首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among rhizobia studied, Rhizobium sp. strain ORS571 alone grew unambiguously on N2 as sole N source. In ORS571 , only the glutamine synthetase (GS)-glutamate synthase ( GOGAT ) pathway assimilated ammonium. However, ORS571 exhibited two unique physiological aspects of this pathway: ORS571 had only GS I, whereas all other Rhizobiaceae studied had both GS I and GS II, and both NADPH- and NADH-dependent GOGAT activities were present. ORS571 GS-affected and NADPH- GOGAT -affected mutant strains were defective in both ammonium assimilation (Asm-) and N2 fixation (Nif-) in culture and in planta ; NADH- GOGAT mutants were Asm- but Nif+. "Bacteroid" GS activity was essentially nil, suggesting symbiotic ammonium export. Physiological studies on effects of glutamine, ammonium, methionine sulfoximine, and diazo-oxo-norleucine on nitrogenase induction in culture implied a regulatory role for the intracellular glutamine pool.  相似文献   

2.
3.
Plants of chick-pea (Cicer arietinum L. cv. ILC1919) inoculated with Mesorhizobium ciceri strain ch-191 were grown in a controlled environmental chamber, and were administered salt (0, 50, 75, and 100 mM NaCl) during the vegetative period. Four harvests (4, 7, 11, and 14d after treatment) were analysed. The aim was to ascertain whether the negative effect of saline stress on nitrogen fixation is due to a limitation on the photosynthate supply to the nodule or a limitation on the nodular metabolism which sustains nitrogenase activity.Plant growth was affected only by the highest NaCl concentration, whereas nitrogenase activity was affected from 50 mM. At the first harvest, Rubisco, PEPC and MDH activities in leaves rose with salt, but fell during the following harvests. The increase of PEPC and MDH in nodules at the two first samplings was clearly related to salt concentration. While 50 mM NaCl increased GS and GOGAT in nodules at some harvests, 100 mM strongly inhibited these activities at all the harvests. The accumulation of proline, amino acids and carbohydrates was clearly related to salt especially in the leaves, whereas in the nodules the protein content was boosted by salt. Although photosynthesis declined with NaCl, the response of nitrogen fixation to salt was more pronounced. This situation, together with carbohydrate accumulation, suggests that the lack of photosynthate does not cause the inhibition of nitrogenase activity under this type of stress. The similar trend observed for the PEPC-MDH pathway and the ARA support the hypothesis concerning the limitation in the supply of energy substrate, mainly malate, to the bacteroids. The accumulation of compatible solutes is more a consequence of damage produced by salt stress than of a protective strategy.  相似文献   

4.
Activities of ammonium assimilating enzymes glutamate dehydrogenase (GDH), glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) as well as the amino acid content were higher in nodules compared to roots. Their activities increased at 40 and 60 d after sowing, with a peak at 90 d, a time of maximum nitrogenase activity. The GS/GOGAT ratio had a positive correlation with the amino acid content in nodules. Higher activities of AST than ALT may be due to lower glutamine and higher asparagine content in xylem. The data indicated that glutamine synthetase and glutamate synthase function as the main route for the assimilation of fixed N, while NADH-dependent glutamate dehydrogenase may function at higher NH4 + concentration in young and senescing nodules. Enzyme activities in lentil roots reflected a capacity to assimilate N for making the amino acids they may need for both growth and export to upper parts of the plant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Glutamine synthetase (GS, EC 6.3.1.2) and glutamate synthase (GOGAT, EC 1.4.1.13) were purified from Sclerotinia sclerotiorum and some of their properties studied. The GS transferase and biosynthetic activities, as well as GOGAT activity, were sensitive to feedback inhibition by amino acids and other metabolites. GS showed a marked dependence on ADP in the transferase reaction and on ATP in the Mg2+-dependent biosynthetic reaction. Regulation of GS activity by adenylylation/deadenylylation was demonstrated by snake venom phosphodiesterase treatment of the purified enzyme. GOGAT required NADPH as an electron donor; NADH was inactive. GOGAT was strongly inhibited by p-chloromercuribenzoate and the inhibition was reversed by cysteine. The enzyme was also markedly inhibited by o-phenanthroline, 2,2′-bipyridyl and azaserine. l-Methionine-dl-sulphoximine (MSX) and azaserine inhibited the incorporation of 15N-labelled ammonium sulphate into washed cells of S. sclerotiorum. MSX and azaserine respectively also inhibited purified GS and GOGAT activities. GDH activity was not detected in cell-extracts. Thus the GS/GOGAT pathway is the main route for the assimilation of ammonium compounds in this fungus.  相似文献   

