首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coronavirus in severe acute respiratory syndrome (SARS)   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.

Background

The mechanisms during the initial phase of oxygen toxicity leading to pulmonary tissue damage are incompletely known. Increase of tumour necrosis factor alpha (TNFalpha) represents one of the first pulmonary responses to hyperoxia. We hypothesised that, in the initial phase of hyperoxia, TNFalpha activates the caspase cascade in type II pneumocytes (TIIcells).

Methods

Lung sections or freshly isolated TIIcells of control and hyperoxic treated rats (48 hrs) were used for the determination of TNFalpha (ELISA), TNF-receptor 1 (Western blot) and activity of caspases 8, 3, and 9 (colorimetrically). NF-kappaB activation was determined by EMSA, by increase of the p65 subunit in the nuclear fraction, and by immunocytochemistry using a monoclonal anti-NF-kappaB-antibody which selectively stained the activated, nuclear form of NF-kappa B. Apoptotic markers in lung tissue sections (TUNEL) and in TIIcells (cell death detection ELISA, Bax, Bcl-2, mitochondrial membrane potential, and late and early apoptotic cells) were measured using commercially available kits.

Results

In vivo, hyperoxia activated NF-kappaB and increased the expression of TNFalpha, TNF-receptor 1 and the activity of caspase 8 and 3 in freshly isolated TIIcells. Intratracheal application of anti-TNFalpha antibodies prevented the increase of TNFRI and of caspase 3 activity. Under hyperoxia, there was neither a significant change of cytosolic cytochrome C or of caspase 9 activity, nor an increase in apoptosis of TIIcells. Hyperoxia-induced activation of caspase 3 gradually decreased over two days of normoxia without increasing apoptosis. Therefore, activation of caspase 3 is a temporary effect in sublethal hyperoxia and did not mark the "point of no return" in TIIcells.

Conclusion

In the initiation phase of pulmonary oxygen toxicity, an increase of TNFalpha and its receptor TNFR1 leads to the activation of caspase 8 and 3 in TIIcells. Together with the hyperoxic induced increase of Bax and the decrease of the mitochondrial membrane potential, activation of caspase 3 can be seen as sensitisation for apoptosis. Eliminating the TNFalpha effect in vivo by anti-TNFalpha antibodies prevents the pro-apoptotic sensitisation of TIIcells.  相似文献   

4.
Xu J  Qi L  Chi X  Yang J  Wei X  Gong E  Peh S  Gu J 《Biology of reproduction》2006,74(2):410-416
Severe acute respiratory syndrome (SARS) coronavirus has been known to damage multiple organs; however, little is known about its impact on the reproductive system. In the present study, we analyzed the pathological changes of testes from six patients who died of SARS. Results suggested that SARS caused orchitis. All SARS testes displayed widespread germ cell destruction, few or no spermatozoon in the seminiferous tubule, thickened basement membrane, and leukocyte infiltration. The numbers of CD3+ T lymphocytes and CD68+ macrophages increased significantly in the interstitial tissue compared with the control group (P < 0.05). SARS viral genomic sequences were not detected in the testes by in situ hybridization. Immunohistochemistry demonstrated abundant IgG precipitation in the seminiferous epithelium of SARS testes, indicating possible immune response as the cause for the damage. Our findings indicated that orchitis is a complication of SARS. It further suggests that the reproductive functions should be followed and evaluated in recovered male SARS patients.  相似文献   

