首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Broach RB  Rupnik K  Hu Y  Fay AW  Cotton M  Ribbe MW  Hales BJ 《Biochemistry》2006,45(50):15039-15048
Deletion of nifB results in the formation of a variant nitrogenase MoFe protein (DeltanifB MoFe protein) that appears to contain two normal [8Fe-7S] P clusters. This protein can be reactivated to form the holo MoFe protein upon addition of isolated FeMo cofactor. In contrast, deletion of nifH results in a variant protein (DeltanifH MoFe protein) that appears to contain FeS clusters different from the normal P cluster, presumably representing precursors of the normal P cluster. The DeltanifH MoFe protein is not reconstituted to the holo MoFe protein with isolated FeMo cofactor. The EPR and EXAFS spectroscopic properties of FeS clusters in the DeltanifH MoFe protein clearly differ from those of the normal P cluster found in the DeltanifB MoFe protein and suggest the presence of [4Fe-4S]-like clusters. To further characterize the metal cluster structures in the DeltanifH MoFe protein, a variable-temperature, variable-field magnetic circular dichroism (VTVH-MCD) spectroscopic study has been undertaken on both the DeltanifB MoFe protein and the DeltanifH MoFe protein in both the dithionite-reduced and oxidized states. This study clearly shows that each half of the dithionite-reduced DeltanifH MoFe protein contains a [4Fe-4S]+ cluster paired with a diamagnetic [4Fe-4S]-like cluster. Upon oxidation, the VTVH-MCD spectrum of the DeltanifH MoFe protein reveals a paramagnetic, albeit EPR-silent system, suggesting an integer spin state. These results suggest that the DeltanifH MoFe protein contains a pair of neighboring, unusual [4Fe-4S]-like clusters, which are paramagnetic in their oxidized state.  相似文献   

2.
Thionine-oxidized nitrogenase MoFe proteins from Azotobacter vinelandii. Azotobacter chroococcum and Klebsiella pneumoniae exhibit excited-state EPR signals with g = 10.4, 5.8 and 5.5 with a maximal amplitude in the temperature range of 20-50 K. The magnitude of these effective g values, combined with the temperature dependence of the peak area at g = 10.4 from 12 K to 86 K, are consistent with an S = 7/2 system with spin Hamiltonian parameters D = -3.7 +/- 0.7 cm-1, [E] = 0.16 +/- 0.01 cm-1 and g = 2.00. This interpretation predicts nine additional effective g values some of which have been detected as broad features of low intensity at g approximately 10, approximately 2.5 and approximately 1.8. The S = 7/2 EPR is ascribed to the multi-iron exchange-coupled entities known as the P clusters. Quantification relative to the S = 3/2 EPR signal from dithionite-reduced MoFe protein indicates a stoichiometry of one P cluster per FeMo cofactor. Two possible interpretations for these observations, together with data from the literature, are proposed. In the first model there are two P clusters per tetrameric MoFe protein. Each P cluster encompasses approximately 8Fe ions and releases a total of three electrons on oxidation with excess thionine. In the second model the conventional view of four P clusters, each containing approximately 4Fe, is retained. This alternative requires that following one-electron oxidation, the P clusters factorize into two populations, Pa and Pb, only one of which is further oxidized with thionine resulting in the S = 7/2 system. Both models require eight-electron oxidation of tetrameric MoFe protein to reach the S = 7/2 state.  相似文献   

