首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spartidium saharae is an endemic species of the Saharo-Arabian region. It is a tall shrub widely distributed in many sandy habitats including desert dunes and sandy systems in south-western part of Tunisia, where water and salinity are serious constraints. Laboratory experiments were carried out to assess temperature and salinity effects on seed germination. The seed germination responses were determined in complete darkness over a wide range of temperatures and salinities. Germination was inhibited by either an increase or decrease in temperature from the optimal temperature range (15–20°C). Highest germination percentages were obtained under nonsaline conditions and an increase in NaCl concentrations progressively inhibited seed germination. An interaction between salinity and temperature yielded no germination at 200 m m NaCl.  相似文献   

2.
Germination responses of Diplotaxis harra to temperature and salinity   总被引:1,自引:1,他引:0  
Diplotaxis harra (Forssk.) Boiss, an annual herb in the family of Brassicaceae, is widely distributed in many sandy and gypseous areas in southern Tunisia. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after seed transfer to distilled water. The germination responses of the seeds in complete darkness were determined over a wide range of temperatures (5, 10, 15, 20, 25 and 30 °C) and salinities (0, 50, 100, 150 and 200 mM NaCl). Germination was inhibited by either an increase or decrease in temperature from the optimal temperature (15 °C). Highest germination percentages were obtained under non-saline conditions and an increase in NaCl concentrations progressively inhibited seed germination. Rate of germination decreased with an increase in salinity at all temperatures but comparatively higher rates were obtained at 15 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 200 mM NaCl. Seeds were transferred from salt solution to distilled water after 20 days, and those from low salinities recovered at all temperatures. At NaCl concentration of 200 mM, the recovery of germination was completely inhibited.  相似文献   

3.
The effects of different soil water potentials, temperature and NaCl concentration on seed germination of Zygophyllum dumosum Boiss., a common shrub in Israeli deserts, was investigated. Seeds had to be exposed to constant field capacity conditions (–0.0316 MPa) for a minimal period of two days before germination could start. Maximal germination under such conditions occurred after four days or more. Under simulated conditions of gradual dehydration of the soil, seeds were inhibited either at low soil water potentials (–0.10 to –10.00 MPa) or at high ones (–0.002 to –0.0398 MPa). Germination of Z. dumosum was independent of temperature in the range of 10–25°C, but strongly inhibited at 30 and 35°C. At 20°C germination was inhibited by salinity of the medium but still occurred (0.5%) even at a concentration of 0.5 M NaCl.  相似文献   

4.
Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C.  相似文献   

5.
Seeds of the empress tree ( Paulownia tomentosa Steud.) were imbibed for two weeks in darkness at constant temperatures (18, 23 or 28°C), and then irradiated with red light for 5 min. Germination was poor if it took place at the same temperature as imbibition, but a high percentage was achieved if the seeds were exposed to higher or lower temperatures before they were irradiated. Maximum germination was obtained when the difference between pretreatment and imbibition was about 10°C. The effect increased with the duration of the pretreatment and was optimal at 24 h. The effect decreased as the time lapse between temperature pretreatment and red light irradiation increased, and it was lost after two days. If pretreatment was shorter than 24 h (12 h). a high percent of germination was obtained by alternating pretreatment and imbibition temperatures. The germination of seeds imbibed in 40% heavy water was also stimulated by temperature pretreatments. Light and temperature also exhibited an interactive effect in the germination of seeds that were imbibed in darkness for only 3 days. For each of the germination phases there was a temperature at which the time needed for 50% germination was the shortest, namely 35°C during imbibition, 37.5°C in the period of Pfr activity. and 32.5°C during radicle protrusion. The data obtained are shortly discussed in relation to the domestication of empress tree in Southern Europe.  相似文献   

6.
Abstract Germination responses of Taraxacum platycarpum seeds to temperature were examined under laboratory conditions to investigate the emergence-season choice mechanism of the seeds. Almost all the newly collected seeds were non-dormant. Under constant temperature conditions, maximum percentage germination (approximately 90%) was attained at temperatures 6–16°C, where simple linear relationships were observed between the temperature and the rates of germination, i.e. the reciprocals of the time taken to germinate by seed subpopulations with 10–80% germination. Thermal time required for germination of the subpopulations ranged from 600 Kh (degree Kelvin × hours) to 1500 Kh with a relatively constant base temperature of about 2.5°C. Lower limit temperature for germination was slightly below 6°C. Higher limit temperature for germination has the normal distribution with the mean ±SD of 19±2.5°C. Pre-exposure of imbibed seeds to temperatures higher than the higher limit temperature for germination, 25 and 30°C, had no effect on the germinability and the rate of germination at a circa-optimum temperature. Moist chilling treatment at 4°C caused an increase in the variation of germination rate within the seed population, but no evidence for dormancy-inducing or breaking effects was obtained.  相似文献   

