首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Study aimed to determine whether short-term graded exercise affects single-breath lung diffusion capacity for nitric oxide (DLNO) and carbon monoxide (DLCO) similarly, and whether the DLNO/DLCO ratios during rest are altered post-exercise compared to pre-exercise. Eleven healthy subjects (age=29+/-6 years; weight=76.6+/-13.2 kg; height=177.9+/-13.2 cm; and maximal oxygen uptake or V(.-)(O(2max) = 52.7 +/- 9.3 ml kg(-1) min(-1))performed simultaneous single-breath DLNO and DLCO measurements at rest (inspired NO concentration=43.2+/-4.1 ppm, inspired CO concentration=0.30%) 15 min before and 2h after a graded exercise test to exhaustion (exercise duration=593+/-135 s). Resting DLNO and DLCO was similarly reduced 2h post-exercise (DLNO=-7.8+/-3.5%, DLCO=-10.3+/-6.9%, and P<0.05) due to reductions in pulmonary capillary blood volume (-11.3+/-9.0%, P<0.05) and membrane diffusing capacity for CO (-7.8+/-3.5%; P<0.05). The change in DLCO was reflected by the change in DLNO post-exercise such that 68% of the variance in the change in DLCO was accounted for by the variance in the change in DLNO (P<0.05). The DLNO/DLCO ratio was not altered post-exercise (5.87+/-0.37) compared to pre-exercise (5.70+/-0.34). We conclude that the decrease in single-breath DLNO and DLCO from pre- to post-exercise is similar, the magnitude of the change in DLCO closely reflects that of the change in DLNO, and single-breath DLNO/DLCO ratios are independent of the timing of measurement suggesting that using NO and CO transfer gases are valid in looking at short-term changes in lung diffusional conductance.  相似文献   

2.
Morbidly obese individuals may have altered pulmonary diffusion during exercise. The purpose of this study was to examine pulmonary diffusing capacity for nitric oxide (DLNO) and carbon monoxide (DLCO) during exercise in these subjects. Ten morbidly obese subjects (age = 38 +/- 9 years, BMI = 47 +/- 7 kg/m(2), peak oxygen consumption or VO(2peak) = 2.4 +/- 0.4 l/min) and nine nonobese controls (age = 41 +/- 9 years, BMI = 23 +/- 2 kg/m(2), VO(2peak) = 2.6 +/- 0.9 l/min) participated in two sessions: the first measured resting O(2) and VO(2peak) for determination of wattage equating to 40, 75, and 90% oxygen uptake reserve (VO(2)R). The second session measured pulmonary diffusion from single-breath maneuvers of 5 s each, as well as heart rate (HR) and VO(2) over three workloads. DLNO, DLCO, and pulmonary capillary blood volume were larger in obese compared to nonobese groups (P 0.10). The morbidly obese have increased pulmonary diffusion per unit increase in VA compared with nonobese controls which may be due to a lower rise in VA per unit increase in VO(2) in the obese during exercise.  相似文献   

3.

Background

HTLV-I infection has been linked to lung pathology and HTLV-II has been associated with an increased incidence of pneumonia and acute bronchitis. However it is unknown whether HTLV-I or -II infection alters pulmonary function.

Methods

We performed pulmonary function testing on HTLV-I, HTLV-II and HTLV seronegative subjects from the HTLV outcomes study (HOST), including vital capacity (VC), forced expiratory volume in one second (FEV1), and diffusing lung capacity for carbon monoxide (DLCO) corrected for hemoglobin and lung volume. Multivariable analysis adjusted for differences in age, gender, race/ethnicity, height and smoking history.

Results

Mean (standard deviation) pulmonary function values among the 257 subjects were as follows: FVC = 3.74 (0.89) L, FEV1 = 2.93 (0.67) L, DLCOcorr = 23.82 (5.89) ml/min/mmHg, alveolar ventilation (VA) = 5.25 (1.20) L and DLCOcorr/VA = 4.54 (0.87) ml/min/mmHg/L. There were no differences in FVC, FEV1 and DLCOcorr/VA by HTLV status. For DLCOcorr, HTLV-I and HTLV-II subjects had slightly lower values than seronegatives, but neither difference was statistically significant after adjustment for confounding.

