by both propidium iodide dye exclusion and cell cycle analysis. While this system is not proposed to supplant liver microsome studies, this alternative assay provides a highly adaptable, low-cost, and high-throughput measure of drug metabolism.  相似文献   

4.
Flow cytometry for high-throughput, high-content screening   总被引:5,自引:0,他引:5  
Flow cytometry is a mature platform for quantitative multi-parameter measurement of cell fluorescence. Recent innovations allow up to 30-fold faster serial processing of bulk cell samples. Homogeneous discrimination of free and cell-bound fluorescent probe eliminates wash steps to streamline sample processing. Compound screening throughput may be further enhanced by multiplexing of assays on color-coded bead or cell suspension arrays and by integrating computational techniques to create smaller, focused compound libraries. Novel bead-based assay systems allow studies of real-time interactions between solubilized receptors, ligands and molecular signaling components that recapitulate and extend measurements in intact cells. These new developments, and its broad usage, position flow cytometry as an attractive analysis platform for high-throughput, high-content biological testing and drug discovery.  相似文献   

5.
Flow cytometry allows high-content, multiparameter analysis of single cells, making it a promising tool for drug discovery and profiling of intracellular signaling. To add high-throughput capacity to flow cytometry, we developed a cell-based multiplexing technique called fluorescent cell barcoding (FCB). In FCB, each sample is labeled with a different signature, or barcode, of fluorescence intensity and emission wavelengths, and mixed with other samples before antibody staining and analysis by flow cytometry. Using three FCB fluorophores, we were able to barcode and combine entire 96-well plates, reducing antibody consumption 100-fold and acquisition time to 5-15 min per plate. Using FCB and phospho-specific flow cytometry, we screened a small-molecule library for inhibitors of T cell-receptor and cytokine signaling, simultaneously determining compound efficacy and selectivity. We also analyzed IFN-gamma signaling in multiple cell types from primary mouse splenocytes, revealing differences in sensitivity and kinetics between B cells, CD4+ and CD4- T cells and CD11b-hi cells.  相似文献   

6.
High-throughput flow cytometry of adherent cells is difficult because the creation of single cell suspensions can damage cells and yield artificial results. We describe a protocol to increase the single cell suspension yield of adherent human cells without injury. Doxorubicin, a cytotoxic agent, was administered to adherent human pancreatic carcinoma cell lines (Panc-1 and AsPC-1) to produce alterations in the cell cycle and intracellular protein expression. The cells in 96-well plates were disassociated using a collagenase and trypsin mixture. Fluorescence-activated high-throughput flow cytometry evaluated cellular viability as well as surface and intracellular protein expression. Cell cycle analysis was performed using 7-aminoactinomycin D and intracellular protein characterization was performed using a fluorescein-labeled monoclonal antibody against activated caspase-3. The collagenase–trypsin-based protocol increased single cell events from 31.9 ± 0.5% using trypsin alone (standard) to a range of 62.1% to 85.5% without adversely affecting viability. High-throughput flow cytometry demonstrated that the addition of collagenase to the disassociation solution not only permitted significantly higher rates of single cell creation, but it did not negatively affect the doxorubicin-induced protein expression. This protocol allows for expedient and effective disassociation of adherent human cells in order to investigate alterations in specific cellular enzymes and pathways.  相似文献   

7.
BACKGROUND: Most current commercial flow cytometers employ analog circuitry to provide feature values describing the pulse waveforms produced from suspended cells and particles. This restricts the type of features that can be extracted (typically pulse height, width, and integral) and consequently places a limit on classification performance. In previous work, we described a first-generation digital data acquisition and processing system that was used to demonstrate the classification advantages provided by the extraction of additional waveform features. An improved version of the system is discussed in this paper, focusing on dual-buffering to ensure increased pulse capture. A mathematical model of the system is also presented for performance analysis. METHODS: The second-generation system incorporates fast digitization of analog pulse waveforms, instantaneous pulse detection hardware, and a novel dual-buffering scheme. A mathematical model of the system was developed to theoretically compute the capture-rate performance. RESULTS: The capture rate of the system was theoretically analyzed and empirically measured. Under typical conditions, a capture rate of 8,000 pulses/s was experimentally achieved. CONCLUSIONS: Based on these results, the dual-buffer architecture shows great potential for use in flow cytometry.  相似文献   

8.
Fluorescence intensity of the pH-sensitive carboxyfluorescein derivative 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) was monitored by high-throughput flow cytometry in living yeast cells. We measured fluorescence intensity of BCECF trapped in yeast vacuoles, acidic compartments equivalent to lysosomes where vacuolar proton-translocating ATPases (V-ATPases) are abundant. Because V-ATPases maintain a low pH in the vacuolar lumen, V-ATPase inhibition by concanamycin A alkalinized the vacuole and increased BCECF fluorescence. Likewise, V-ATPase-deficient mutant cells had greater fluorescence intensity than wild-type cells. Thus, we detected an increase of fluorescence intensity after short- and long-term inhibition of V-ATPase function. We used yeast cells loaded with BCECF to screen a small chemical library of structurally diverse compounds to identify V-ATPase inhibitors. One compound, disulfiram, enhanced BCECF fluorescence intensity (although to a degree beyond that anticipated for pH changes alone in the mutant cells). Once confirmed by dose-response assays (EC50 = 26 μM), we verified V-ATPase inhibition by disulfiram in secondary assays that measured ATP hydrolysis in vacuolar membranes. The inhibitory action of disulfiram against V-ATPase pumps revealed a novel effect previously unknown for this compound. Because V-ATPases are highly conserved, new inhibitors identified could be used as research and therapeutic tools in cancer, viral infections, and other diseases where V-ATPases are involved.  相似文献   

