首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Access to structural information at the nanoscale enables fundamental insights into many complex biological systems. The development of the transmission electron microscope (TEM) has vastly increased our understanding of multiple biological systems. However, when attempting to visualize and understand the organizational and functional complexities that are typical of cells and tissues, the standard 2-D analyses that TEM affords often fall short. In recent years, high-resolution electron tomography methods, coupled with advances in specimen preparation and instrumentation and computational speed, have resulted in a revolution in the biological sciences. Electron tomography is analogous to medical computerized axial tomography (CAT-scan imaging) except at a far finer scale. It utilizes the TEM to assemble multiple projections of an object which are then combined for 3-D analyses. For biological specimens, tomography enables the highest 3-D resolution (5 nm spatial resolution) of internal structures in relatively thick slices of material (0.2-0.4 microm) without requiring the collection and alignment of large numbers of thin serial sections. Thus accurate and revealing 3-D reconstructions of complex cytoplasmic entities and architecture can be obtained. Electron tomography is now being applied to a variety of biological questions with great success. This review gives a brief introduction into cryopreservation and electron tomography relative to aspects of cytoplasmic organization in the hyphal tip of Aspergillus nidulans.  相似文献   

2.
Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells.  相似文献   

3.
Scanning transmission electron microscopy (STEM) is a powerful imaging technique and has been widely used in current material science research. The attempts of applying STEM (annual dark field (ADF)-STEM or annular bright field (ABF)-STEM) into biological research have been going on for decades while applications have still been limited because of the existing bottlenecks in dose efficiency and non-linearity in contrast. Recently, integrated differential phase contrast (iDPC) STEM technique emerged and achieved a linear phase contrast imaging condition, while resolving signals of light elements next to heavy ones even at low electron dose. This enables successful investigation of beam sensitive materials. Here, we investigate iDPC-STEM advantages in biology, in particular, chemically fixed and resin embedded biological tissues. By comparing results to the conventional TEM, we have found that iDPC-STEM not only shows better contrast but also resolves more structural details at molecular level, including conditions of extremely low dose and minimal heavy-atom staining. We also compare iDPC-STEM with ABF-STEM and found that contrast of iDPC-STEM is even further improved, moderately in lower frequency domains while highly with preserving high frequency biological structural details. For thick sample sections, iDPC-STEM is particularly advantageous. It avoids contrast inversion canceling effects, and by adjusting the depth of focus, fully preserves the contrast of structural details along with the sample. In addition, using depth-sectioning, iDPC-STEM enables resolving in-depth structural variation. Our results suggest that iDPC-STEM have the place and advantages within the future biological research.  相似文献   

4.
The contrast on micrographs obtained by conventional imaging in the conventional transmission electron microscope and in the scanning transmission electron microscope (STEM) (brightfield and darkfield) reflects mainly the variations of the mass-density and of the thickness of the specimen. The density differences in resin-embedded, unstained materials are too small to give enough contrast when compared to that produced by the surface perturbations introduced by sectioning. By darkfield imaging, therefore, this variable surface relief does not lead reproducibly to interpretable micrographs of high quality. Imaging by the ratio of elastically over inelastically scattered electrons in the STEM (Z-contrast) depends primarily on the atomic composition of the material. We present here the first experimental tests of theoretical predictions with thin sections; Z-contrast micrographs of septate junctions reveal the transmembrane proteins which are not visible in uranyl acetate stained sections viewed by conventional brightfield imaging.  相似文献   

5.
Labeling with heavy atom clusters attached to antibody fragments is an attractive technique for determining the 3D distribution of specific proteins in cells using electron tomography. However, the small size of the labels makes them very difficult to detect by conventional bright-field electron tomography. Here, we evaluate quantitative scanning transmission electron microscopy (STEM) at a beam voltage of 300 kV for detecting 11-gold atom clusters (Undecagold) and 1.4 nm-diameter nanoparticles (Nanogold) for a variety of specimens and imaging conditions. STEM images as well as tomographic tilt series are simulated by means of the NIST Elastic-Scattering Cross-Section Database for gold clusters embedded in carbon. The simulations indicate that the visibility in 2D of Undecagold clusters in a homogeneous matrix is maximized for low inner collection semi-angles of the STEM annular dark-field detector (15–20 mrad). Furthermore, our calculations show that the visibility of Undecagold in 3D reconstructions is significantly higher than in 2D images for an inhomogeneous matrix corresponding to fluctuations in local density. The measurements demonstrate that it is possible to detect Nanogold particles in plastic sections of tissue freeze-substituted in the presence of osmium. STEM tomography has the potential to localize specific proteins in permeabilized cells using antibody fragments tagged with small heavy atom clusters. Our quantitative analysis provides a framework for determining the detection limits and optimal experimental conditions for localizing these small clusters.  相似文献   