Conclusions

There was no difference in measured pulmonary function and diffusing capacity in generally healthy HTLV-I and HTLV-II subjects compared to seronegatives. These results suggest that previously described HTLV-associated abnormalities in bronchoalveolar cells and fluid may not affect pulmonary function.  相似文献   

4.
We investigated whether partitioning DLCO into membrane conductance for CO (DmCO) and pulmonary capillary blood volume (Vcap) was helpful in suspecting precapillary pulmonary (arterial) hypertension (P(A)H) in systemic sclerosis (SSc) patients with or without interstitial lung disease (ILD). We included 63 SSc patients with isolated PAH (n=6), isolated ILD (n=19), association of both (n=12) or without PAH and ILD (n=26). Partitioning of DLCO was performed by the combined DLNO/DLCO method. DLCO, DmCO and Vcap were equally reduced in patients with isolated PAH and patients with isolated ILD but Vcap/alveolar volume (VA) ratio was significantly lower in the isolated PAH group. In patients without ILD, DLCO, DmCO, Vcap and Vcap/VA ratio were reduced in patients with isolated PAH when compared to patients without PAH and both Vcap/VA and DLCO had the highest AUC to detect PAH. In patients with ILD, Vcap had the highest AUC and performed better than DLCO to detect PH in this subgroup. In conclusion, Vcap/VA was lower in PAH than in ILD in SSC whereas DLCO was not different. Vcap/VA ratio and DLCO had similar high performance to detect PAH in patients without ILD. Vcap had better AUC than DLCO, DmCO and FVC/DLCO ratio to detect PH in SSC patients with ILD. These results suggest that partitioning of DLCO might be of interest to detect P(A)H in SSC patients with or without ILD.  相似文献   

5.
Pulmonary diffusing capacities (DL) of NO and CO were determined simultaneously from rebreathing equilibration kinetics in anesthetized paralyzed supine dogs (mean body wt 20 kg) after denitrogenation (replacement of N2 by Ar). During rebreathing the dogs were ventilated in closed circuit with a gas mixture containing 0.06% NO, 0.06% 13C18O, and 1% He in Ar for 15 s, with tidal volume of 0.5 liter and frequency of 60/min. The partial pressures of NO, 13C18O, 16O18O, N2, Ar, CO2, and He in the trachea were continuously analyzed by mass spectrometry. Measurements were performed at various O2 levels characterized by the mean end-expired PO2 during rebreathing (PE'O2). In control conditions ("normoxia," PE'O2 = 67 +/- 8 Torr) the following mean +/- SD values were obtained (in ml.min-1.Torr-1): DLNO = 52.4 +/- 11.0 and DLCO = 15.4 +/- 2.9. In hypoxia (PE'O2 = 24 +/- 7 Torr) DLNO increased by 11 +/- 8% and DLCO by 19 +/- 10%, and in hyperoxia (PE'O2 = 390 +/- 26 Torr) DLNO decreased to 87 +/- 3% and DLCO to 56 +/- 8% with respect to values in normoxia. DLNO/DLCO of 3.24 +/- 0.06 (hypoxia), 3.38 +/- 0.31 (normoxia), and 5.54 +/- 1.04 (hyperoxia) were significantly higher than the NO/CO Krogh diffusion constant ratio (1.92) predicted for simple diffusion through aqueous layers. With increasing O2 uptake elicited by 2,4-dinitrophenol, DLNO and DLCO increased and DLNO/DLCO remained close to unchanged. The results suggest that the combined effects of diffusion and chemical reaction with hemoglobin limit alveolar-capillary transport of CO. If it is assumed that reaction kinetics of NO with hemoglobin (known to be extremely fast) are not rate limiting for NO uptake, the contribution of the slow chemical reaction with hemoglobin to the total CO uptake resistance (= 1/DLCO) was estimated to be 38% in hypoxia, 41% in normoxia, and 64% in hyperoxia. The various factors expected to restrict the validity of this analysis are discussed, in particular the effects of functional inhomogeneity.  相似文献   

6.
In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (P<0.005) and intrapulmonary pressure (P<0.023) whereas DLC18O2 was not improved. Our results suggest that the ventilator-driven lung expansion impaired the C18O2 blood uptake conductance, finally compensating for the beneficial effect of the increase in alveolar volume on DLC18O2 values.  相似文献   

