首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From 1984 through 2006 altogether 8808 plankton samplings were taken in the Russian Fishery Zone (Sea of Okhotsk, Bering Sea, and North-western Pacific Ocean); in addition 419 samplings were taken in eastern and central areas of the Bering Sea in 2003–2006 in the framework of the BASIS program. These data allowed the composition of maps of the horizontal distribution of zooplankton by fractions, species, and groups of species, which make up the general share of its biomass, as well as the feeding base for nekton. To draw the maps, data were averaged over one-degree squares; gradations were selected in such a way that areas with significantly different abundances contrasted and fine spottiness was leveled. This allowed obtaining a maximally generalized pattern with areas and sites of higher and lower abundances of studied objects, i.e., so-called quasistationary zones, in which dense concentrations of the studied plankters should be expected.  相似文献   

2.
The biomass and abundance of large jellyfish (Cnidaria: Scyphozoa, Hydrozoa) was estimated and their seasonal and interannual dynamics was studied based on the data of trawl surveys conducted by the Pacific Research Fisheries Center (TINRO Center) in the Sea of Okhotsk, Bering Sea, Sea of Japan, and the Northwestern Pacific Ocean (NWPO) in 1991–2009. Most of the jellyfish biomass (over 95%) in the Sea of Okhotsk, Bering Sea, and NWPO was formed by Chrysaora spp., Cyanea capillata, Aequorea spp., Phacellophora camtschatica, and Aurelia limbata. The same species along with Calycopsis nematophora predominated in abundance in the Bering Sea and NWPO, while Ptychogena lactea, C. capillata, and Chrysaora spp. were most abundant in the Sea of Okhotsk. In the northwestern Sea of Japan, Aurelia aurita, C. capillata, and Aequorea spp. predominated both in abundance and biomass. Generally, the jellyfish abundance reached the highest values in the summer and fall and decreased abruptly in the winter. Meanwhile, the seasonal dynamics proved to be specific for each species and were manifested in some of them by reaching maximum values at various periods of the warm season, whereas the other (Tima sachalinensis and P. lactea) showed the reverse pattern of seasonal variations, with the highest abundance in cold months. Jellyfish biomass and abundance varied greatly from year to year, which was related to the short lifecycle and alternation between sexual and asexual generations, in which reproductive success was predetermined by various environmental factors. In the fall, year-to-year fluctuations of the relative biomass could increase by ten times. In 1991–2009, it varied from 200 to 2000 kg/km2 in the northern Sea of Okhotsk, from 500 to 4200 kg/km2 in the northwestern Bering Sea, and from 300 to 3700 kg/km2 in the southwestern Bering Sea. Taking the jellyfish abundance estimates into account, along with the vertical distribution and the seasonal dynamics, the overall biomass of large species that occurred in trawl catches in Far Eastern seas and adjacent Pacific waters during the warm season could reach 13.0–15.0 million tons, of which up to about 6.0 million tons would be concentrated in the western Bering Sea and 5.5–6.0 million tons in the Sea of Okhotsk.  相似文献   

3.
Complex trawl surveys were conducted in the upper epipelagic zone of the western Bering Sea and adjacent Pacific waters in the summer and fall seasons of 2002–2006. The abundance of small nekton (micronekton) was estimated using two independent methods: traditional trawling and a mathematical model of selective feeding by fish. According to the trawl data, total micronekton density varied from 1 to 158 (average 40) mg/m3 on the northwestern Bering Sea shelf and from 6 to 151 (37) mg/m3 in deep-water areas of the southwestern Bering Sea and adjacent Pacific waters. According to model calculations, micronekton density was higher—72–193 (141) mg/m3 on the shelf and 78–507 (228) mg/m3 in the deep-water part of the studied area. Both trawl and model data showed that small nekton on the northwestern shelf mostly consisted of larval and juvenile walleye pollock, as well as small fish species, such as capelin and Pacific sand lance. In the deepwater areas, mesopelagic fish and squid (northern lampfish, northern smoothtongue, and boreopacific gonate squid), which migrate to the surface at night, juvenile Atka mackerel, and shortarm gonate squid dominated among micronekton. The advantages and disadvantages of both the trawl and model methods for calculating the abundance of small fish and squid were considered. Comparison of abundance estimates for mass fish species, obtained through trawl and model methods, enabled us to analyze trawl catchability coefficients and propose a more differentiated division of micronekton into size classes than had been done earlier. A function that characterizes the dependence of the catchability coefficient (CC) on body length was offered for juvenile Atka mackerel. This equation can be also used for evaluation of CC for other fishes that have similar size and behavior.  相似文献   