5.
The effectiveness and potential immunosuppressive effects of anti-inflammatory glucocorticoids in the lungs of severe acute respiratory syndrome (SARS) patients are undefined. We treated porcine respiratory coronavirus (PRCV)-infected conventional pigs with the corticosteroid dexamethasone (DEX) as a model for SARS. Innate and Th1 cytokines in bronchoalveolar lavage (BAL) and serum were elevated in PRCV-infected pigs compared to controls, but were decreased after DEX treatment in the PRCV-infected, DEX-treated (PRCV/DEX) pigs. Although decreased in BAL, Th2 cytokine levels were higher in serum after DEX treatment. Levels of the proinflammatory cytokine interleukin-6 in BAL and serum were decreased in PRCV/DEX pigs early but increased later compared to those in phosphate-buffered saline-treated, PRCV-infected pigs, corresponding to a similar trend for lung lesions. PRCV infection increased T-cell frequencies in BAL, but DEX treatment of PRCV-infected pigs reduced frequencies of T cells; interestingly B and SWC3a(+) (monocytes/macrophages/granulocytes) cell frequencies were increased. DEX reduced numbers of PRCV-stimulated Th1 gamma interferon-secreting cells in spleen, tracheobroncheolar lymph nodes, and blood. Our findings suggest that future glucocorticoid treatment of SARS patients should be reconsidered in the context of potential local immunosuppression of immune responses in lung and systemic Th1 cytokine-biased suppression.  相似文献   

6.
Wu XD  Shang B  Yang RF  Yu H  Ma ZH  Shen X  Ji YY  Lin Y  Wu YD  Lin GM  Tian L  Gan XQ  Yang S  Jiang WH  Dai EH  Wang XY  Jiang HL  Xie YH  Zhu XL  Pei G  Li L  Wu JR  Sun B 《Cell research》2004,14(5):400-406
Spike protein is one of the major structural proteins of severe acute respiratory syndrome-coronavirus. It is essential for the interaction of the virons with host cell receptors and subsequent fusion of the viral envelop with host cell membrane to allow infection. Some spike proteins of coronavirus, such as MHV, HCoV-OC43, AIBV and BcoV, are proteolytically cleaved into two subunits, S 1 and S2. In contrast, TGV, FIPV and HCoV-229E are not. Many studies have shown that the cleavage of spike protein seriously affects its function. In order to investigate the maturation and proteolytic processing of the S protein of SARS CoV, we generated S 1 and S2 subunit specific antibodies (Abs) as well as N, E and 3CL protein-specific Abs. Our results showed that the antibodies could efficiently and specifically bind to their corresponding proteins from E.coli expressed or lysate of SARS-CoV infected Vero-E6 cells by Western blot analysis. Furthermore, the anti-S 1 and S2 Abs were proved to be capable of binding to SARS CoV under electron microscope observation. When S2 Ab was used to perform immune precipitation with lysate of SARS-CoV infected cells, a cleaved S2 fragment was detected with S2-specific mAb by Western blot analysis. The data demonstrated that the cleavage of S protein was observed in the lysate, indicating that proteolytic processing of S protein is present in host cells.  相似文献   

7.
INTRODUCTION The severe acute respiratory syndrome (SARS), causedby SARS-associated coronavirus (SARS-CoV) [1], wasrecently identified as a new clinical entity. It apparentlybegan in Guangdong province of China in November of2002 and has spread to sever…  相似文献   

8.
The details of the mechanism by which severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia are unclear. We investigated the immune responses and pathologies of SARS-CoV-infected BALB/c mice that were immunized intradermally with recombinant vaccinia virus (VV) that expressed either the SARS-CoV spike (S) protein (LC16m8rVV-S) or simultaneously all the structural proteins, including the nucleocapsid (N), membrane (M), envelope (E), and S proteins (LC16m8rVV-NMES) 7-8 wk before intranasal SARS-CoV infection. The LC16m8rVV-NMES-immunized group exhibited as severe pneumonia as the control groups, although LC16m8rVV-NMES significantly decreased the pulmonary SARS-CoV titer to the same extent as LC16m8rVV-S. To identify the cause of the exacerbated pneumonia, BALB/c mice were immunized with recombinant VV that expressed the individual structural proteins of SARS-CoV (LC16mOrVV-N, -M, -E, -S) with or without LC16mOrVV-S (i.e., LC16mOrVV-N, LC16mOrVV-M, LC16mOrVV-E, or LC16mOrVV-S alone or LC16mOrVV-N + LC16mOrVV-S, LC16mOrVV-M + LC16mOrVV-S, or LC16mOrVV-E + LC16mOrVV-S), and infected with SARS-CoV more than 4 wk later. Both LC16mOrVV-N-immunized mice and LC16mOrVV-N + LC16mOrVV-S-immunized mice exhibited severe pneumonia. Furthermore, LC16mOrVV-N-immunized mice upon infection exhibited significant up-regulation of both Th1 (IFN-gamma, IL-2) and Th2 (IL-4, IL-5) cytokines and down-regulation of anti-inflammatory cytokines (IL-10, TGF-beta), resulting in robust infiltration of neutrophils, eosinophils, and lymphocytes into the lung, as well as thickening of the alveolar epithelium. These results suggest that an excessive host immune response against the nucleocapsid protein of SARS-CoV is involved in severe pneumonia caused by SARS-CoV infection. These findings increase our understanding of the pathogenesis of SARS.  相似文献   