6.
Labeling with heavy atom clusters attached to antibody fragments is an attractive technique for determining the 3D distribution of specific proteins in cells using electron tomography. However, the small size of the labels makes them very difficult to detect by conventional bright-field electron tomography. Here, we evaluate quantitative scanning transmission electron microscopy (STEM) at a beam voltage of 300 kV for detecting 11-gold atom clusters (Undecagold) and 1.4 nm-diameter nanoparticles (Nanogold) for a variety of specimens and imaging conditions. STEM images as well as tomographic tilt series are simulated by means of the NIST Elastic-Scattering Cross-Section Database for gold clusters embedded in carbon. The simulations indicate that the visibility in 2D of Undecagold clusters in a homogeneous matrix is maximized for low inner collection semi-angles of the STEM annular dark-field detector (15–20 mrad). Furthermore, our calculations show that the visibility of Undecagold in 3D reconstructions is significantly higher than in 2D images for an inhomogeneous matrix corresponding to fluctuations in local density. The measurements demonstrate that it is possible to detect Nanogold particles in plastic sections of tissue freeze-substituted in the presence of osmium. STEM tomography has the potential to localize specific proteins in permeabilized cells using antibody fragments tagged with small heavy atom clusters. Our quantitative analysis provides a framework for determining the detection limits and optimal experimental conditions for localizing these small clusters.  相似文献   

7.
8.
Our review concentrates on the progress made in high-resolution transmission electron microscopy (TEM) in the past decade. This includes significant improvements in sample preparation by quick-freezing aimed at preserving the specimen in a close-to-native state in the high vacuum of the microscope. Following advances in cold stage and TEM vacuum technology systems, the observation of native, frozen hydrated specimens has become a widely used approach. It fostered the development of computer guided, fully automated low-dose data acquisition systems allowing matched pairs of images and diffraction patterns to be recorded for electron crystallography, and the collection of entire tilt-series for electron tomography. To achieve optimal information transfer to atomic resolution, field emission electron guns combined with acceleration voltages of 200-300 kV are now routinely used. The outcome of these advances is illustrated by the atomic structure of mammalian aquaporin-O and by the pore-forming bacterial cytotoxin ClyA resolved to 12 A. Further, the Yersinia injectisome needle, a bacterial pseudopilus and the binding of phalloidin to muscle actin filaments were chosen to document the advantage of the high contrast offered by dedicated scanning transmission electron microscopy (STEM) and/or the STEM's ability to measure the mass of protein complexes and directly link this to their shape. Continued progress emerging from leading research laboratories and microscope manufacturers will eventually enable us to determine the proteome of a single cell by electron tomography, and to more routinely solve the atomic structure of membrane proteins by electron crystallography.  相似文献   

9.
Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm2 (65.54 µm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM) system, which were only 66.59 µm2 (8.160 µm per side) at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems.  相似文献   

10.
A dedicated scanning transmission electron microscope (STEM) at Brookhaven National Laboratory was used to visualize unstained freeze-dried ribosomal particles under conditions which considerably reduce the specimen distortion inherent in the heavy metal staining and air-drying preparative steps used in routine transmission electron microscopy (TEM). From high-resolution STEM images it is possible to determine molecular mass and the mass distribution within individual ribosomal particles and perform statistical evaluation of the data. Analysis of digitized STEM images of Artemia salina ribosomes provided evidence that a standard preparation of these eukaryotic ribosomes consists of a population of heterogenous particles. Because of the integrity of rRNAs established by agarose gel electrophoresis, variations in the composition and structure of the 80S monosomes and the large (60S) and small (40S) ribosomal subunits, as monitored by their mass, were attributed to the loss of ribosomal proteins, from the large subunits in particular. These results are relevant not only to the degree of ribosomal biological activity, but should also be taken into consideration for particle selection in the reconstruction of the "native" eukaryotic ribosome 3-D model.  相似文献   

11.
在不经过任何特殊处理的常规生物样品中,高尔基体扁囊(Saccules)及囊泡(Vacuoles)中的内含物在电镜下常为低电子密度,而最近我们在莼菜(Brasenia schreberi)叶柄及叶片的表皮腺毛细胞中观察到带有高电子密度的高尔基体内含物。在扁囊中,这些内含物多呈波浪形(图版Ⅰ,图1)。这种特殊形态的高尔基体内含物以及这种未经任何特殊处理而显示出高尔基体中某些物质的现象是前人没有报道过的,本文就这种内含物的结构、性质以及其染色机制进行了初步探讨。  相似文献   

12.

Background

Transmission electron microscopy (TEM) remains an important technique to investigate the size, shape and surface characteristics of particles at the nanometer scale. Resulting micrographs are two dimensional projections of objects and their interpretation can be difficult. Recently, electron tomography (ET) is increasingly used to reveal the morphology of nanomaterials (NM) in 3D. In this study, we examined the feasibility to visualize and measure silica and gold NM in suspension using conventional bright field electron tomography.