7.
Measurements of nitric oxide (NO) pulmonary diffusing capacity (DL(NO)) multiplied by alveolar NO partial pressure (PA(NO)) provide values for alveolar NO production (VA(NO)). We evaluated applying a rapidly responding chemiluminescent NO analyzer to measure DL(NO) during a single, constant exhalation (Dex(NO)) or by rebreathing (Drb(NO)). With the use of an initial inspiration of 5-10 parts/million of NO with a correction for the measured NO back pressure, Dex(NO) in nine healthy subjects equaled 125 +/- 29 (SD) ml x min(-1) x mmHg(-1) and Drb(NO) equaled 122 +/- 26 ml x min(-1) x mmHg(-1). These values were 4.7 +/- 0.6 and 4.6 +/- 0.6 times greater, respectively, than the subject's single-breath carbon monoxide diffusing capacity (Dsb(CO)). Coefficients of variation were similar to previously reported breath-holding, single-breath measurements of Dsb(CO). PA(NO) measured in seven of the subjects equaled 1.8 +/- 0.7 mmHg x 10(-6) and resulted in VA(NO) of 0.21 +/- 0.06 microl/min using Dex(NO) and 0.20 +/- 0.6 microl/min with Drb(NO). Dex(NO) remained constant at end-expiratory oxygen tensions varied from 42 to 682 Torr. Decreases in lung volume resulted in falls of Dex(NO) and Drb(NO) similar to the reported effect of volume changes on Dsb(CO). These data show that rapidly responding chemiluminescent NO analyzers provide reproducible measurements of DL(NO) using single exhalations or rebreathing suitable for measuring VA(NO).  相似文献   

8.
The purpose of this study was to evaluate the influence of the single-breath pulmonary diffusing capacity (DLCO) breath-hold maneuver on central hemodynamics. Ten men (mean age 24 yr) were studied at rest, during 40 min of cycling at 40 and 60% of peak O2 uptake, and 10 min into recovery. DLCO was measured in the seated position during a 10-s breath hold at total lung capacity. At rest the breath hold caused a significant fall in stroke volume (SV, -16%) and an increase in heart rate (HR, +20%) with no change in cardiac output (Q). The resting DLCO of 36.5 ml.min-1.mmHg-1 increased by 28 and 48%, respectively, during the low- and moderate-intensity cycling. The breath hold while cycling caused a significant decrease in SV and Q, but HR did not change. Likewise, during recovery SV and Q fell with the breath hold but again HR did not change. A significant fall in systolic (-17%), diastolic (-12.5%), and mean arterial pressure (-15%) occurred during the breath hold at rest and during and after the exercise. The reduction observed in SV and blood pressure most likely reflected a decrease in venous return. The differences observed in the HR response before, compared with during and after exercise, were consistent with a resetting or shift in the operating point of the arterial baroreflex. Because blood flow fell during the exercise and recovery breath-hold maneuver, the "true" DLCO may have been underestimated during and after cycling.  相似文献   

9.
BACKGROUND: In heart failure abnormalities of pulmonary function are frequently observed particularly during exercise, which is characterized by hyperpnea, low tidal volume, early expiratory flow limitation and reduced lung compliance. Exhaled nitric oxide (NO) is increased in asthma. We evaluated whether a correlation between exhaled NO and lung mechanics exists during exercise in heart failure. METHODS: We studied 33 chronic heart failure patients and 11 healthy subjects with: a) standard pulmonary function, b) lung diffusion for carbon monoxide (DLCO) including its subcomponents, capillary volume and membrane resistance and eNO both at rest and during light exercise, c) maximal cycloergometer cardiopulmonary exercise test. RESULTS: Forced expiratory volume in 1 second (FEV1) was reduced in heart failure patients (83 +/- 17% of predicted) as was DLCO (75 +/- 18% of predicted) due to reduced membrane resistance (32.6 +/- 10.3 ml/mmHg/min vs. 39.9 +/- 6.9 in patients vs. controls, p < 0.02). eNO was lower in patients vs. controls (9.7 +/- 5.4 ppm vs. 14.4 +/- 6.4, p < 0.05) and was, during exercise, constant in patients and reduced in controls. No significant correlation was found between eNO and lung function. Vice-versa eNO changes during exercise were correlated with peak exercise oxygen consumption (r = 0.560, p < 0.001). CONCLUSIONS: The hypothesis of a link between eNO and lung function in heart failure was not proved. The correlation between eNO changes during exercise and peak VO2 might be due to hemoglobin oxygenation which binds NO to hemoglobin.  相似文献   