4.
The distribution and abundance of jellyfish of the family Ulmaridae was studied based on the data of trawl surveys conducted in the Sea of Okhotsk (1998–2006) and the Sea of Japan (2003) in the fall. The jellyfish Aurelia aurita mainly inhabits the waters of the Sea of Japan, while in the Sea of Okhotsk small quantities of this species were recorded in southern areas, and solitary individuals, off North Sakhalin. Aurelia limbata tends to shelf waters of the Sea of Okhotsk, being less abundant in the southern deepwater area and in the Sea of Japan. Phacellophora camtschatica, in contrast, aggregates mostly over deep basins, whereas in shallow areas a significant quantity of this species was found only off West Kamchatka. In the northern Sea of Okhotsk, the species A. limbata dominated in biomass and abundance among Ulmaridae. During the studied period, its biomass varied from 27 to 803 kg/km2 and its abundance varied from 69 to 1706 ind/km2. In the southern Sea of Okhotsk, as a rule, P. camtschatica prevailed (1–16 kg/km2 and 6–46 ind/km2). In the Sea of Japan, the most abundant species was A. aurita (29 kg/km2 and 104 ind/km2). The jellyfish size structure in catches is presented.  相似文献   

5.
Hydromedusae (Cnidaria: Hydrozoa) are one of the most common and widely spread plankton organisms. Due to their low quantities in the plankton and complicated species identification, they are poorly observed in zooplankton research works, especially in the Northwestern part of the Sea of Japan. The subjects of the present work are the seasonal dynamics of the spatial distribution and abundance of hydromedusae that inhabit Vostok bay (Peter the Great bay of the Sea of Japan), which were observed from April to November in 2002–2004. The timing of mature specimens was studied for different species. Eighteen species were found. Of these, Coryne sp., Tiaropsis multicirrata (Sars, 1835) and Neoturris breviconis (Murbach et Shearer, 1903) are the first records for Peter the Great Bay; the last two species are the first records for the Northwestern part of the Sea of Japan.  相似文献   

6.
Materials from six complex trawl surveys conducted by the TINRO-Center in the upper epipelagic zone of the Western Bering Sea during the summer-fall seasons from 2002 through 2006 were used as the basis of this paper. The overall biomass (and abundance) of jellyfish increased from 0.6–0.8 million t (1.1–1.8 billion individuals) in the summer up to 0.9–1.7 million t (4.4–4.8 billion individuals) in fall. Scyphomedusa Chrysaora melanaster and the Hydromedusa Aequorea forskalea made up the major part of the jellyfish biomass (67–97%). Their distribution varied significantly. A. forskalea aggregated mainly in the deepwater part of the Bering Sea. Ch. melanaster was widely dispersed across the entire area of the investigations and formed the most considerable aggregations in the Anadyr-Navarin area. In the fall of 2006 the diet of jellyfish generally consisted of plankton organisms (copepods, euphausiids, amphipods, pteropods, chaetognaths, ostracods, and larval decapods). However, Ch. melanaster had a greater portion of fish and larval squid in its diet.  相似文献   

7.
The variability of the Gmo3, Gmo34, Gmo35, and Pgmo32 DNA microsatellite loci in Pacific cod Gadus macrocephalus samples from different areas of the North Pacific was analyzed. The data obtained show that Pacific cod from the southern Kuril Islands significantly differs from the populations of the Bering Sea, the Sea of Okhotsk, and the coastal waters of Canada (the microsatellite loci Gmo3 and Pgmo32 bear the highest differentiating capacity). Despite the significant geographical remoteness of these areas from one another, the above three Pacific cod populations exhibit a high degree of similarity (I = 0.997–0.999).  相似文献   