7.
Halogeton glomeratus (M. Bieb.) C.A. Mey., Lepidium latifolium Linn. and Peganum harmala Linn. are distributed in temperate salt playa habitats of Upper Hunza, Pakistan. Seeds were germinated under various salinity (0–500 mM NaCl), light (12 h-light:12 h-dark and 24 h-dark) and temperature (5/15, 10/20, 15/25, 20/30, and 25/35 °C, dark/light) regimes for 20 days to determine the optimal conditions for germination and recovery of seeds from these factors when exposed to less than optimal conditions. Seeds that failed to germinate in dark were transferred successively to 12 h-photoperiod, salinity to distilled water and from various temperature regimes to 20/30 °C, to determine the effect of these stresses and the ability of these seeds to recover respectively. Highest seed germination (H. glomeratus and L. latifolium: 100%; P. harmala: 80%) was obtained in non-saline control at 20/30 °C in 12 h-photoperiod, however, increase in salinity progressively inhibited seed germination. Seed germination of H. glomeratus and P. harmala was substantially inhibited and that of L. latifolium was prevented in dark. Salinity and dark treatments have a synergistic effect in inhibiting seed germination of all species. No seed of any species germinated at 5/15 °C; germination was substantially inhibited at 25/35 °C both for H. glomeratus and P. harmala while L. latifolium failed to germinate at 25/35 °C. Rate of germination also decreased with an increase in salinity at all temperature regimes but this effect was minimal at optimal temperature regime of 20/30 °C. After successive elimination of light, salinity and temperature stresses, final seed germination was identical to respective controls. The results indicate that seeds of these temperate halophytes could endure environmental stresses without losing viability and germinate readily when these stresses are removed. Under the extremely variable conditions of the playa habitat these species are highly opportunistic exploiting the windows of opportunity available during spring or early summer.  相似文献   

8.
Germination in the dark and at 16°C of photoblastic and thermosensitive seeds of Phacelia tanacetifolia was inhibited when incubated with EGTA and the Ca2+-ionophore A 23187; A 23187 in the presence of Ca2+ still inhibited germination, but to a lesser extent. Treatments with EGTA or Ca2+ at different concentrations in the presence or in the absence of A 23187 did not remove light inhibition. The calmodulin (CaM) inhibitor, calmidazolium, strongly inhibited germination. The specificity of these inhibitors and their effects on seed germination are discussed.
CaM from Phacelia tanacetifolia seeds has been purified and its characteristics (molecular weight, heat and acid stability, kinetics of phosphodiesterase [EC 3.1.4.17] activation) were very similar to those of other plant sources. More than 90% of total CaM was present in the soluble fraction (ca 41 μg g-1 fresh weight in ungerminated seeds). The CaM level greatly increased in the early phases of seed germination; this increase did not take place when germination was inhibited by light or high temperature. When fusicoccin, a toxin which promotes germination by activating membrane functions, relieved light or high temperature inhibition, CaM increased up to the control value in the dark at 16°C. The parallel increase in CaM and seed germination suggest that CaM plays an important role in the process. Fusicoccin in the dark at 16°C stimulated CaM and fresh weight increase, but not the metabolic reactivation measured as increase in DNA and total RNA levels; at 30°C fusicoccin stimulated the increase in fresh weight and in CaM level, but the increases in DNA and total RNA were very low. These results suggest that the activation of membrane functions with cell enlargement induced by fusicoccin is related to CaM increase.  相似文献   

9.
Germination of freshly harvested seeds of a non-dormant (ND) line (Stonehouse 319) of wild oats ( Avena fatua L.) was inhibited by incubation of the seeds at relatively high temperatures of 25 and 30°C. The germination inhibition in these seeds appeared to be a case of thermo-inhibition which was the direct effect of hightemperature treatment (HIT), since it did not persist after transferring the seeds to an optimum germination temperature of 20°C. Even a prolonged HTT of 30°C for over 5 weeks did not prevent germination of about 80% of the seeds transferred to 20°C. However, in a significant proportion of the seeds, thermo-dormancy was induced by 10 days of HTT at 30°C if the seeds were then incubated at sub-optimal temperatures of 5 to 15°C. This thermo-dormancy would appear to be 'restrictive' in form, since its expression was restricted to very specific conditions. Relatively low inclubation temperaturs of 5 and 10°C markedly slowed germination whether HTT was applied or not. The results suggest that thermo-inhibition and thermo-dormancy, induced during seasonal temperature fluctuations, may provide a survival mechanism for seeds of such ND lines as Stonehouse 319.  相似文献   