10.
Purpose(1) to examine the relation between pulmonary diffusing capacity and marathon finishing time, and (2), to evaluate the accuracy of pulmonary diffusing capacity for nitric oxide (DLNO) in predicting marathon finishing time relative to that of pulmonary diffusing capacity for carbon monoxide (DLCO).Methods28 runners [18 males, age = 37 (SD 9) years, body mass = 70 (13) kg, height = 173 (9) cm, percent body fat = 17 (7) %] completed a test battery consisting of measurement of DLNO and DLCO at rest, and a graded exercise test to determine running economy and aerobic capacity prior to the 2011 Steamtown Marathon (Scranton, PA). One to three weeks later, all runners completed the marathon (range: 2∶22:38 to 4∶48:55). Linear regressions determined the relation between finishing time and a variety of anthropometric characteristics, resting lung function variables, and exercise parameters.ResultsIn runners meeting Boston Marathon qualification standards, 74% of the variance in marathon finishing time was accounted for by differences in DLNO relative to body surface area (BSA) (SEE = 11.8 min, p<0.01); however, the relation between DLNO or DLCO to finishing time was non-significant in the non-qualifiers (p = 0.14 to 0.46). Whereas both DLCO and DLNO were predictive of finishing time for all finishers, DLNO showed a stronger relation (r2 = 0.30, SEE = 33.4 min, p<0.01) compared to DLCO when considering BSA.ConclusionDLNO is a performance-limiting factor in only Boston qualifiers. This suggests that alveolar-capillary membrane conductance is a limitation to performance in faster marathoners. Additionally, DLNO/BSA predicts marathon finishing time and aerobic capacity more accurately than DLCO.  相似文献   

11.
The objective of this study was to assess the effect of beraprost sodium, an oral prostacyclin analogue, on pulmonary function in patients with systemic sclerosis. Seventeen patients, with systemic sclerosis and predicted percent values of carbon monoxide diffusion capacity (%DLCO) of less than 95, received beraprost sodium for at least 12 months. Conventional testing for pulmonary function was performed at 12-month intervals and changes were evaluated with special reference to DLCO. Twelve patients completed the treatment. Nine patients showed improvement in DLCO (12.1 +/- 2.3 to 15.5 +/- 4.4 ml/min/mmHg, P < 0.006) and 10 patients showed an increase in %DLCO (66.6 +/- 11.9 to 87.7 +/- 23.2%, P < 0.004). Total lung capacity, vital capacity and forced expiratory volume remained unchanged. This study showed that DLCO levels in patients with systemic sclerosis improved after the administration of beraprost sodium, probably due to the decrease in pulmonary vascular resistance accompanied by increased cardiac output.  相似文献   

12.
To determine whether aerobic conditioning alters the orthostatic responses of older subjects, cardiovascular performance was monitored during graded lower body negative pressure in nine highly trained male senior athletes (A) aged 59-73 yr [maximum O2 uptake (VO2 max) = 52.4 +/- 1.7 ml.kg-1 x min-1] and nine age-matched control subjects (C) (VO2 max = 31.0 +/- 2.9 ml.kg-1 x min-1). Cardiac volumes were determined from gated blood pool scintigrams by use of 99mTc-labeled erythrocytes. During lower body negative pressure (0 to -50 mmHg), left ventricular end-diastolic and end-systolic volume indexes and stroke volume index decreased in both groups while heart rate increased. The decreases in cardiac volumes and mean arterial pressure and the increase in heart rate between 0 and -50 mmHg were significantly less in A than in C. For example, end-diastolic volume index decreased by 32 +/- 4 ml in C vs. 14 +/- 2 ml in A (P < 0.01), mean arterial pressure declined 7 +/- 5 mmHg in C and increased by 5 +/- 3 mmHg in A (P < 0.05), and heart rate increased 13 +/- 3 beats/min in C and 7 +/- 1 beats/min in A (P < 0.05). These data suggest that increased VO2 max among older men is associated with improved orthostatic responses.  相似文献   