9.
10.
We have developed a microfluidic cell culture method that allows for the formation of linear isolated myotubes organized in a parallel microarray. Attachment and spreading of cells are confined within microtracks of cell-adherent proteins separated by a protein-repellent coating. Signaling molecules or other molecules of interest can be focally delivered to the myotubes using heterogeneous microfluidic streams. We have used the method to focally deliver agrin (a molecule implicated as a postsynaptic organizer), which leads to localized acetylcholine receptor clustering. These techniques can be modified to accommodate other cell types and can be adapted to virtually any bioactive molecule such as signaling factors or drugs. This protocol features two major techniques that can be utilized simultaneously or independently to (i) micropattern cells using surface chemical modification and (ii) use a microfluidic platform for culturing and focal stimulation of cells with molecules of interest. Device design, fabrication and assembly can be completed in 3 days.  相似文献   

11.
We present for the first time a microfluidic cell culture array for long-term cellular monitoring. The 10 x 10 array could potentially assay 100 different cell-based experiments in parallel. The device was designed to integrate the processes used in typical cell culture experiments on a single self-contained microfluidic system. Major functions include repeated cell growth/passage cycles, reagent introduction, and real-time optical analysis. The single unit of the array consists of a circular microfluidic chamber, multiple narrow perfusion channels surrounding the main chamber, and four ports for fluidic access. Human carcinoma (HeLa) cells were cultured inside the device with continuous perfusion of medium at 37 degrees C. The observed doubling time was 1.4 +/- 0.1 days with a peak cell density of approximately 2.5*10(5) cells/cm(2). Cell assay was demonstrated by monitoring the fluorescence localization of calcein AM from 1 min to 10 days after reagent introduction. Confluent cell cultures were passaged within the microfluidic chambers using trypsin and successfully regrown, suggesting a stable culture environment suitable for continuous operation. The cell culture array could offer a platform for a wide range of assays with applications in drug screening, bioinformatics, and quantitative cell biology.  相似文献   

12.
Functional metagenomics is an attractive culture-independent approach for functional screening of diverse microbiomes to identify known and novel genes. Since functional screening can involve sifting through tens of thousands of metagenomic library clones, an easy high-throughput screening approach is desirable. Here, we demonstrate a proof-of-concept application of a low-cost, high-throughput droplet based microfluidic assay to the selection of antibiotic resistance genes from a soil metagenomic library. Metagenomic library members encapsulated in nanoliter volume water-in-oil droplets were printed on glass slides robotically, and cell growth in individual drops in the presence of ampicillin was imaged and quantified to identify ampicillin-resistant clones. From the hits, true positives were confirmed by sequencing and functional validation. The ease of liquid handling, ease of set-up, low cost, and robust workflow makes the droplet-based nano-culture platform a promising candidate for screening and selection assays for functional metagenomic libraries.  相似文献   

13.
BACKGROUND: Online mixing for continuous high-throughput flow cytometry has not been previously described. A simple, general high-throughput method for mixing and delivery of submicroliter volumes in laminar flow at low Reynolds numbers would be widely useful. MATERIALS AND METHODS: We describe a micromixing approach that is compatible with commercial autosamplers, flow cytometry, and other detection schemes that require mixing of components that have been introduced into laminar flow. The scheme is based on a previous approach to high-throughput flow cytometry (HyperCyt, Kuckuck et al.: Cytometry 44:83-90, 2001). We showed that samples from multiwell plates that have been picked up by an autosampler can be separated during delivery by the small air bubbles introduced during the transit of the autosampler probe from well to well. Here, a particle sample flowing continuously is brought together in a Y with reagent samples from wells, which have been separated by bubbles. RESULTS: In the effluent stream, the particles and reagents are mixed, most likely as a result of peristaltic action, and reagents from individual wells can be resolved. The sample volumes that can be mixed with this technology are submicroliter in volume, and samples can be mixed at rates up to at least 100/samples per minute. With the current device, carryover between samples can be eliminated if the mixing system is flushed with several volumes of buffer. The anticipated throughput for screening is expected to be at least 20 samples per minute. CONCLUSIONS: The high-throughput approach and peristaltic mixing in HyperCytTM serve to integrate autosamplers with submicroliter detection volumes for analysis in flow cytometry or in microfluidic channels.  相似文献   