10.
Seed germination, growth and flowering of the arctic-alpine annual Koenigia islandica were studied in controlled environment. Intact (unabraded) seeds germinated poorely at temperatures up to 18°C, with an optimum at 24°C (89% in 10 d). Scarified seeds germinated rapidly, and reached 100% germination in 3 d at 21°C, but no >40% germination occurred at 9 and 12°C, The seeds had no light requirement for germination, nor did fluctuating temperatures improve germination
Dry matter production was optimal at 12°C in both short day (SD) and long day (LD) conditions, but was markedly higher in LD than in SD at identical fluences at all temperatures except 21°C where the plants showed symptoms of severe heat stress. The temperature compensation point for net productivity was estimated to 24°C, and negative carbon balance at higher temperatures might be an important physiological mechanism limiting the distribution of K. islandica in Scandinavia.
Flowering was extremely rapid and independent of daylength, even in a high-arctic population from 79°N, In full summer daylight anthesis was reached 24 d after germination and seeds ripened after 36 d at 15°C, Days to anthesis varied little across the temperature range from 6 to 21°C, giving a linear decrease in the heat-sum requirement for the attainment of flowering with decreasing temperature.
It is concluded that conservative seed germination strategy, tininess and rapid development, low temperature optima for growth and reproduction, and daylength indifference of flowering are important adaptations for success of an annual plant in high-arctic and high-alpine environments, Daylength neutrality has facilitated the wide-latitudinal distribution of K. islandica. including the penetration of the species to the southern hemisphere.  相似文献   

11.
Seeds with efficient antioxidant defence system show higher germination under stress conditions; however, such information is limited for the halophyte seeds. We therefore studied lipid peroxidation and antioxidant responses of a leaf-succulent halophyte Salsola drummondii during seed germination under different salinity levels (0, 200 and 800 mM NaCl), temperature (10/20, 20/30 and 25/35°C) and light regimes. Seeds absorbed water and germinated in less than 1 h in non-saline control while increases in salinity decreased the rate of water uptake as well as seed germination. Non-optimal temperatures (10/20 and 25/35°C) and complete dark condition reduced seed germination in comparison to those seeds germinated under optimal temperature (20/30°C) and 12-h photoperiod, respectively. Generally, higher lipid peroxidation and antioxidant enzyme activities were observed in seeds at non-optimal temperature and in those seeds germinated in dark. Decrease in reduced ascorbic acid content was found in highest salinity and temperature treatments, while reduced glutathione content did not change significantly with changes in salinity, temperature and light regimes. These results indicate variation in temperature and light but not salinity enhances antioxidant enzyme activities in germinating seeds of Salsola drummondii.  相似文献   

12.
Abstract. Symbiotic germination and development in vitro of Dactylorhiza majalis seeds with a strain of Rhizoctonia is very temperature dependent. Above an optimum at 23–25 °C there is a marked decline in germination percentage. Seeds that did germinate at higher temperatures had only little or no development of mycorrhiza, and developed few or no rhizoids compared with seedlings raised at optimal or lower temperatures. Six-week-old seedlings grown for additional 4 weeks on a range of temperatures had an optimal length increase at 23–24.5 °C mean temperature. At superoptimal temperatures (26 °C), the seedlings contained smaller starch reserves than those at lower temperatures and increased about as much in length as seedlings grown at 13 °C but much less than those grown at optimum. Temperature also influenced the differentiation of the leafy shoot, seedlings growing to a larger size before shoot initiation in the temperature range of optimal growth. Because of the small span between optimal and too-high temperatures, a careful assessment of temperature optimum will be necessary in any orchid/fungus relationship before judging the success of symbiosis. At optimal temperature, symbiotic germination gave a germination percentage about twice that using a good asymbiotic method. The increase in seedling length was about 45% per week in symbiotic culture compared with less than 30% in the asymbiotic culture.  相似文献   