13.
We evaluated the effect of prone positioning on gas-transfer characteristics in normal human subjects. Single-breath (SB) and rebreathing (RB) maneuvers were employed to assess carbon monoxide diffusing capacity (DlCO), its components related to capillary blood volume (Vc) and membrane diffusing capacity (Dm), pulmonary tissue volume (Vti), and cardiac output (Qc). Alveolar volume (Va) was significantly greater prone than supine, irrespective of the test maneuver used. Nevertheless, Dl(CO) was consistently lower prone than supine, a difference that was enhanced when appropriately corrected for the higher Va prone. When adequately corrected for Va, diffusing capacity significantly decreased by 8% from supine to prone [SB: Dl(CO,corr) supine vs. prone: 32.6 +/- 2.3 (SE) vs. 30.0 +/- 2 ml x min(-1) x mmHg(-1) stpd; RB: Dl(CO,corr) supine vs. prone: 30.2 +/- 2.2 (SE) vs. 27.8 +/- 2.0 ml x min(-1) x mmHg(-1) stpd]. Both Vc and Dm showed a tendency to decrease from supine to prone, but neither reached significance. Finally, there were no significant differences in Vti or Qc between supine and prone. We interpret the lower diffusing capacity of the healthy lung in the prone posture based on the relatively larger space occupied by the heart in the dependent lung zones, leaving less space for zone 3 capillaries, and on the relatively lower position of the heart, leaving the zone 3 capillaries less engorged.  相似文献   

14.
The steady state diffusing capacity of the lung for carbon monoxide (DLCO) was studied in 18 splenectomized adult ewes. Seven animals were anemic when studied. Weight (Wt) and, to a lesser extent, hemoglobin (Hb) level were the key predictive variables of DLCO. Sheep DLCO can be expected to range between 15 and 28 ml/min/mmHg in adult ewes which are not anemic. When DLCO measurements were repeated up to three times on the same day no significant decreases occurred. Thus, the data demonstrated no CO back-pressure caused by preceding DLCO determinations. This paper's importance is in defining a normal predictive range for this sensitive parameter of pulmonary function.  相似文献   

15.
During lipopolysaccharide (LPS)-induced endotoxemia, increased intrasplenic fluid efflux contributes to a reduction in plasma volume. We hypothesized that splenic sympathetic nerve activity (SSNA), which increases during endotoxemia, limits intrasplenic fluid efflux. We reasoned that splenic denervation would exaggerate LPS-induced intrasplenic fluid efflux and worsen the hypotension, hemoconcentration, and hypovolemia. A nonlethal dose of LPS (150 microg x kg(-1) x h(-1) for 18 h) was infused into conscious male rats bearing transit time flow probes on the splenic artery and vein. Fluid efflux was estimated from the difference in splenic arterial inflow and venous outflow (A-V). LPS significantly increased the (A-V) flow differential (fluid efflux) in intact rats (saline -0.01 +/- 0.02 ml/min, n = 8 vs. LPS +0.21 +/- 0.06 ml/min, n = 8); this was exaggerated in splenic denervated rats (saline -0.03 +/- 0.01 ml/min, n = 7 vs. LPS +0.41 +/- 0.08 ml/min, n = 8). Splenic denervation also exacerbated the LPS-induced hypotension, hemoconcentration, and hypovolemia (peak fall in mean arterial pressure: denervated 19 +/- 3 mmHg, n = 10 vs. intact 12 +/- 1 mmHg, n = 8; peak rise in hematocrit: denervated 6.7 +/- 0.3%, n = 8 vs. intact 5.0 +/- 0.3%, n = 8; decrease in plasma volume at 90-min post-LPS infusion: denervated 1.08 +/- 0.15 ml/100 g body wt, n = 7 vs. intact 0.54 +/- 0.08 ml/100 g body wt, n = 8). The exaggerated LPS-induced hypovolemia associated with splenic denervation was mirrored in the rise in plasma renin activity (90 min post-LPS: denervated 11.5 +/- 0.8 ng x ml(-1) x h(-1), n = 9 vs. intact 6.6 +/- 0.7 ng x ml(-1) x h(-1), n = 8). These results are consistent with our proposal that SSNA normally limits LPS-induced intrasplenic fluid efflux.  相似文献   