9.
Chou CY  Chang HC  Hsu WC  Lin TZ  Lin CH  Chang GG 《Biochemistry》2004,43(47):14958-14970
SARS (severe acute respiratory syndrome) has been one of the most severe viral infectious diseases last year and still remains as a highly risky public health problem around the world. Exploring the types of interactions responsible for structural stabilities of its component protein molecules constitutes one of the approaches to find a destabilization method for the virion particle. In this study, we performed a series of experiments to characterize the quaternary structure of the dimeric coronavirus main protease (M(pro), 3CL(pro)). By using the analytical ultracentrifuge, we demonstrated that the dimeric SARS coronavirus main protease exists as the major form in solution at protein concentration as low as 0.10 mg/mL at neutral pH. The enzyme started to dissociate at acidic and alkali pH values. Ionic strength has profound effect on the dimer stability indicating that the major force involved in the subunit association is ionic interactions. The effect of ionic strength on the protease molecule was reflected by the drastic change of electrostatic potential contour of the enzyme in the presence of NaCl. Analysis of the crystal structures indicated that the interfacial ionic interaction was attributed to the Arg-4...Glu-290 ion pair between the subunits. Detailed examination of the dimer-monomer equilibrium at different pH values reveals apparent pK(a) values of 8.0 +/- 0.2 and 5.0 +/- 0.1 for the Arg-4 and Glu-290, respectively. Mutation at these two positions reduces the association affinity between subunits, and the Glu-290 mutants had diminished enzyme activity. This information is useful in searching for substances that can intervene in the subunit association, which is attractive as a target to neutralize the virulence of SARS coronavirus.  相似文献   

10.
To date, the pathogenesis of severe acute respiratory syndrome (SARS) in humans is still not well understood. SARS coronavirus (SARS-CoV)-specific CTL responses, in particular their magnitude and duration of postinfection immunity, have not been extensively studied. In this study, we found that heat-inactivated SARS-CoV elicited recall CTL responses to newly identified spike protein-derived epitopes (SSp-1, S978, and S1202) in peripheral blood of all HLA-A*0201(+) recovered SARS patients over 1 year postinfection. Intriguingly, heat-inactivated SARS-CoV elicited recall-like CTL responses to SSp-1 but not to S978, S1202, or dominant epitopes from several other human viruses in 5 of 36 (13.8%) HLA-A*0201(+) healthy donors without any contact history with SARS-CoV. SSp-1-specific CTLs expanded from memory T cells of both recovered SARS patients, and the five exceptional healthy donors shared a differentiated effector CTL phenotype, CD45RA(+)CCR7(-)CD62L(-), and expressed CCR5 and CD44. However, compared with the high avidity of SSp-1-specific CTLs derived from memory T cells of recovered SARS patients, SSp-1-specific CTLs from the five exceptional healthy donors were of low avidity, as determined by their rapid tetramer dissociation kinetics and reduced cytotoxic reactivity, IFN-gamma secretion, and intracellular production of IFN-gamma, TNF-alpha, perforin, and granzyme A. These results indicate that SARS-CoV infection induces strong and long-lasting CTL-mediated immunity in surviving SARS patients, and that cross-reactive memory T cells to SARS-CoV may exist in the T cell repertoire of a small subset of healthy individuals and can be reactivated by SARS-CoV infection.  相似文献   