13.
During stratification at 5°C indole-3-acetic acid (IAA) levels in embryos of Acer platanoides decreased during the early stages but subsequently increased again throughout the remainder of a 144 day period. The reduction in IAA levels in embryos of fruits stored at 17°C was even more pronounced, and in addition, no increase was observed after longer storage periods at this temperature, the levels of IAA remaining very low. Germination in seeds maintained at 5°C was not observed until after 120 days or longer, but germination potential increased at an earlier stage, as shown by the fact that seeds transferred to 20°C gave appreciable increases in germination after much shorter chilling periods. Endogenous IAA levels in embryos from seeds transferred to 20°C after a chilling period, long enough to break dormancy, increased within 24 h, i.e. before visible germination, to levels similar to those observed in embryos from seeds chilled continuously for 144 days. Embryos from seeds chilled for 120 days, i.e. when the samples already showed visible germination and when the endogenous IAA content was already high, showed no further increase in endogenous IAA during a three day incubation at 20°C. None of the treatments employed was effective in inducing germination of seeds or embryos from fruits stored at 17°C.  相似文献   

14.
In white spruce ( Picea glauca [Moench.] Voss.) seeds, the raffinose family oligosaccharides (RFOs) provide carbon reserves for the early stages of germination prior to radicle protrusion. Some seedlots contain seeds that are dormant, failing to complete germination under optimal conditions. Since dormancy may be imposed through a metabolic block in reserve mobilization, the goal of this project was to identify any impediment to RFO mobilization in dormant relative to nondormant seeds. Desiccated seeds contain primarily, and in order of abundance on a molar basis, sucrose and the first 3 members of the RFOs, raffinose, stachyose and verbascose. Upon radicle protrusion at 25°C, the contents of RFOs decreased to low amounts in all seed parts, regardless of prior dormancy status and sucrose was metabolized to glucose and fructose, which increased in seed parts. During moist chilling at 4°C, RFO content initially decreased before stabilizing and then increasing. In seeds that did not complete germination, the synthesis of RFOs at 4°C favored verbascose, so that at the end of 14 (nondormant) or 35 (dormant) weeks, verbascose contents in megagametophytes exceeded the amount initially present in the desiccated seed. This was also true in the embryos of the dormant seedlot. In seed parts from both seedlots after months of moist chilling, stachyose amounts exceeded raffinose amounts. Upon radicle protrusion at 4°C, RFO contents decreased to amounts most similar to those present in seeds that completed germination at 25°C. Hence, the RFOs are utilized as a source of energy, regardless of the temperature at which white spruce seeds complete germination. Based on the similarity of sugar contents in seed parts between dormant and nondormant seeds that did not complete germination, differences in sugar metabolism are probably not the basis of dormancy in white spruce seeds.  相似文献   

15.
Salsola ferganica L. (Chenopodianceae) is an annual halophytic species. Experiments were carried out in laboratory to determine the effects of temperature, perianths and various types of salinity on seed germination and germination recovery. Seeds were germinated at 6 levels of temperature with perianths, plus perianths and removed perianths in complete darkness for 9 days. The germination responses of the seeds without perianths at 25 °C were determined over a wide range of NaCl, NaHCO3 or NaCl–NaHCO3 mixed stress for 13 days. Perianths seriously affected germination as a barrier for seed germination and the optimal temperature was at 25 °C. Highest germination percentage was obtained under control and seed germination was progressively inhibited with the increase of salinity concentration. The negative effect of NaHCO3 at the same concentration on germination was stronger than that of NaCl and NaCl–NaHCO3 mixed. When substrate salinity was removed, seeds exposed to a high NaCl concentration (400–800 mM), NaHCO3 (50–200 mM) and NaCl–NaHCO3 mixed (100–400 mM) germinated well. Final germination of Salsola ferganica seeds was significantly affected by types of salt at the low salinity (?200 mM) and with increased salinity it was influenced mainly by salinity concentration for various proportion of salt–alkali mixed stress.  相似文献   

16.
Seed Germination of a Halophytic Grass Aeluropus lagopoides   总被引:18,自引:0,他引:18  
Aeluropus lagopoides(Linn.) Trin. Ex Thw. (Poaceae) is a perennialgrass distributed from coastal Sindh and Balochistan to salineflats of Punjab, Pakistan. Seeds collected from an inland populationofA. lagopoides located on the University of Karachi campuswere germinated under various levels of salinity (0, 100, 200,300, 400 and 500 m M NaCl) and temperature regimes (10/20, 15/25,20/30 and 25/35 °C) in a 12 h dark/12 h light photoperiod.Highest germination was obtained under non-saline conditions,and an increase in NaCl concentration progressively inhibitedgermination. Inhibition of germination was greater at coolertemperatures (10/20 °C) when no seed germinated above aconcentration of 300 m M NaCl. The germination response at moderatetemperatures (20/30 °C) was optimal, with 30% of seeds germinatingin 500 m M NaCl. The rate of germination decreased as salinityincreased. Germination rate was highest at 20/30 °C andlowest at 10/20 °C. Seeds were transferred from salt solutionsto distilled water after 20 d and those from high salinitiesrecovered quickly at warmer temperatures with an optimal responseat 20/30 °C. Copyright 2001 Annals of Botany Company Aeluropus lagopoides, germination, halophyte, Karachi, salinity, temperature  相似文献   