8.
Integral parameters of zooplankton community, including species diversity and its components were compared between the Chukchi Sea, Bering Sea, Sea of Okhotsk, Sea of Japan, and adjacent Pacific waters based on the data obtained by standard Juday net with a mouth area of 0.1 m2 during the large-scale surveys conducted by the Pacific Fisheries Research Center (TINRO Center) in 1984–2013. These parameters were calculated for the total surveyed area of approximately 7.0 million km2 and separately for each of the considered water bodies. In Pacific waters, species richness is higher than that in all the seas, while the concentration of individuals (expressed in terms of abundance, ind./m3) and evenness of their distribution over species were lower. The only sea with a larger mean size of organisms compared to the ocean is the Bering Sea. A lower species diversity than in the ocean has been recorded only from the Chukchi Sea; a lower density (in terms of biomass, g/m3) was determined only from the Sea of Japan. Among the four seas, the Chukchi Sea ranks first in terms of biomass and abundance of zooplankton, second in species evenness, third in the mean size of individuals, and last in species richness and diversity. The Bering Sea ranks first in terms of mean size of plankton organisms, second in species richness, diversity, and biomass, third in abundance, and last in species evenness. The Sea of Okhotsk ranks second in terms of mean size of individuals, last in their abundance, and third in the other parameters. The Sea of Japan ranks first in terms of species richness, evenness, and diversity, second in abundance, and last in mean size of zooplankton organisms, and, therefore, their biomass. The biomass of zooplankton, in accordance with the concentration of nutrients, increases in the southto-north direction (while its absolute abundance depends largely on the size of the body of water). The mean size of organisms increases in the same direction; the evenness of their distribution over species increases in the reverse direction (with the exception of both parameters for the Chukchi Sea). The rank of a water body for its biodiversity coincides with the species richness rank. The latter increases from north to south (except for the Okhotsk Sea), but greatly depends on the surveyed area and, even more, on the surveyed volume of water. A study of the literature data found some unexpected statistically significant relationships of the integral parameters of zooplankton with those of pelagic and bottom macrofauna, as well as with the parameters of zooplankton production, on the size of the considered bodies of water. The causes and the biological meanings of most of these relationships still do not have any rational interpretation. Their testing at other spatial scales will be continued in future works.  相似文献   

9.
Genetic differentiation of the Pacific cod Gadus macrocephalus was studied. Samples from six regions of the Sea of Okhotsk and the Bering Sea were analyzed with two mtDNA genetic markers-gene of cytochrome 1 and the control region (D-loop). Comparative analysis showed significant genetic differentiation between the two groups of samples. The first group included samples from Tauiskaya Bay and waters of Western Kamchatka. The second group consisted of the samples collected in the waters of the Iturup Island (Sea of Okhotsk), Northern Kurile Islands, Navarin region of the Bering Sea, and Anadyr Bay.  相似文献   

10.
The food spectra, trophic statuses, and feeding interrelations of three most abundant benthic carnivorous fish species inhabiting the Shelikhov Bay—the Pacific cod Gadus macrocephalus, the great sculpin Myoxocephalus polyacanthocephalus, and the Okhotsk sculpin M. ochotensis—are considered based on materials collected during the complex survey of the RV Professor Kaganovsky of the TINRO-Center, in September 2004. It was found that these species were facultative predators with wide food spectra. The significance of prey objects in the diet of the Okhotsk sculpin was as follows: crustaceans, fish, and mollusks. Great sculpin and Pacific cod preyed mostly on fish, then on crustaceans, and mollusks. Pacific cod ate equal proportions of fish and decapods. All the species had age-related variability of diet. The potential competition of great sculpin and Okhotsk sculpin for food was mitigated by the difference in the depths of their ranges, as well as by morphological (body size) and behavioral peculiarities in the areas where their habitats overlapped, and in microecosystems. The most probable competition was among Pacific cod 30–60 cm long and Okhotsk sculpin 20–50 cm in length, as well as among cod and great sculpins of all sizes.  相似文献   

11.
The systematics of the eelpout genus Bothrocara Bean 1890 is reviewed on the basis of 941 specimens. Eight mostly eurybathic, demersal species are recognized, distributed mainly along the continental slopes of the North and South Pacific oceans, with one species entering the South Atlantic. Distributions are: B. brunneum ranges from the Sea of Okhotsk to the Gulf of Panama at depths of 199–1,829 m; B. elongatum ranges from the Gulf of Panama to Chile at depths of 720–1,866 m; B. hollandi ranges from the Sea of Japan to the southeastern Bering Sea at depths of 150–1,980 m; B. molle ranges from the western Bering Sea to the South Atlantic at depths of 106–2,688 m; B. nyx is known only from the eastern Bering Sea at depths of 790–1,508 m; B. pusillum ranges from the northern Bering Sea to British Columbia, Canada, at depths of 55–642 m; B. tanakae is found along the northern coasts of Honshu and Hokkaido islands, Japan, at depths of 274–892 m; B. zestum ranges from the Izu Islands, Japan, and central Honshu, Japan, to the Gulf of Alaska at depths of 199–1,620 m (an unidentifiable specimen from off Taiwan may be B. zestum). The species are distinguished from one another mainly on the basis of head pore patterns, gill raker morphology, coloration and various meristic and morphometric values. A determination key to the species is provided.  相似文献   

