首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Thibonnier 《Life sciences》1987,40(5):439-445
The human platelet membrane receptor for vasopressin (AVP) has been solubilized with the cholic acid derivative detergent 3-( [3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate. Rapid and simple separation of free tritiated AVP ( [3H]AVP) from the solubilized receptor-hormone complex was done by filtration through polyethylenimine-treated filters. [3H]AVP binds to this soluble receptor with an equilibrium dissociation constant of 11.03 +/- 1.86 nM and a maximal number of binding sites = 288 +/- 66 fmol/mg protein while the corresponding values of the membrane-bound receptor are 1.62 +/- 0.21 nM and 237 +/- 38 fmol/mg of protein, respectively. The Ki value for native AVP derived from competition experiments is 11.02 +/- 2.05 nM for the soluble receptor. Competition experiments with specific vascular and renal antagonists confirm that the solubilized receptor belongs to the V1-vascular subtype.  相似文献   

2.
[Arg8]-Vasopressin (AVP) has been shown to exert characteristic central physiological actions in the ventral septal area of the rat brain. This study reports the characterization of receptors for AVP in synaptic plasma membranes prepared from the ventral septal area, the lateral septum, and the hippocampus. Binding of [3H]AVP was temperature and time dependent, linearly related to protein concentration, saturable, and specific. Scatchard plot analysis suggested the presence of a population of binding sites in the three brain areas with dissociation constants and maximal binding capacities, respectively, of 1.06 +/- 0.39 nM and 24.0 +/- 7.01 fmol/mg of protein (mean +/- SEM; n = 3 for the ventral septal area, 0.92 +/- 0.13 nM and 47.0 +/- 4.96 fmol/mg of protein (n = 3) for the lateral septum, and 0.91 +/- 0.14 nM and 25 +/- 5.02 fmol/mg of protein (n = 3) for the hippocampus. In all three brain regions, the rank order of potencies of several vasopressin analogs, unrelated peptides, and other compounds for competitive displacement of ligand indicated a receptor with properties resembling those of the V1-like receptor for AVP. These data document the presence of a high-affinity, V1-like vasopressin receptor in the rat ventral septal area for which the pharmacological properties are similar to those previously reported in physiological studies.  相似文献   

3.
A guanine nucleotide regulatory protein may be involved in vasopressin-receptor-mediated polyphosphoinositide breakdown in rat liver. Therefore we examined the effects of the non-hydrolysable guanine nucleotide guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) on [3H]vasopressin ([3H]AVP) binding to hepatic plasma membranes and detergent extracts. [3H]AVP bound to a single set of high-affinity binding sites in membranes. Addition of p[NH]ppG decreased the affinity of receptor binding without altering the maximal binding capacity. The rate of dissociation of [3H]AVP from membrane-bound receptors was also enhanced by p[NH]ppG. Solubilization of [3H]AVP-prelabelled membranes with dodecyl beta-D-maltoside resulted in a [3H]AVP-receptor complex that was unstable in solution. Incubation of these extracts for 5 min at 30 degrees C resulted in a 40% loss of bound [3H]AVP, whereas in the presence of p[NH]ppG there was a 54% loss. However, when membranes were prelabelled with [3H]AVP and p[NH]ppG and then solubilized, the resulting hormone-receptor complex was still temperature-labile but insensitive to the further addition of p[NH]ppG. The molecular size of soluble vasopressin receptors was estimated by gel filtration. The [3H]AVP-receptor complex was eluted as a single peak with an apparent molecular size of 258 kDa. However, no peak was detected when solubilized extract was made from membranes prelabelled with [3H]AVP and p[NH]ppG, suggesting that this receptor complex had dissociated during chromatography. It is possible therefore that the high-Mr complex contains the hormone, its receptor and a guanine nucleotide binding protein.  相似文献   