16.
The purpose of this study was to test the hypotheses that digital infrared thermographic imaging (DITI) during simulated uncontrolled hemorrhage will reveal 1) respiratory rate and 2) changes of skin temperature that track reductions of stroke volume. In 45 healthy volunteers (25 men and 20 women), we recorded the ECG, finger photoplethysmographic arterial pressure, respiratory rate (pneumobelt and DITI of the nose), cardiac output (inert rebreathing), and skin temperature of the forehead during lower body negative pressure (LBNP) at three continuous decompression rates; slow (-3 mmHg/min), medium (-6 mmHg/min), and fast (-12 mmHg/min) to an ending pressure of -60 mmHg. Respiratory rates calculated from the pneumobelt (14.7 ± 0.9 breaths/min) and DITI (14.9 ± 1.2 breaths/min) were not different (P = 0.21). LBNP induced an average stroke volume reduction of 1.3 ml/mmHg regardless of decompression speed. Maximal reductions of stroke volume and forehead temperature were -100 ± 12 ml and -0.32 ± 0.12°C (slow), -86 ± 12 ml and -0.74 ± 0.27°C (medium), and -78 ± 5 ml and -0.17 ± 0.02°C (fast). Changes of forehead temperature as a function of changes of stroke volume were best described by a quadratic fit to the data (slow R(2) = 0.95; medium R(2) = 0.89; and fast R(2) = 0.99).Our results suggest that a thermographic camera may prove useful for the remote assessment of traumatically injured patients. Life sign detection may be determined by verifying respiratory rate. Determining the magnitude and rate of hemorrhage may also be possible based on future algorithms derived from associations between skin temperature and stroke volume.  相似文献   

17.
In patients with cyanotic congenital heart disease (CCHD), a right-to-left shunt results in systemic hypoxemia. Systemic hypoxemia incites a compensatory erythrocytosis, which increases whole blood viscosity. We considered that these changes might adversely influence myocardial perfusion in CCHD patients. Basal and hyperemic (intravenous dipyridamole) perfusion measurements were obtained with [13N]ammonia positron emission tomographic imaging in left (LV) and right (RV) ventricular and septal myocardium in 14 adults with CCHD [age: 34.1 yr (SD 6.5)]; hematocrit: 62.2% (SD 4.8)] and 10 healthy controls [age: 34.1 yr (SD 6.5)]. In patients, basal perfusion measurements were higher in LV [0.77 (SD 0.24) vs. 0.55 ml x min(-1) x g(-1) (SD 0.09), P < 0.02], septum [0.71 (SD 0.16) vs. 0.49 ml x min(-1) x g(-1) (SD 0.09), P < 0.001], and RV [0.77 (SD 0.30) vs. 0.38 ml x min(-1) x g(-1) (SD 0.09), P < 0.001]. However, basal measurements normalized for the rate-pressure product were similar to those of controls. Calculated oxygen delivery relative to rate-pressure product was higher in the patients [2.2 (SD 0.8) vs. 1.6 (SD 0.4) x 10(-5) ml O2 x min(-1) x g tissue(-1) x (beats x mmHg)(-1) in the LV, P < 0.05, and 2.0 (SD 0.7) vs. 1.4 (SD 0.3) x 10(-5) ml O2 x min(-1) x g tissue(-1) x (beats x mmHg)(-1) in the septum, P < 0.01]. Hyperemic perfusion measurements in CCHD patients did not differ from controls [LV, 1.67 (SD 0.60) vs. 1.95 ml x min(-1) x g(-1) (SD 0.46); septum, 1.44 (SD 0.56) vs. 1.98 ml x min(-1) x g(-1) (SD 0.69); RV, 1.56 (SD 0.56) vs. 1.65 ml x min(-1) x g(-1) (SD 0.64), P = not significant], and coronary vascular resistances were comparable [LV, 55 (SD 25) vs. 48 mmHg x ml(-1) x g x min (SD 16); septum, 67 (SD 35) vs. 50 mmHg x ml(-1) x g x min (SD 21); RV, 59 (SD 26) vs. 61 mmHg x ml(-1) x g x min (SD 27), P = not significant]. These findings suggest that adult CCHD patients have remodeling of the coronary circulation to compensate for the rheologic changes attending chronic hypoxemia.  相似文献   