11.
12.
To understand the pathogenesis and develop an animal model of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV), the Frankfurt 1 SARS-CoV isolate was passaged serially in young F344 rats. Young rats were susceptible to SARS-CoV but cleared the virus rapidly within 3 to 5 days of intranasal inoculation. After 10 serial passages, replication and virulence of SARS-CoV were increased in the respiratory tract of young rats without clinical signs. By contrast, adult rats infected with the passaged virus showed respiratory symptoms and severe pathological lesions in the lung. Levels of inflammatory cytokines in sera and lung tissues were significantly higher in adult F344 rats than in young rats. During in vivo passage of SARS-CoV, a single amino acid substitution was introduced within the binding domain of the viral spike protein recognizing angiotensin-converting enzyme 2 (ACE2), which is known as a SARS-CoV receptor. The rat-passaged virus more efficiently infected CHO cells expressing rat ACE2 than did the original isolate. These results strongly indicate that host and virus factors such as advanced age and virus adaptation are critical for the development of SARS in rats.  相似文献   

13.
14.
The spike (S) protein of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is not only responsible for receptor binding and virus fusion, but also a major Ag among the SARS-CoV proteins that induces protective Ab responses. In this study, we showed that the S protein of SARS-CoV is highly immunogenic during infection and immunizations, and contains five linear immunodominant sites (sites I to V) as determined by Pepscan analysis with a set of synthetic peptides overlapping the entire S protein sequence against the convalescent sera from SARS patients and antisera from small animals immunized with inactivated SARS-CoV. Site IV located in the middle region of the S protein (residues 528-635) is a major immunodominant epitope. The synthetic peptide S(603-634), which overlaps the site IV sequence reacted with all the convalescent sera from 42 SARS patient, but none of the 30 serum samples from healthy blood donors, suggesting its potential application as an Ag for developing SARS diagnostics. This study also provides information useful for designing SARS vaccines and understanding the SARS pathogenesis.  相似文献   

15.
Bats have been identified as the natural reservoir of severe acute respiratory syndrome (SARS)-like and SARS coronaviruses (SLCoV and SCoV). However, previous studies suggested that none of the currently sampled bat SLCoVs is the descendant of the direct ancestor of SCoV, based on their relatively distant phylogenetic relationship. In this study, evidence of the recombinant origin of the genome of a bat SLCoV is demonstrated. We identified a potential recombination breakpoint immediately after the consensus intergenic sequence between open reading frame 1 and the S coding region, suggesting the replication intermediates may participate in the recombination event, as previously speculated for other CoVs. Phylogenetic analysis of its parental regions suggests the presence of an uncharacterized SLCoV lineage that is phylogenetically closer to SCoVs than any of the currently sampled bat SLCoVs. Using various Bayesian molecular-clock models, interspecies transfer of this SLCoV lineage from bats to the amplifying host (e.g., civets) was estimated to have happened a median of 4.08 years before the SARS outbreak. Based on this relatively short window period, we speculate that this uncharacterized SLCoV lineage may contain the direct ancestor of SCoV. This study sheds light on the possible host bat species of the direct ancestor of SCoV, providing valuable information on the scope and focus of surveillance for the origin of SCoV.  相似文献   

16.
Recent outbreak of Severe Acute Respiratory Syndrome (SARS) that caused almost 800 victims requires a development of efficient inhibitor against SARS coronavirus (SCV). In this study, RNA aptamers against SCV NTPase/Helicase (nsP10) were isolated from RNA library containing random sequences of 40 nts using in vitro selection technique. Nucleotide sequences of enriched RNA aptamer pool (ES15 RNA) contain AG-rich conserved sequence of 10-11 nucleotides [AAAGGR(G)GAAG; R, purine base] and/or additional sequence of 5 nucleotides [GAAAG], which mainly reside at the loop region in all the predicted secondary structures. Isolated RNAs were observed to efficiently inhibit double-stranded DNA unwinding activity of the helicase by up to ∼85% with an IC50 value of 1.2 nM but show a slight effect on ATPase activity of the protein in the presence of cofactor, poly (rU). These results suggest that the pool of selected aptamers might be potentially useful as anti-SCV agents.  相似文献   