6.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

7.
天门冬酰胺(Asn)和谷氨酰胺(Gln)对荚膜红假单孢菌固氮酶活性抑制,在表观上类似于氨关闭效应,这种抑制效应由GS参与,相似于氨抑的传感机制。中断Gln代谢的6-diazo-5-oxo-L-norleucine(DON)存在时,氨抑的持续时间延长,与此相类似,Gln抑制加剧,这可能归之于Gln的积累。但是,Gln抑制被methionine sulfoximine(MSX,GS的抑制剂)消除,消除时MSX对Gln的浓度比值约为0.2,与氨抑消除所需的MSX对氨的浓度比值相当。此外,MSX消除氨抑不为DON拮抗,表明Gln抑制固氮酶活性由GS传感。然而,不能抑制GS转谷酰基活性的methionine suffone(MSF,谷氨酸的类似物)却与MSX相同,能消除Gln和氨对固氮活性的抑制。上述观察结果也可延伸至Asn的关闭固氮酶活性效应。  相似文献   

8.
Supply of cadmium chloride (0.5 mM) inhibited chlorophyll formation in greening maize leaf segments, while lower concentration of Cd (0.01 mM) slightly enhanced it. Inclusion of 2-oxoglutarate (2-OG, 0.1-10 mM) in the incubation mixture increased chlorophyll content in the absence as well as presence of Cd. Substantial inhibition of chlorophyll formation by Cd was observed at longer treatment both in the absence and presence of 2-OG. When the tissue was pre-incubated with 2-OG or Cd, the inhibition (%) of chlorophyll formation by Cd was lowered in the presence of 2-OG. Treatment with Cd inhibited ALAD activity and ALA formation and the inhibition (%) of ALA formation by Cd was strongly reduced in the presence of 2-OG. Glutamate dehydrogenase (GDH) activity was increased by the supply of Cd both in the absence as well as presence of 2-OG. In the presence of 2-OG, Cd supply significantly increased glutamate synthase (GOGAT) activity and reduced inhibition (%) of glutamine synthetase (GS) activity. The results suggested the involvement of the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway of ammonia assimilation to provide the precursor, glutamate, for ALA synthesis under Cd toxicity and 2-OG supplementation.  相似文献   

9.
Summary The relationship between N2-fixation, nitrate reductase and various enzymes of ammonia assimilation was studied in the nodules and leaves ofC. arietinum. In the nodules of the plants growing on atmospheric nitrogen, maximum activities of glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagine synthetase (AS) and aspartate aminotransferase (AAT) were recorded just prior to maximum activity of nitrogenase. In nitrate fed plants, the first major peak of GDH and AS coincided with that of nitrate reductase in the nodules. With the exception of AS, application of nitrate decreased the activities of all these enzymes in nodules but not in leaves. Activities of GS, GOGAT and AAT were affected to much greater extent than that of GDH. On comparing the plants grown without nitrate and those with nitrate, the ratios of the activities of GDH/GS and GDH/GOGAT in nitrate given plants, increased by 4 and 12 fold, respectively. The results presented in this paper suggest that in nodules of nitrate fed plants, assimilation of ammonia via GDH assumes much greater importance.  相似文献   

10.
本文测定了浑球红假单胞菌(Rhodobacter sphaeroides)菌株601谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、谷氨酸脱氢酶(GDH)和丙氨酸脱氢酶(ADH)的活性。低氨时,GS/GOGAT活力高,GDH活力低,高氨时,GS/GOGAT活力低,GDH活力高。在以分子氮或低浓度氨为氮源的培养条件下,加入GS抑制刑MSX(L—methionine—DL—sulphoximine),细菌生长受到抑制。但是,生长在以谷氨酸为氮源的细菌则不受影响。上述结果表明,浑球红假单胞菌菌株601氨同化是通过GS/GOGAT途径和GDH途径。  相似文献   