4.
The receptor mechanisms underlying vasopressin-induced human platelet activation were investigated with respect to stimulation of phosphoinositide metabolism and changes in the cytosolic free Ca2+ concentration ([Ca2+]i). Vasopressin stimulated phosphoinositide metabolism, as indicated by the early formation of [32P]phosphatidic acid ([32P]PtdA) and later accumulation of [32P]phosphatidylinositol ([32P]PtdIns). In addition, vasopressin elicited a transient depletion of [glycerol-3H]PtdIns and accumulation of [glycerol-3H]PtdA. The effects of vasopressin on phosphoinositide metabolism were concentration-dependent, with half maximal [32P]PtdA formation occurring at 30 +/- 15 nM-vasopressin. In the presence of 1 mM extracellular free Ca2+, vasopressin induced a rapid, concentration-dependent elevation of [Ca2+]i in quin2-loaded platelets: half-maximal stimulation was observed at 53 +/- 20 nM-vasopressin. The V1-receptor antagonist [1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine,8-arginine]-vasopressin selectively inhibited vasopressin (100 nM)-induced [32P]PtdA formation [I50 (concn. giving 50% inhibition) = 5.7 +/- 2.4 nM] and elevation of [Ca2+]i (I50 = 3 +/- 1.5 nM). Prior exposure of platelets to vasopressin rendered them unresponsive, in terms of [32P]PtdA formation and elevation of [Ca2+]i, to a subsequent challenge with vasopressin, but responsive to a subsequent challenge with U44069, a thromboxane-A2 mimetic. These results indicate that vasopressin-induced human platelet activation is initiated by combination with specific V1 receptors on the platelet, and that the sequelae of receptor occupancy (stimulation of phosphoinositide metabolism and elevation of [Ca2+]i) are equally susceptible to inhibition by receptor antagonists and by receptor desensitization.  相似文献   

5.
The histamine H3 receptor agonist (R)alpha-methylhistamine (MeHA) inhibited, in a nanomolar range, basal and carbachol-stimulated inositol phosphate formation in the human gastric tumoral cell line HGT1-clone 6. The inhibition was reversed by micromolar concentrations of the histamine H3 receptor antagonist thioperamide and was sensitive to cholera or pertussis toxin treatment. Using [3H]N alpha-MeHA as specific tracer, high affinity binding sites were demonstrated with a Bmax of 54 +/- 3 fmol/mg of protein and a KD of either 0.61 +/- 0.04 or 2.2 +/- 0.4 nM, in the absence or presence of 50 microM GTP[gamma]S, respectively. The binding sites were solubilized by Triton X-100 and prepurified by gel chromatography. They were separated from the histamine H2 receptor sites by filtration through Sepharose-famotidine and finally retained on Sepharose-thioperamide. The purified sites concentrated in one single silver-stained protein band of 70 kDa in SDS-polyacrylamide gel electrophoresis. They specifically bound [3H]N alpha-MeHA with a KD of 1.6 +/- 0.1 nM and a Bmax of 12,000 +/- 750 pmol/mg of protein. This corresponds to a 90,225-fold purification over cell lysate and a purity degree of 84%. Binding was competitively displaced by N alpha-MeHA (IC50 = 5.8 +/- 0.7 nM), (R) alpha-MeHA (IC50 = 9 +/- 1 nM), and thioperamide (IC50 = 85 +/- 10 nM), but not by famotidine (H2 antagonist) or by mepyramine (H1 antagonist). These findings provide the first evidence for solubilization, purification, and molecular mass characterization of the histamine H3 receptor protein and for the negative coupling of this receptor phosphatidylinositol turnover through a so far unidentified G protein.  相似文献   

6.
In continuation of our efforts to elucidate the role of positions 2 and 3 in arginine vasopressin (AVP) and its analogues, we designed and synthesized peptides modified in these positions with l-beta-homophenylalanine (beta-Hph). Two of them had just this single modification, the next two peptides are analogues of the V2 agonist, namely [3-mercaptopropionic acid (Mpa)1]AVP (dAVP). The last two compounds were designed by substitution of positions 2 or 3 of a potent V(1a) antagonist, [1-mercaptocyclohexaneacetic acid (Cpa)1]AVP, with beta-Hph. All the peptides were tested for their pressor and antidiuretic and uterotonic in vitro activities in the rat. All the activities tested have been found to be significantly decreased. Three analogues, i.e. [Mpa(1),beta-Hph2]AVP, [Cpa1,beta-Hph2]AVP, [Cpa1,beta-Hph3]AVP, turned out to be uterotonic antagonists with pA2 = 6.3 +/- 0.2, 6.3 +/- 0.1, 6.0 +/- 0.3 respectively. The last one exhibited antipressor properties also (pA2 = 6.4 +/- 0.1).  相似文献   