17.
Polymorphic seeds of Atriplex triangularis were germinated at various temperatures (5–15 C, 5–25 C, 10–20 C, 20–30 C) and salinity regimes (0 to 1.5% NaCl) in order to determine their germinability and early seedling growth under these conditions. Larger seeds generally had a higher germination percentage in saline medium. The rate and percentage of germination decreased with increased salinity stress. A thermoperiod of 25 C day and 5 C night, 12 hr/12 hr, temperature enhanced germination of seeds. Early seedling growth is promoted in larger seeds at lower salinity, and at high-day and low-night temperatures. Polymorphic seeds have different physiological requirements which provide alternative situations for seed germination in natural habitats.  相似文献   

18.
Celery seeds ( Apium graveolens L.) given a germination induction period (3 days imbibition at 17°C in the light) could be prevented from germinating by up to 14 days subsequent exposure to high temperature (32°C), polyethylene glycol (PEG), abscisic acid (ABA) or dark (22°C). When the seeds were returned to 17°C in the light, germination occurred and, except for the high temperature treatment, was more rapid compared to seeds given a germination induction period only.
Celery seeds incubated for 3 days at 17°C in the light and then air-dried at 20°C germinated slowly when re-sown at 17°C in the light, and achieved only 19% germination after 21 days. Exposing the seeds to high temperature, PEG, ABA or dark for up to 14 days before drying maintained seed viability and subsequent germination was faster. The longer treatment periods gave increased benefit, and PEG was the most effective treatment. It is suggested that the effectiveness of the treatments in inducing dehydration tolerance relates to their ability to inhibit germination possibly via their prevention of cell expansion.  相似文献   

19.
Bienertia cycloptera (Chenopodiaceae) produces two types of leaf foliage colour (reddish and yellowish). In order to determine the role of leaf colour variation in regulating the germination characteristics and salinity tolerance during germination, a study was conducted on seeds collected from plants of both colours. Seeds with and without pulp were germinated under two illumination conditions (12‐h light photoperiod and continuous dark), three alternating temperature regimes (15/25°C, 20/30°C and 25/35°C), and several salinity levels at 20/30°C. Germination percentage was significantly higher for seeds without pulp as compared to the seeds with pulp. The response of B. cycloptera seeds to salinity depended on the leaf colour. Thus, the seeds collected from reddish coloured plants were able to tolerate higher salinity compared to those of yellowish coloured plant. The germination recovery results indicate that the seeds from both coloured plants could remain viable in saline condition and they will be able to germinate once the salinity level are decreased by rain. The production of different foliage colours by B. cycloptera seems to be an adaptative strategy which increases the possibility for establishment in unpredictable environments by producing seeds with different germination requirements and salinity tolerance.  相似文献   

20.
The germination percentage of peach [ Prunus persica (L.) Batsch cv. Halford] seeds at 20°C was low (< 20%) after incubation at 5°C for as long as 35 days, but then increased considerably (> 40%) when the seeds were maintained at 5°C for longer than 42 days. Four zones of gibberellin-like activity were found in partially purified seed extracts. Gibberellin-like activity remained low in seeds incubated at 5°C for as long as 28 days, but increased significantly in three of these zones after 35 days, and in the fourth zone after 49 days. The increase in gibberellin-like activity was evident prior to the transfer of the seeds to 20°C. Moreover, seeds maintained at 5°C germinated at this temperature after 63 days. For seeds incubated and germinated at 20°C, both the germination percentage and the gibberellin-like activity remained low throughout the experimental period. Application of the growth retardant paclobutrazol to seeds after 28 days of a 49 day total incubation period at 5°C did not substantially reduce seed germination, although the increase in gibberellin-like activity was prevented. Seeds did, however, require a longer time to germinate after transfer to 20°C and were dwarfed in appearance. Application of GA3 to seeds prior to stratification increased the percentage germination of seeds only when they had been incubated at 5°C for at least 35 days. The major changes in gibberellin-like activity are, therefore, associated not so much with the processes which allow germination to take place in peach, but more with those processes which allow normal growth and development of the seedling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号