11.
An earlier study of the regulation of glutamate synthase (GOGAT) in Bacillus subtilis (Deshpande et al., Bichem. Biophys. Res. Commun. 95:55--60, 1980) revealed an inverse relationship between the specific activity of this essential ammonia-assimilatory enzyme and the intracellular pool of glutamine: GOGAT activity decreased when the internal glutamine concentration reached or exceeded 2.5 mM. This finding prompted the present investigation of the intracellular events linking glutamine formation to the regulation of GOGAT. A growing culture of B. subtilis was shifted from glutamate plus NH+4 medium (high GOGAT activity) to glutamate medium (low GOGAT activity). At various times after the shift, the intracellular concentrations of aspartate, glutamate, glutamine, alanine, and NH+4 and the activities of GOGAT and glutamine synthetase (GS) were measured. After 30 min, the only significant pool level change was an eightfold increase in glutamine, which paralleled a 2- to 3-fold increase in GS activity. Approximately 15 min after the glutamine pool reached its peak, GOGAT activity began to decrease and eventually declined 2.5-fold. In contrast, when B. subtilis was shifted from glutamate medium to glutamate plus NH+4 medium, there was a 1- to 2-h lag before the glutamine pool and GS activity approached a steady state. As a result, GOGAT activity was low until the concentration of glutamine dropped below 2.5 mM. We propose that glutamine is an important regulatory element in the control of GOGAT activity and that one form of GOGAT regulation involves enzyme inactivation. In addition, these results indicate that glutamine is neither a corepressor nor a feedback inhibitor of GS.  相似文献   

12.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

13.
Effects of phorate (Thimet-10 G) on the activities of enzymes of nitrogen metabolism,viz., glutamine synthetase (GS), glutamate dehydrogenase (GDH), and glutamate synthase (GOGAT) in the primary leaves, nitrogenase (N2-ase) in detached root nodules, and protein concentration in the primary leaves ofVigna mungo (L.) Hepper have been studied. Phorate stimulated the activities of these enzymes and protein concentration in primary leaves at lower concentrations (50 to 200 mg per pot), but inhibited at higher concentrations (400 to 600 mg per pot). Although, the Vmax for each enzyme with different treatments varied, the Km value of each enzyme in the control and the treated plants remained unaltered.  相似文献   

14.
The behaviour of enzymes involved in nitrogen metabolism, as well as oxidative stress generation and heme oxygenase gene and protein expression and activity, were analysed in soybean (Glycine max L.) nodules exposed to 50, 100 and 200 mM NaCl concentrations. A significant increase in lipid peroxidation was found with 100 and 200 mM salt treatments. Moreover, superoxide dismutase, catalase and peroxidase activities were decreased under 100 and 200 mM salt. Nitrogenase activity and leghemeoglobin content were diminished and ammonium content increased only under 200 mM NaCl. At 100 mM NaCl, glutamine synthetase (GS) and NADH-glutamate dehydrogenase (GDH) activities were similar to controls, whereas a significant increase (64%) in NADH-glutamate synthase (GOGAT) activity was observed. GS activity did not change at 200 mM salt treatment, but GOGAT and GDH significantly decreased (40 and 50%, respectively). When gene and protein expression of GS and GOGAT were analysed, it was found that they were positively correlated with enzyme activities. In addition, heme oxygenase (HO) activity, protein synthesis and gene expression were significantly increased under 100 mM salt treatment. Our data demonstrated that the up-regulation of HO, as part of antioxidant defence system, could be protecting the soybean nodule nitrogen fixation and assimilation under saline stress conditions.  相似文献   