Results

The general morphology of gold and silica NM was visualized in 3D by conventional TEM in bright field mode. In orthoslices of the examined NM the surface features of a NM could be seen and measured without interference of higher or lower lying structures inherent to conventional TEM. Segmentation by isosurface rendering allowed visualizing the 3D information of an electron tomographic reconstruction in greater detail than digital slicing. From the 3D reconstructions, the surface area and the volume of the examined NM could be estimated directly and the volume-specific surface area (VSSA) was calculated. The mean VSSA of all examined NM was significantly larger than the threshold of 60 m2/cm3. The high correlation between the measured values of area and volume gold nanoparticles with a known spherical morphology and the areas and volumes calculated from the equivalent circle diameter (ECD) of projected nanoparticles (NP) indicates that the values measured from electron tomographic reconstructions are valid for these gold particles.

Conclusion

The characterization and definition of the examined gold and silica NM can benefit from application of conventional bright field electron tomography: the NM can be visualized in 3D, while surface features and the VSSA can be measured.  相似文献   

13.
It is shown that dark-field images collected in the scanning transmission electron microscope (STEM) at two different camera lengths yield quantitative distributions of both the heavy and light atoms in a stained biological specimen. Quantitative analysis of the paired STEM images requires knowledge of the elastic scattering cross sections, which are calculated from the NIST elastic scattering cross section database. The results reveal quantitative information about the distribution of fixative and stain within the biological matrix, and provide a basis for assessing detection limits for heavy-metal clusters used to label intracellular proteins. In sectioned cells that have been stained only with osmium tetroxide, we find an average of 1.2+/-0.1 Os atom per nm(3), corresponding to an atomic ratio of Os:C atoms of approximately 0.02, which indicates that small heavy atom clusters of Undecagold and Nanogold can be detected in lightly stained specimens.  相似文献   

14.
The localization of scarce antigens in thin sections of biological material can be accomplished by pre-embedment labeling with ultrasmall immuno-gold labels. Moreover, with this method, labeling is not restricted to the section surface but occurs throughout the section volume. Thus, when combined with electron tomography, antigens can be localized in three dimensions in relation to the 3D (three-dimensional) ultrastructure of the cell. However, for visualization in a transmission electron microscope, these labels need to be enlarged by silver or gold enhancement. The increase in particle size reduces the resolution of the antigen detection and the large particles obscure ultrastructural details in the tomogram. In this paper we show for the first time that these problems can be avoided and that ultrasmall gold labels can be localized in three dimensions without the need for gold or silver enhancement by using HAADF-STEM (high angular annular dark-field-scanning transmission electron microscopy) tomography. This method allowed us to three-dimensionally localize Aurion ultrasmall goat anti-rabbit immuno-gold labels on sections of Epon-embedded, osmium-uranium-lead-stained biological material. Calculations show that a 3D reconstruction obtained from HAADF-STEM projection images can be spatially aligned to one obtained from transmission electron microscopy (TEM) projections with subpixel accuracy. We conclude that it is possible to combine the high-fidelity structural information of TEM tomograms with the ultrasmall label localization ability of HAADF-STEM tomograms.  相似文献   

15.
Nanoparticles of heavy materials such as gold can be used as markers in quantitative electron microscopic studies of protein distributions in cells with nanometer spatial resolution. Studying nanoparticles within the context of cells is also relevant for nanotoxicological research. Here, we report a method to quantify the locations and the number of nanoparticles, and of clusters of nanoparticles inside whole eukaryotic cells in three dimensions using scanning transmission electron microscopy (STEM) tomography. Whole-mount fixed cellular samples were prepared, avoiding sectioning or slicing. The level of membrane staining was kept much lower than is common practice in transmission electron microscopy (TEM), such that the nanoparticles could be detected throughout the entire cellular thickness. Tilt-series were recorded with a limited tilt-range of 80° thereby preventing excessive beam broadening occurring at higher tilt angles. The 3D locations of the nanoparticles were nevertheless determined with high precision using computation. The obtained information differed from that obtained with conventional TEM tomography data since the nanoparticles were highlighted while only faint contrast was obtained on the cellular material. Similar as in fluorescence microscopy, a particular set of labels can be studied. This method was applied to study the fate of sequentially up-taken low-density lipoprotein (LDL) conjugated to gold nanoparticles in macrophages. Analysis of a 3D reconstruction revealed that newly up-taken LDL-gold was delivered to lysosomes containing previously up-taken LDL-gold thereby forming onion-like clusters.  相似文献   