12.
New data on sexual dimorphism and features of reproductive biology of Alaska skate Bathyraja parmifera from the western Bering Sea and the northern Sea of Okhotsk are presented. Based on comparative analysis of 11 external morphological characters, the males differ from the females in the length of the disc and snout length (to the eyes, to the mouth, and to the nostrils). In the western Bering Sea, 50% of the females and 50% of the males reach the first sexual maturity at 84.5 cm TL and 85.2–90.2 cm TL, respectively; in the Sea of Okhotsk, 50% of the males reach their first sexual maturity at 80.8–83.8 cm TL (the assessment depends on the features of the method). Among smaller skates (less than 45 cm TL), the males prevail, but the proportion of the females increases in larger size groups; the sex ratio becomes equal in the exemplars 60–80 cm TL, but the males prevail again among the largest fishes (more than 80 cm TL).  相似文献   

13.
Many studies have investigated the ecology of charrs in freshwater, however, little is known about charrs in the ocean. This study examined the distribution, seasonal abundance, and some biological features of Dolly Varden (Salvelinus malma) in the Pacific Ocean. An analysis of by-catch data of Japanese offshore salmon monitoring showed that Dolly Varden were distributed across a wide range in the offshore waters of the Pacific Ocean, including the Japan Sea, Bering Sea, and Okhotsk Sea. The catch per unit effort showed a sharp increase from May to August, followed by a sharp decrease in September. Offshore areas served as an important summer habitat for anadromous Dolly Varden.  相似文献   

14.
The feeding of tufted puffin and horned puffin nestlings was studied on two islands of Tauyskaya Bay of the Sea of Okhotsk: at Talan Island in 1999–2004 and 2006 and Umara Island in 1994 and 1996–1997. The composition of the puffin diet during the breeding season was determined. The main fish species in the diet were determined and the seasonal and annual dynamics of the occurrence of the items was analyzed. Comparative data on biological characteristics, such as the size, weight and age of the fish caught by these birds, as well as the size and composition of food samples, were collected. Differences between the age groups of fish in the diets of the two puffin species were revealed. Conditions for forming of seabird feeding base in Tauyskaya Bay were described.  相似文献   

15.
Although the northern Bering Sea is one of the most productive regions in the northern North Pacific Ocean and currently considered a declining productivity region, no recent primary productivity measurements have been collected in this region. Phytoplankton productivity was measured in the northern Bering Sea in 2007 using a dual 13C–15N isotope tracer technique to quantify present rates of primary productivity and to assess changes under recent environmental conditions in this area. We found that large diatoms (mostly Fragilaria sp.) dominated the phytoplankton during the initial part of the cruise, whereas unidentified nano + pico phytoplankton largely dominated at the surface about 2 weeks later (at “revisited stations”). At the 1% light depth, diatoms and Phaeocystis sp. were the dominant species, whereas diatoms and unidentified nano + pico cells were dominant at the revisited sites. Based on nitrate and ammonium uptake rates, the estimated f-ratios (the ratio of nitrate uptake rate/nitrate + ammonium uptake rates of phytoplankton) were high (0.65–0.74), indicating that nitrate was an important nitrogen source supporting primary production in the northern Bering Sea during the cruise in 2007. Compared with previous studies performed several decades ago, we found significantly lower chlorophyll-a concentrations and carbon uptake rates of phytoplankton in the northern Bering Sea in 2007. This is consistent with recent studies that have shown lower rates of production in the Chukchi Sea and declines in benthic biomass and sediment oxygen uptake in the northern Bering Sea.  相似文献   

16.
The intentional introduction of red king crab, Paralithodes camtschatica (Tilesius, 1815) in the Barents Sea represent one of a few successful cases and one that now supports a commercial fishery. Introductions of alien species into new environments are often associated with genetic bottlenecks, which cause a reduction in the genetic variation, and this could be important for the spreading potential of the species in the Atlantic Ocean. Red king crab samples collected in the Varangerfjord located on the Barents Sea (northern Norway) were compared with reference crab samples collected from the Bering Sea and Kamchatka regions in the Pacific Ocean. All samples were screened for eleven microsatellite loci, based on the development of species-specific primers. The observed number of alleles per locus was similar, and no reduction in genetic variation, including gene diversity and allelic richness, was detected between the Varangerfjord sample and the reference sample from Okhotsk Sea near Kamchatka, indicating no genetic bottlenecking at least for the microsatellite loci investigated. The same results were found in comparison with the sample from Bering Sea. The level of genetic differentiation among the samples, measured as overall F ST across all loci, was relatively low (0.0238) with a range of 0.0035–0.1000 for the various loci investigated. The largest pairwise F ST values were found between the Bering Sea and Varangerfjord/Barents Sea samples, with a value of 0.0194 across all loci tested. The lowest value (0.0101) was found between the Varangerfjord and Kamchatka samples. Genetic differentiation based on exact tests on allele frequencies revealed highly significant differences between all pairwise comparisons. The high level of genetic variation found in the Varangerfjord/Barents Sea sample could be of significance with respect to further spreading of the species to other regions in the North Atlantic Ocean.  相似文献   