18.
Cardiovascular surgery requiring cardiopulmonary bypass (CPB) is frequently complicated by postoperative lung injury. Bronchial artery (BA) blood flow has been hypothesized to attenuate this injury. The purpose of the present study was to determine the effect of BA blood flow on CPB-induced lung injury in anesthetized pigs. In eight pigs (BA ligated) the BA was ligated, whereas in six pigs (BA patent) the BA was identified but left intact. Warm (37 degrees C) CPB was then performed in all pigs with complete occlusion of the pulmonary artery and deflated lungs to maximize lung injury. BA ligation significantly exacerbated nearly all aspects of pulmonary function beginning at 5 min post-CPB. At 25 min, BA-ligated pigs had a lower arterial Po(2) at a fraction of inspired oxygen of 1.0 (52 +/- 5 vs. 312 +/- 58 mmHg) and greater peak tracheal pressure (39 +/- 6 vs. 15 +/- 4 mmHg), pulmonary vascular resistance (11 +/- 1 vs. 6 +/- 1 mmHg x l(-1) x min), plasma TNF-alpha (1.2 +/- 0.60 vs. 0.59 +/- 0.092 ng/ml), extravascular lung water (11.7 +/- 1.2 vs. 7.7 +/- 0.5 ml/g blood-free dry weight), and pulmonary vascular protein permeability, as assessed by a decreased reflection coefficient for albumin (sigma(alb); 0.53 +/- 0.1 vs. 0.82 +/- 0.05). There was a negative correlation (R = 0.95, P < 0.001) between sigma(alb) and the 25-min plasma TNF-alpha concentration. These results suggest that a severe decrease in BA blood flow during and after warm CPB causes increased pulmonary vascular permeability, edema formation, cytokine production, and severe arterial hypoxemia secondary to intrapulmonary shunt.  相似文献   

19.
The single-breath diffusing capacity of the lung for CO [DLCO(SB)] is considered a measure of the conductance of CO across the alveolar-capillary membrane and its binding with hemoglobin. Although incomplete mixing of inspired gas with alveolar gas could theoretically influence overall diffusion, conventional calculations of DLCO(SB) spuriously overestimate DLCO(SB) during short breath-holding periods when incomplete mixing of gas within the lung might have the greatest effect. Using the three-equation method to calculate DLCO(SB) which analytically accounts for changes in breath-hold time, we found that DLCO(SB) did not change with breath-hold time in control subjects but increased with increasing breath-hold time in both patients with asthma and patients with emphysema. The increase in DLCO(SB) with increasing breath-hold time correlated with the phase III slope of the single-breath N2 washout curve. We suggest that in patients with ventilation maldistribution, DLCO(SB) may be decreased for the shorter breath-hold maneuvers because overall diffusion is limited by the reduced transport of CO from the inspired gas through the alveolar gas prior to alveolar-capillary gas exchange.  相似文献   

20.
The effects of neonatal sympathectomy of donors or recipients on posttransplantation arterial pressure were investigated in spontaneously hypertensive rats (SHR) by renal transplantation experiments. Conscious mean arterial pressure (MAP) and renal vascular resistance were 136 +/- 1 mmHg and 15.5 +/- 1.2 mmHg x ml(-1) x min x g in sympathectomized SHR (n = 8) vs. 158 +/- 4 mmHg (P < 0.001) and 20.8 +/- 1.1 mmHg x ml(-1) x min x g (P < 0.05) in controls (n = 10). Seven weeks after transplantation of a kidney from neonatally sympathectomized SHR donors, MAP in SHR recipients (n = 10) was 20 mmHg lower than in controls transplanted with a kidney from hydralazine-treated SHR (n = 10) (P < 0.05) associated with reduced sodium sensitivity of MAP. Neonatal sympathectomy also lowered MAP in F1-hybrids (F1H; SHR x Wistar-Kyoto rats). Within 6 wk after transplantation, renal grafts from untreated SHR increased MAP by 20 mmHg in sympathectomized F1H (n = 10) and by 35 mmHg in sham-treated F1H (n = 8) (P < 0.05). Neonatal sympathectomy induces chronic changes in SHR kidney function leading to a MAP reduction even when extrarenal sympathetic tone is restored. Generalized reduction in sympathetic tone resets the kidney-fluid system to reduced MAP and blunts the extent of arterial pressure rise induced by an SHR kidney graft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号