15.
Fibroblasts cultivated in three-dimensional tissue-like matrices are characterized by a slowed metabolism and a decrease of protein synthesis, unless they are submitted to physical tensions. We checked the effects of insulin like growth factor-I (IGF-I), known as a potent stimulator of mitogenesis and protein synthesis for many cell types, in various models of cultures: confluent monolayers, collagen lattices, non-retracting or retracting fibrin lattices. IGF-I (1-100 ng.ml-1) had no effect on cell divisions in lattice cultures. It was able to stimulate collagen lattice retraction when the medium was supplemented with low concentrations of serum. IGF-I at 10 or 100 ng.ml-1 stimulated collagen and non-collagen syntheses in all culture systems, but stimulation of collagen synthesis only began at the highest concentration (100 ng.ml-1) in retracted lattices. Northern blot and dot-blot analyses of mRNAs extracted from monolayer cultures of fibroblasts showed that IGF-I stimulated pro alpha 1(I) collagen synthesis at the pretranslational level. Cycloheximide (7.5 micrograms.ml-1) completely inhibited pro alpha 1(I) collagen gene expression induced by IGF-I. These results show that IGF-I is a potent stimulus for protein synthesis and collagen gene expression in monolayers and tridimensional cultures of fibroblasts, but that it exerts no mitogenic activity in tridimensional lattices. Synergistic associations of IGF-I with other growth factors will have to be found in order to reverse the quiescent status of fibroblasts in lattices.  相似文献   

16.
17.
粪产碱菌A—15的氮素同化途径在铵培养下以GDH途径为主,而氮培养下则以GS/GOGAT途径为主,DEAE—纤维素层析,SDS—PAGE及免疫学试验均证明,粪产碱菌在铵浓度高达30mmol/L时仍有固氮酶合成,但没有固氮活性。铵和氮培养两者细菌粗提液在电泳条带上有些差异。铵培养的粪产碱菌合成的固氮酶,在解阻遏后,仍可出现固氮活性。  相似文献   

18.
When continuous cultures of Azotobacter vinelandii were supplied with ammonium or nitrate in amounts, which just repressed nitrogenase synthesis completely, both the intracellular glutamine level and the degree of adenylylation of the glutamine synthetase (GS) increased only slightly (from 0.45–0.50 mM and from 2 to 3 respectively), while the total GS level remained unaffected. Higher amounts of ammonium additionally inhibited the nitrogenase activity, caused a strong rise in the intracellular glutamine concentration and adenylylation of the GS, but caused no change in the ATP/ADP ratio. These results are considered as evidence that in A. vinelandii the regulation of nitrogenase synthesis is not linked to the adenylylation state of the GS and to the intracellular glutamine level, and that the inhibition of the nitrogenase activity as a consequence of a high extracellular ammonium level is not mediated via a change in the energy charge.Abbreviations GS glutamine synthetase - GS-S(Mg) Mg2+ dependent synthetic activity of GS - GS-T(Mn) Mn2+ dependent transferase activity of GS  相似文献   

19.
Biochemical and physiological parameters associated with nitrogen metabolism were measured in nodules and roots of glasshouse-grown clones of two symbiotically ineffective alfalfa (Medicago sativa L.) genotypes supplied with either NO3 or NH4+. Significant differences were observed between genotypes for nodule soluble protein concentrations and glutamine synthetase (GS) and glutamate synthase (GOGAT) specific activities, both in untreated controls and in response to applied N. Nodule soluble protein of both genotypes declined in response to applied N, while nodule GS, GOGAT, and glutamate dehydrogenase (GDH) specific activities either decreased or remained relatively constant. In contrast, no genotype differences were observed in roots for soluble protein concentrations and GS, GOGAT, and GDH specific activities, either in untreated controls or in response to applied N. Root soluble protein levels and GS and GOGAT specific activities of N-treated plants increased 2- to 4-fold within 4 days and then decreased between days 13 and 24. Root GDH specific activity of NH4+-treated plants increased steadily throughout the experiment and was 50 times greater than root GS or GOGAT specific activities by day 24.  相似文献   

20.
Wild-type Aspergillus nidulans grew equally well on NH4Cl, KNO3 or glutamine as the only nitrogen source. NADP+-dependent glutamate dehydrogenase (EC 1.4.1.4) and glutamine synthetase (GS; EC 6.3.1.2) activities varied with the type and concentration of nitrogen source supplied. Glutamate synthase (GOGAT) activity (EC 1.4.7.1) was detected but it was almost unaffected by the type and concentration of nitrogen source supplied. Ion exchange chromatography showed that the GOGAT activity was due to a distinct enzyme. Azaserine, an inhibitor of the GOGAT reaction, reduced the glutamate pool by 60%, indicating that GOGAT is involved in ammonia assimilation by metabolizing the glutamine formed by GS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号