17.
The biological peculiarities of Oithona similis were described based on the materials from 29 complex surveys that were conducted by the TINRO Center in the Sea of Okhotsk and the western Bering Sea from 1986 to 2005 and the production of the species was estimated. In this area, O. similis produces four generations a year, viz., one in the spring, one in the fall, and two in the summer. The peak of spawning in May and June coincides with the maximum development of phytoplankton. Somatic production of O. similis in both seas becomes higher during the summer season. In this species, the largest increment in body weight begins with the copepodite stage CIV, when basic nutrients are accumulated. The average specific daily production of O. similis in the epipelagic zone of the Sea of Okhotsk and Bering Sea was 0.0092 and 0.01 in the spring, 0.043 and 0.031 in the summer, and 0.023 and 0.014 in the fall, respectively. The total somatic production of this species reached 28.318 million tons in the Sea of Okhotsk and 4.811 million tons in the Bering Sea. The Sea of Okhotsk is more favorable for the development of O. similis.  相似文献   

18.
Based on complex epipelagic surveys in the western Bering Sea, a comparative analysis of food supply of Pacific salmon (Oncorhynchus spp.) was conducted in summer and fall from 2002 to 2006. Nine indirect indices of food supply used in the study were as follows: feeding similarity, width of the feeding spectrum, diet feeding ration, diet feeding rhythms, fraction of accessory food in the ration, growth rate of the fish, abundance of food resources, and abundance of salmon. The food supply of salmon is lower in summer 2003 and fall 2006 in comparison to the food supply in other years of the study. However, well expressed feeding selectivity, consumption of prey items of certain type, and small proportion of accessory food (copepods and chaetognaths) prevailed in plankton, suggests the presence of sufficient food resources for Pacific salmon in the western Bering Sea.  相似文献   

19.
The composition and structure of nekton in the upper epipelagic zone is considered based on the data of trawl surveys conducted in the Northwestern Pacific Ocean and adjacent waters in 2004–2009. Alterations in the nekton community during the early summer period, as well as peculiarities of its species composition and quantitative distribution that depend on changes in background conditions are described. In total, as many as 66 species of fish and 22 species of cephalopods were recorded in catches for the studied period. The lowest biodiversity was found in the near-shore waters (areas nos. 5, 7, and 9) and the highest one was in open oceanic waters (area no. 13). In 2004–2009, nekton biomass was formed mainly by mesopelagic species and their share amounted to 40–60% of the entire nekton community. Pacific salmon varied within 17–37% the total nekton biomass in various years. In general, for the period of studies, the mean biomass of nekton community was 2 431 000 tons, and in 2009, the total biomass approached this value.  相似文献   

20.
2010年夏季白令海小型浮游植物分布   总被引:1,自引:0,他引:1  
根据2010年7月10-19日我国第四次北极科学考察“雪龙”号考察船在白令海(52°42.29′-65°30.23′ N, 169°20.85′ E-179°30.37′ W)采集的70份水采样品,共鉴定小型浮游植物5个门类143种(含变种和变型).其中硅藻门37属95种,甲藻门15属44种,绿藻门2属2种,裸藻门和金藻门各1属1种.聚类分析表明: 调查海区浮游植物可分为深水区群落和浅水区群落.深水区群落分布于太平洋西北部和白令海海盆,种类组成主要以温带大洋性种西氏新细齿状藻、大西洋角毛藻和广布种菱形海线藻、扁面角毛藻为主,浮游植物的丰度较低,种间分配均匀,优势种不突出,种类多样性指数高;浅水区群落分布于白令海陆坡区和北部陆架区,主要由近岸冷水种诺登海链藻、叉尖角毛藻和广温广盐种丹麦细柱藻、旋链角毛藻等组成,浮游植物的丰度高,种间分配不均匀,优势种突出,种类多样性指数低.浮游植物平均丰度为58722 cells·L-1,变化范围在950~192400 cells·L-1,站间差异显著.平面分布趋势总体呈白令海陆架区>白令海陆坡区>白令海海盆>太平洋西北部海域.垂直分布均以表层浮游植物丰度较低,至温跃层附近出现高值.不同水域温跃层的差异决定了其垂直分布格局.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号