7.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

8.
The specific binding of [3H]oxytoxin to uterine membrane preparations derived from different species at late pregnancy was examined. The highest receptor density (bmax value) was found in membranes derived from the myometria of guinea pigs between day 60 post-conception (bmax = 3.6 +/- 0.1 pmol/mg) and day 65 (bmax = 4.4 +/- 0.1 pmol/mg). The similarity of Kd values for oxytocin binding (Kd = 2.6 +/- 0.2 nM) and for vasopressin binding (Kd = 2.1 +/- 0.4 nM) to the same membranes derived from a guinea pig myometrium indicate a homogeneous population of high-affinity binding sites which do not discriminate between these two hormones. Competitive binding experiments with specific oxytocin agonists containing either sarcosine or N-methylalanine in the place of Pro7 demonstrated that these myometrial receptors have the pharmacological properties of oxytocin receptors. The analogue of 1-deamino-[8-lysine]vasopressin containing a photoreactive azidophenylamidino group at the sidechain of Lys8 retained roughly the same receptor affinity as oxytocin. In photoaffinity labelling experiments with the tritium-labelled analogue a membrane protein from guinea pig myometrium with an apparent relative molecular mass Mr of 78,000 +/- 5000 (n = 13) was preferentially labelled. The labelling of this protein was completely suppressed by a 100-fold molar excess of either oxytocin, or [Sar7]oxytocin or [Thr4, Sar7]oxytocin, but not by other peptide hormones. These results provide evidence that the labelled 78,000-Mr protein is a myometrial oxytocin-receptor protein.  相似文献   

9.
Vasopressin antisense peptide interactions with the V1 receptor   总被引:1,自引:0,他引:1  
The molecular recognition hypothesis, that peptide ligands and their receptor binding sites are encoded by complementary nucleotide sequences, was tested for arginine vasopressin (AVP) and its V1 receptor. Binding of [125I] [d(CH2)5,Sar7]AVP (a selective V1 vasopressin antagonist radioligand) or [3H]AVP to rat liver plasma membranes was inhibited by peptides known to bind to V1 receptors but not by the AVP complementary peptide (Ser-Ser-Trp-Ala-Val-Leu-Glu-Val-Ala) (PVA). Rabbit anti-PVA antibodies were nonimmunoreactive with any protein in rat liver membranes or in a partially purified preparation from rat liver containing reconstitutable vasopressin binding activity. Furthermore, there was no suppression of the AVP pressor effect by PVA in vivo using a rat blood pressure bioassay. These findings do not support the hypothesis that the V1 receptor binding site is encoded by the antisense DNA strand to AVP.  相似文献   

10.
The binding characteristics of [3H]U46619 to washed human platelets were studied. [3H]U46619 binding to washed human platelets was saturable and displaceable. Kinetic studies yielded a Kd of 11 +/- 4 nM (n = 4). Scatchard analysis of equilibrium binding studies revealed one class of high affinity binding sites with a Kd of 20 +/- 7 nM and a Bmax of 9.1 +/- 2.3 fmole/10(7) platelets (550 +/- 141 binding sites per platelet) (n = 4). A number of compounds that act as either agonists or antagonists of the TXA2/PGH2 receptor were tested for their ability to inhibit the binding of [3H]U46619 to washed human platelets. The Kds of the agonists and antagonists were similar to their potencies to induce or inhibit platelet aggregation. These data provide some evidence that [3H]U46619 binds to the putative human platelet TXA2/PGH2 receptor.  相似文献   

11.
Effect of 8-arginine vasopressin (AVP) was examined on human platelet membrane GTPase activity as an index of a G-protein involvement. AVP stimulated a high-affinity GTPase activity in a dose-dependent manner (Kact = 1.1 +/- 0.2 nM). This stimulation was blocked by a V1a antagonist, thus confirming the V1a nature of the platelet AVP receptor. There were important variations among individuals in the AVP-induced stimulation of GTPase activity, that were in relation with the AVP-maximal binding capacity. These data suggest a causal relationship between the binding of AVP to its receptor and transduction elicited by a G-protein, without amplification. In addition, in view of the variable AVP responsiveness observed among individuals, platelet AVP-receptor appears to be subject to regulation.  相似文献   