16.
We report a novel class of transmission electron microscope (TEM), the difference-contrast electron microscope (DTEM), which displays nanostructures of thin specimen objects in a topographical manner. Topography obtained by the difference-contrast develops shadowgraphs in pseudo three-dimension, namely volume-like representation of projected objects as if things are illuminated by light from one direction. The specific optical device tomanipulate electron waves for DTEM is the hemicircular phase-plate, which appears to be quite distinguishable from the Zernike phase plate utilized in Zernike phase-contrast TEM, while both have to be placed onto the back-focal plane of the objective lens. The topographic images obtained with DTEM for ultrathin sections of kidney cells were compared with those obtained with conventional TEM. DTEM confirmed the experimental advantage of high contrast topography by visualizing ultrastructural details inside the cells.  相似文献   

17.
This review attempts a physical definition of the technical problems and achievements in applying the high-voltage electron microscope (HVEM) to biological and medical research. It is hoped that the review will summarize for biologists, funding agencies, and institutions the achievements of the HVEM, its future prospects, and the main problem areas that still need to be explored. At present it is not known whether future HVEMs will favor the fixed beam or the scanning transmission electron microscopy (STEM) mode. The STEM mode offers reduced radiation damage as a result of more efficient electron detection and ease of manipulation of the collected signals by separating the elastic and inelastic signals. Energy filtration to remove the inelastic signal provides a means to enhance the contrast and improve the resolution for thick specimens. Several prototype STEM-mode HVEMs are now under development and it is expected that, in a few years, comparisons of fixed beam and STEM modes will be possible. The review discusses several HVEM instrument features that remain poorly developed. In the area of image recording a photographic emulsion has been designed to give optimized performance at an acceleration voltage of 1 MV. However, this remains unavailable commercially. Conversion of the HVEM electron image to a usable light image by phosphors etc., involves some difficulties, making it difficult to obtain good performance from TV systems. Since the HVEM is particularly useful for three-dimensional imaging, the further development of improved goniometers for stereo viewing and image reconstruction is important. The large volume available in the objective specimen volume and the increased penetration at high acceleration voltages make the HVEM particularly suitable for the application of environmental chambers in the microscopy and electron diffraction of thick wet specimens. An improved signal-to-noise ratio improves the prospects for elemental analysis at high acceleration voltages. When carefully carried out, improved resolution can be obtained in dark-field over that obtainable at 100 kV. Dark-field provides the easiest way to obtain high contrast on weakly stained or unstained objects. Its further improvement requires the use of specially thick and shaped beam stops and apertures that are not penetrated by the 1 MV beam. Recent HVEM studies of whole cells and microorganisms are reviewed. These studies already show that the former thin-section approach led to some incorrect ideas about the shape of some organelles and their three-dimensional relationships. This new information is proving important in helping to establish the function of fibrillar and membranous components of the cell. The most important limitation in examining thick sections is the large depth of field that causes excessive overlap of in-focus structures in stereo views of thick sections. In a few cases special specific heavy metal stains have been developed to overcome this problem, but an optical solution would be more generally applicable. Attempts are now being made to unscramble overlapped detail by applying the image reconstruction techniques of tomography and holography. It is concluded that even with existing techniques, the HVEM examination of thick sections provides a very useful improvement in sampling statistics and in three-dimensional imaging of cell structures over that obtainable by examining thin sections at a lower acceleration voltage (100 kV). Randomized author sequence.  相似文献   

18.
Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory.  相似文献   

19.
In transmission electron microscopy (TEM), electrons are transmitted through a plastic-embedded specimen, and an image is formed. TEM enables the resolution and visualization of detail not apparent via light microscopy, even when combined with immunohistochemical analysis. Ultrastructural examination of tissues, cells and microorganisms plays a vital role in diagnostic pathology and biologic research. TEM is used to study the morphology of cells and their organelles, and in the identification and characterization of viruses, bacteria, protozoa and fungi. In this protocol, we present a TEM method for preparing specimens obtained in clinical or research settings, discussing the particular requirements for tissue and cell preparation and analysis, the need for rapid fixation and the possibility of analysis of tissue already fixed in formalin or processed into paraffin blocks. Details of fixation, embedding and how to prepare thin and semi-thin sections, which can be used for analysis complementary to that performed ultimately using TEM, are also described.  相似文献   

20.
A new method of specimen preparation is described permitting several studies such as routine staining, histochemistry, enzyme histochemistry, immunohistochemistry, and electron microscopy on a single block of biopsy specimens. Tissues are immersed in the fixative, which primarily stabilizes carbohydrate moieties, and embedded in the mixture of JB-4, methylmethacrylate and divinylbenzcne. The resin is polymerized at 4 C Thin sections (1-2 microns) are obtained with a sliding microtome, and ultrathin sections (60-90 millimicrons) with a ultramicrotome. The sections are stained directly with various conventional procedures without removing the embedding resin. This preparation method offers a potentially useful tool for histopathological studies on biopsy specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号