17.
Munday DC  Hiscox JA  Barr JN 《Proteomics》2010,10(23):4320-4334
Human respiratory syncytial virus (HRSV) is a leading cause of serious lower respiratory tract infections in infants. The virus has two subgroups A and B, which differ in prevalence and (nucleotide) sequence. The interaction of subgroup A viruses with the host cell is relatively well characterized, whereas for subgroup B viruses it is not. Therefore quantitative proteomics was used to investigate the interaction of subgroup B viruses with A549 cells, a respiratory cell line. Changes in the cellular proteome and potential canonical pathways were determined using SILAC coupled to LC-MS/MS and Ingenuity Pathway Analysis. To reduce sample complexity and investigate potential trafficking both nuclear and cytoplasmic fractions were analyzed. A total of 904 cellular and six viral proteins were identified and quantified, of which 112 cellular proteins showed a twofold or more change in HRSV-infected cells. Data sets were validated using indirect immunofluorescence confocal microscopy on independent samples. Major changes were observed in constituents of mitochondria including components of the electron transport chain complexes and channels, as well as increases in the abundance of the products of interferon-stimulated genes. This is the first quantitative proteomic analysis of cells infected with HRSV-subgroup B.  相似文献   

18.
Acute respiratory distress syndrome (ARDS) is a major cause of morbidity and mortality in critical patients. Proteomic analysis of plasma from individuals with ARDS could elucidate new biomarkers for diagnosis and pathophysiology and identify potential ARDS treatment targets. In this study, we recruited 26 patients (15 controls, 11 ARDS). The ARDS group was subdivided into two groups depending on the type of injury: (1) direct lung injury (AD) and (2) indirect lung injury (AI). Using iTRAQ (isobaric tags for relative and absolute quantitation) analysis, we identified 2429 peptides representing 132 plasma proteins. Among these, 16 were differentially expressed in ARDS patients, including 11 overlapping proteins between the AI and AD group and 5 AI-specific proteins. Protein annotation revealed that lipid transport and complement activation were significantly enriched in the biological process category, and lipid transporter, transporter, and serine-type peptidase activities were significantly enriched in the molecular function category. IPA (Ingenuity Pathway Analysis) signaling pathways revealed that the overlapping proteins were involved in a variety of signaling pathways, including those underlying acute phase response; liver X receptor/retinoid X receptor (LXR/RXR) and farnesoid X (FXR)/RXR activation; clathrin-mediated endocytosis; atherosclerosis; interleukin (IL)-12; complement system; and cytokine, nitric oxide, and reactive oxygen species production in macrophages. We present the first proteomic analysis of ARDS plasma using the iTRAQ approach. Our data provide new biomarker candidates and shed light on potential pathological mechanisms underlying ARDS.  相似文献   

19.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be the first identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-gamma stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.  相似文献   

20.
The causative agent of severe acute respiratory syndrome (SARS) is the SARS-associated coronavirus, SARS-CoV. The viral nucleocapsid (N) protein plays an essential role in viral RNA packaging. In this study, recombinant SARS-CoV N protein was shown to be dimeric by analytical ultracentrifugation, size exclusion chromatography coupled with light scattering, and chemical cross-linking. Dimeric N proteins self-associate into tetramers and higher molecular weight oligomers at high concentrations. The dimerization domain of N was mapped through studies of the oligomeric states of several truncated mutants. Although mutants consisting of residues 1-210 and 1-284 fold as monomers, constructs consisting of residues 211-422 and 285-422 efficiently form dimers. When in excess, the truncated construct 285-422 inhibits the homodimerization of full-length N protein by forming a heterodimer with the full-length N protein. These results suggest that the N protein oligomerization involves the C-terminal residues 285-422, and this region is a good target for mutagenic studies to disrupt N protein self-association and virion assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号