12.
Vasopressin (V2) receptors were solubilized from porcine kidney membranes with the detergent egg lysolecithin. Binding of [3H]vasopressin to the solubilized fraction was rapid, specific, and saturable. The agonist dissociation constants observed in membranes and solubilized fractions were 1.7 +/- 0.3 and 2.3 +/- 0.2 nM, respectively. In competition binding experiments, the solubilized fraction exhibited the same pharmacological profile as the membranes. Chemical crosslinking of [125I]vasopressin to the solubilized fraction followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated a 62-kDa band which was specifically labeled with [125I]vasopressin. Vasopressin binding sites from the solubilized fractions were resolved by gel filtration and ultracentrifugation on a sucrose gradient. In addition, agonist high affinity binding to V2 receptors and its sensitivity to guanine nucleotides were preserved even after solubilization in the absence of prebound agonist prior to solubilization. Addition of guanine nucleotides such as GTP gamma S decreased the specific binding of [3H]arginine vasopressin to these solubilized fractions in a dose-dependent manner, suggesting the solubilization of a V2 receptor-G protein complex. [32P]ADP ribosylation of the solubilized fraction by cholera and pertussis toxins revealed specifically labeled proteins with molecular weights of 42,000-43,000 and 39,000-41,000, respectively, on sodium dodecyl sulfate polyacrylamide gels. Furthermore [35S]GTP gamma S binding to these solubilized fractions was enhanced by vasopressin, confirming that a significant proportion of the vasopressin receptors must be closely coupled to G proteins even when these receptors are solubilized in the absence of agonist. These results are in contrast with those reported for beta, alpha 2 adrenergic and D2 dopaminergic receptor systems, but in agreement with D1 dopaminergic and A1 adenosine receptors. The molecular mechanism responsible for this difference remains to be determined.  相似文献   

13.
A prostaglandin E2 (PGE2) receptor was solubilized and isolated from cardiac sarcolemma membranes. Its binding characteristics are almost identical to those of the membrane bound receptor. [3H]PGE2 binding to solubilized and membrane bound receptor was sensitive to elevated temperature and no binding was observed in the absence of NaCl. No significant effects of DTT, ATP, Mg2+, Ca2+ or of changes in buffer pH were observed on [3H]PGE2 binding to either solubilized or membrane-bound receptor. Unlabelled PGE1 displaced over 90% of [3H]PGE2 from the CHAPS-solubilized receptor. PGD2, PGI2, PGF2 alpha and 6-keto-PGF1 alpha were not effective in displacing [3H]PGE2 from the receptor. Scatchard analysis of [3H]PGE2 binding to CHAPS-solubilized receptor revealed the presence of two types of PGE2 binding sites with Kd of 0.33 +/- 0.05 nM and 3.00 +/- 0.27 nM and Bmax of 0.5 +/- 0.04 and 2.0 +/- 0.1 pmol/mg of protein. The functional PGE2 receptor was isolated from CHAPS-solubilized SL membrane using two independent methods: first by a WGA-Sepharose chromatography and second by sucrose gradient density centrifugation. Receptor isolated by these two methods bound [3H]PGE2. Unlabelled PGE1 and PGE2 displaced [3H]PGE2 from the purified receptor. Scatchard analysis of [3H]PGE2 binding to purified receptor revealed the presence of the two binding sites as observed for the membrane bound and CHAPS-solubilized receptor. SDS-polyacrylamide gel electrophoresis of the purified receptor fractions revealed the presence of a protein band of M(r) of approx. 100,000. This 100-kDa was photolabelled with [3H]azido-PGE2, a photoactive derivative of PGE2. We propose that this 100-kDa protein is a cardiac PGE2 receptor.  相似文献   

14.
The regulation of intracellular Na+ and pHi in human blood platelets is known to be controlled by the function of the Na+/H+ exchanger. The phosphorylation state of the Na+/H+ exchanger which determines the exchanger activity in human blood platelets is regulated by the activities of protein kinases and protein phosphatases. Observations in this study indicate that arginine vasopressin (AVP) that interacts with a V1 receptor, activates the Na+/H+ exchange in human blood platelets through a genistein-inhibited mechanism. The AVP-activated Na+/H+ exchange is probably not regulated by protein kinase C (PKC), since this activation is not inhibited by staurosporine. The multiple ways in which platelet Na+/H+ exchange can be modulated may indicate the critical role played by this exchanger in the homeostasis control of pHi in human blood platelets.  相似文献   