14.
Flow cytometry (FCM) is an analytical tool widely used for cancer and HIV/AIDS research, and treatment, stem cell manipulation and detecting microorganisms in environmental samples. Current data standards do not capture the full scope of FCM experiments and there is a demand for software tools that can assist in the exploration and analysis of large FCM datasets. We are implementing a standardized approach to capturing, analyzing, and disseminating FCM data that will facilitate both more complex analyses and analysis of datasets that could not previously be efficiently studied. Initial work has focused on developing a community-based guideline for recording and reporting the details of FCM experiments. Open source software tools that implement this standard are being created, with an emphasis on facilitating reproducible and extensible data analyses. As well, tools for electronic collaboration will assist the integrated access and comprehension of experiments to empower users to collaborate on FCM analyses. This coordinated, joint development of bioinformatics standards and software tools for FCM data analysis has the potential to greatly facilitate both basic and clinical research--impacting a notably diverse range of medical and environmental research areas.  相似文献   

15.
The formylpeptide receptor (FPR) family of G protein-coupled receptors contributes to the localization and activation of tissue-damaging leukocytes at sites of chronic inflammation. Here we describe a high-throughput flow cytometry screening approach that has successfully identified multiple families of previously unknown FPR ligands. The assay detects active structures that block the binding of a fluorescent ligand to membrane FPR of intact cells, thus detecting both agonists and antagonists. It is homogeneous in that assay reagents are added in sequence and the wells are subsequently analyzed without intervening wash steps. Microplate wells are routinely processed at a rate of 40 wells per minute, requiring a volume of only 2 microl to be sampled from each. This screening approach has recently been extended to identify a high-affinity, selective agonist for the intracellular estrogen-binding G protein-coupled receptor GPR30. With the development of appropriate assay reagents, it may be generally adaptable to a wide range of receptors. The total time required for the assay ranges between 1.5 and 2.5 h. The time required for flow cytometry analysis of a 96-well plate at the end of the procedure is less than 2.5 min. By comparison, manual processing of 96 samples will typically require 40-50 min, and a fast commercial automated sampler processes 96-well plates in less than 15 min, requiring the aspiration of 22 microl per sample for an analysis volume of 2 microl.  相似文献   

16.
Membrane-active peptides (MAPs) have several potential therapeutic uses, including as antimicrobial drugs. Many traditional methods used to evaluate the membrane interactions of MAPs have limited applicability. Low-throughput methods, such as microscopy, provide detailed information but often rely on fluorophore-labeled MAPs, and high-throughput assays, such as the calcein release assay, cannot assess the mechanism behind the disruption of vesicular-based lipid membranes. Here we present a flow cytometric assay that provides detailed information about the peptide-lipid membrane interactions on single artificial lipid vesicles while being high-throughput (1000–2000 vesicles/s) and based on label-free MAPs. We synthesized and investigated six MAPs with different modes of action to evaluate the versatility of the assay. The assay is based on the flow cytometric readouts from artificial lipid vesicles, including the fluorescence from membrane-anchored and core-encapsulated fluorophores, and the vesicle concentration. From these parameters, we were able to distinguish between MAPs that induce vesicle solubilization, permeation (pores/membrane distortion), and aggregation or fusion. Our flow cytometry findings have been verified by traditional methods, including the calcein release assay, dynamic light scattering, and fluorescence microscopy on giant unilamellar vesicles. We envision that the presented flow cytometric assay can be used for various types of peptide-lipid membrane studies, e.g. to identify new antibiotics. Moreover, the assay can easily be expanded to derive additional valuable information.  相似文献   

17.
Gottwald E  Lahni B  Lüdke G  Preckel T  Buhlmann C 《BioTechniques》2003,35(2):358-62, 364, 366-7
HSP72 is an important marker for various environmental stresses and diseases, and many researchers need to detect HSP72 levels in various cells. We have therefore developed an assay to monitor intracellular heat-shock protein 72 expression on a microfluidic Lab-on-a-chip platform. We established this method to detect HSP72 intracellularly by antibody staining with DNA counterstaining. The Lab-on-a-chip technology is simple and efficient when performing flow cytometric assays. By permeabilizing the cells for the delivery of antibodies, we were able to show HSP72 expression after 30 min heat-shock at 44 degrees C and then at various post-incubation times at 37 degrees C. We compared our method to a conventional flow cytometer and an enzyme immunoassay technique.  相似文献   

18.
Advances in flow cytometry for sperm sexing   总被引:1,自引:0,他引:1  
This review presents the key technological developments that have been implemented in the 20 years since the first reports of successful measurement, sorting, insemination and live births using flow cytometry as a proven physical sperm separation technique. Since the first reports of sexed sperm, flow technology efforts have been largely focused on improving sample throughput by increasing the rate at which sperm are introduced to the sorter, and on improving measurement resolution, which has increased the proportion of cells that can be reliably measured and sorted. Today, routine high-purity sorting of X- or Y-chromosome-bearing sperm can be achieved at rates up to 8000 s−1 for an input rate of 40,000 X- and Y- sperm s−1. With current protocols, straws of sex-sorted sperm intended for use in artificial insemination contain approximately 2 × 106 sperm. The sort rate of 8000 sperm s−1 mentioned above corresponds to a production capacity of approximately 14 straws of each sex per hour per instrument.  相似文献   

19.
Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding.  相似文献   

20.
Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号