15.
The V1 vasopressin receptor has been solubilized from rat liver membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammoniol]-1-propanesulfonate (CHAPS) and reconstituted into phospholipid vesicles. There is essentially complete solubilization of the receptor by 3% CHAPS at a protein concentration of 15 mg/ml. Reconstitution into soybean phospholipid vesicles is readily achieved either by gel filtration chromatography or by membrane dialysis. The binding of [3H]vasopressin to proteoliposomes is specific, saturable, reversible, and magnesium-dependent. In contrast, the detergent-soluble vasopressin receptor does not display specific binding. The apparent affinity of the reconstituted receptor for [3H]vasopressin is approximately 4-fold lower than that of the receptor in native membranes. In addition, the binding of [3H]vasopressin to reconstituted vesicles is not sensitive to 100 microM guanosine 5'-O-thiotriphosphate (GTP gamma S) as it is in native membranes. However, the apparent affinity of the reconstituted receptor for ligand approximates that of native membranes when membranes are prebound with vasopressin prior to solubilization and reconstitution into vesicles. Furthermore, vesicles reconstituted from membranes prebound with vasopressin show GTP gamma S sensitivity of [3H] vasopressin binding. This finding strongly suggests that vasopressin stabilizes a receptor-G-protein complex during solubilization. The rat liver vasopressin receptor is a glycoprotein, as shown by its specific binding to the lectin "wheat germ agglutinin." The vasopressin receptor can be reconstituted from the N-acetylglucosamine-eluted peak of a wheat germ agglutinin-Sepharose column, and [3H] vasopressin binding activity is purified 5-6-fold from membranes by this chromatographic procedure. The functionality of the partially purified receptor is indicated by its ability to bind ligand with high affinity and by its ability to functionally interact with a G-protein when vasopressin is bound prior to solubilization.  相似文献   

16.
Treatment of isolated hepatocytes with the tumor-promoting agent, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) produced a time- and dose-dependent, non-competitive inhibition of alpha 1-adrenergic responses, including the activation of phosphorylase, increase in Ca2+ efflux, increase in free cytosolic Ca2+, and release of myo-inositol-1,4,5-P3. The actions of [8-arginine] vasopressin (AVP) on liver cells were also inhibited by PMA, but the inhibition could be overcome by high AVP concentrations. No significant inhibition of beta-adrenergic and glucagon-mediated activation of phosphorylase was induced by PMA and no inhibitory or synergistic effects of PMA were observed on the dose-dependent activation of phosphorylase by the Ca2+ ionophore A23187. In radioligand binding studies, PMA did not directly interfere with [3H]prazosin specific binding, the displacement of [3H]prazosin by (-)-norepinephrine nor with [3H]AVP specific binding to purified liver plasma membranes. Plasma membranes prepared from livers perfused with PMA exhibited a 30-44% reduction in [3H]prazosin binding capacity. Under identical conditions [3H]AVP binding was unchanged. The alpha 1-receptors remaining in membranes from PMA-treated livers had equivalent affinities for [3H]prazosin and (-)-norepinephrine, and were unaffected in terms of coupling to guanine nucleotide-regulating proteins as indicated by the ability of guanosine 5'-(beta, gamma-imido)triphosphate to promote the conversion of the remaining alpha 1-receptors into a low affinity state. These data indicate that tumor promoters are potent antagonists of alpha 1-adrenergic and vasopressin (low dose) responses in liver. It is proposed that PMA acting via protein kinase C (which presumably mediates the action of PMA) exerts its inhibitory action on alpha 1-adrenergic responses at the alpha 1-adrenergic receptor itself and also at a site close to or before myo-inositol-1,4,5-P3 release.  相似文献   

17.
The photoreactive analog of vasopressin [1,6-alpha-aminosuberic acid, 3-(p-azidophenylalanine), 8-arginine] vasopressin [( Asu1,6, Phe (p-N3)3]AVP) has been synthesized. This analog retains a high binding affinity for the vasopressin receptor in plasma membranes from bovine kidney inner medulla (apparent dissociation constant, KD = 8.5 X 10(-9) M). [Asu1,6, Phe (p-N3)3] AVP was found to be biologically active in triggering the characteristic increase in toad bladder permeability to water. Photolysis of the analog in the presence of the toad bladder results in a hydroosmotic response which persists, in spite of repeated washings, for more than 18 h. The irreversible stimulation of the bladder is inhibited when photolysis is carried out in the presence of vasopressin. Our findings indicate that with photoactivation [Asu1,6, Phe(p-N3)3]AVP binds covalently to hormonal receptors and forms an active hormone-receptor complex. This analog, therefore, is a suitable tool for studies of hydroosmotic receptor function and for receptor isolation.  相似文献   

18.
The inter-relationships between receptor occupancy, inositol phospholipid metabolism and elevation of cytosolic free Ca2+ in thromboxane A2-induced human platelet activation were investigated by using the stable thromboxane A2 mimetic, 9,11-epoxymethanoprostaglandin H2, and the thromboxane A2 receptor antagonist, EPO45. 9,11-Epoxymethanoprostaglandin H2 stimulated platelet phosphatidylinositol metabolism as indicated by the rapid accumulation of [32P]phosphatidate and later accumulation of [32P]phosphatidylinositol in platelets pre-labelled with [32P]Pi. These effects of 9,11-epoxymethanoprostaglandin H2 were concentration-dependent and half-maximal [32P]phosphatidate formation occurred at an agonist concentration of 54 +/- 8 nM. With platelets labelled with the fluorescent Ca2+ indicator quin 2, resting cytosolic free Ca2+ was 86 +/- 12 nM. 9,11-Epoxymethanoprostaglandin H2 induced a rapid, concentration-dependent elevation of cytosolic free Ca2+ to a maximum of 300-700 nM. Half-maximal stimulation was observed at an agonist concentration of 80 +/- 23 nM. The thromboxane A2 receptor antagonist EPO45 selectively inhibited 9,11-epoxymethanoprostaglandin H2-induced [32P]phosphatidate formation and elevation of cytosolic free Ca2+, indicating that both events are sequelae of receptor occupancy. Human platelets contain a single class of stereospecific, saturable, high affinity (KD = 70 +/- 13 nM) binding sites for 9,11-epoxymethano[3H]prostaglandin H2. The concentration-response curve for receptor occupancy (9,11-epoxymethano-[3H]prostaglandin H2 binding) is similar to that for 9,11-epoxymethanoprostaglandin H2-induced [32P]phosphatidate formation and for elevation of cytosolic free Ca2+. These observations indicate that human platelet thromboxane A2 receptor occupation is closely linked to inositol phospholipid metabolism and to elevation of cytosolic free Ca2+. Both such events may be necessary for thromboxane A2-induced human platelet activation.  相似文献   

19.
Binding of [3H]-SQ 29,548 was characterized to soluble thromboxane A2/prostaglandin H2 (TP) receptors from human platelet membranes as a means of examining ligand-receptor interactions outside the lipophilic environment of the cell membrane. Kinetic determination revealed a rate of ligand-receptor association of 1.4 x 10(7) +/- 0.2 M-1 x min-1 and a rate of dissociation of 0.5 +/- 0.07 min-1. The resultant equilibrium affinity constant was 36.3 +/- 5.8 nM. Saturation binding analysis revealed a single class of [3H]-SQ 29,548 binding sites with an affinity constant of 39.7 +/- 4.3 nM and a B(max) of 1735.7 +/- 69.1 fmol/mg protein. Specific [3H]-SQ 29,548 binding was inhibited by specific TP receptor antagonists and agonists in a rank order of potency similar to that seen in platelet membranes: SQ 33,961 much greater than SQ 29,548 greater than BM 13,505 greater than or equal to U 46619 greater than BM 13,177. PGD2, PGE2 and PGI2 did not appreciably inhibit the specific binding of [3H]-SQ 29,548. These data indicate that [3H]-SQ 29,548 binding to soluble human platelet TP receptors was specific, saturable, and reversible.  相似文献   

20.
Rat-liver glucocorticoid receptor was incubated with either [3H]triamcinolone acetonide or [3H]RU 486, a well known antiglucocorticoid. Once formed, the steroid-receptor complexes were analyzed by isoelectric focusing in agarose gel slabs. A careful slicing of the receptor tracks revealed the presence of three distinct radioactive peaks focused at the following pI values: 5.3 +/- 0.2 (n = 17) and 4.4 +/- 0.1 (n = 17). All these peaks correspond with receptor isoforms as suggested by control experiments. The receptor state was analyzed after focusing by a chromatographic assay on DNA-cellulose, DEAE-trisacryl and hydroxyapatite minicolumns. The peak of pI 4.4 apparently corresponded to the non-transformed receptor and was greatly stabilized in the presence of RU 486, whereas the peaks of pI 4.8 and 5.3 were probably made of transformed receptor and meroreceptor. These results were confirmed by autoradiographic studies after isoelectric focusing of receptor molecules covalently labelled with [3H]dexamethasone mesylate. Thus, the rat-liver glucocorticoid receptor appeared to be a rather acidic protein which became less acidic after transformation by heat, displaying a pI shift which was strongly reduced in case of steroid-receptor complexes formed with the antiglucocorticoid RU 486.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号