3.
Biological nitrogen fixation catalyzed by nitrogenase requires the participation of two component proteins called the Fe protein and the MoFe protein. Each alphabeta catalytic unit of the MoFe protein contains an [8Fe-7S] cluster and a [7Fe-9S-Mo-homocitrate] cluster, respectively designated the P-cluster and FeMo-cofactor. FeMo-cofactor is known to provide the site of substrate reduction whereas the P-cluster has been suggested to function in nitrogenase catalysis by providing an intermediate electron-transfer site. In the present work, evidence is presented for redox changes of the P-cluster during the nitrogenase catalytic cycle from examination of an altered MoFe protein that has the beta-subunit serine-188 residue substituted by cysteine. This residue was targeted for substitution because it provides a reversible redox-dependent ligand to one of the P-cluster Fe atoms. The altered beta-188(Cys) MoFe protein was found to reduce protons, acetylene, and nitrogen at rates approximately 30% of that supported by the wild-type MoFe protein. In the dithionite-reduced state, the beta-188(Cys) MoFe protein exhibited unusual electron paramagnetic resonance (EPR) signals arising from a mixed spin state system (S = 5/2, 1/2) that integrated to 0.6 spin/alphabeta-unit. These EPR signals were assigned to the P-cluster because they were also present in an apo-form of the beta-188(Cys) MoFe protein that does not contain FeMo-cofactor. Mediated voltammetry was used to show that the intensity of the EPR signals was maximal near -475 mV at pH 8.0 and that the P-cluster could be reversibly oxidized or reduced with concomitant loss in intensity of the EPR signals. A midpoint potential (Em) of -390 mV was approximated for the oxidized/resting state couple at pH 8.0, which was observed to be pH dependent. Finally, the EPR signals exhibited by the beta-188(Cys) MoFe protein greatly diminished in intensity under nitrogenase turnover conditions and reappeared to the original intensity when the MoFe protein returned to the resting state.  相似文献   

4.
Ferredoxin II from Desulphovibrio gigas is a tetrameric protein containing a novel iron-sulphur cluster consisting of three iron atoms. The low-temperature magnetic circular dichroism (MCD) spectra of the oxidized and dithionite-reduced forms of ferredoxin II have been measured over the wavelength range approx. 300-800 nm. Both oxidation levels of the cluster are shown to be paramagnetic, although only the oxidized form gives an EPR signal. MCD magnetization curves have been constructed over the temperature range approx. 1.5-150 K and at fields between 0 and 5.1 Tesla. The curve for the oxidized protein can be fitted to a ground state of spin S = 1/2 with an isotropic g factor of 2.01. There is evidence for the thermal population of a low-lying electronic state above 50 K. The reduced protein gives a distinctive set of magnetization curves that are tentatively assigned to a ground state of S = 2, with a predominantly axial zero-field distortion that leaves the doublet Ms = +/-2 lowest in energy. The zero-field components have a maximum energy spread of approx. 15 cm-1. which places an upper limit of 4 cm-1 on the axial zero-field parameter D. The MCD spectra of the oxidized and reduced forms of the cluster are quite distinctive from one another. The spectra of the oxidized state are also different from those of oxidized high-potential iron protein from Chromatium and should provide a useful criterion for distinguishing between four- and three-iron clusters in their highest oxidation levels.  相似文献   

5.
The major metal clusters of the MoFe protein, Kpl , of Klebsiella pneumoniae nitrogenase were characterized separately by low-temperature magnetic-circular-dichroism spectroscopy. The spectra and magnetization curves of the extracted iron-molybdenum cofactor, FeMoco , and of 'P' clusters in NifB - Kpl , the inactive, FeMoco -less, MoFo protein from an nifB mutant, were measured and compared with those of the holoprotein. (When FeMoco and NifB - Kpl are combined, active Kpl is formed.) Reduced NifB - Kpl had a spectrum with a weak, paramagnetic, component superimposed on a diamagnetic background. The paramagnetic component was assigned to a contaminating, e.p.r.-active, species. Thionine-oxidized NifB - Kpl had a spectrum and magnetization properties very similar to those of thionine-oxidized Kpl , demonstrating that the 'P' clusters are not significantly affected by the absence of the FeMoco clusters. The spectra of reduced isolated FeMoco had similar magnetization curves but sharper features and higher intensities than those of this centre in dithionite-reduced Kpl . Furthermore, a shoulder near 580 nm in the Kpl spectrum was absent from that of FeMoco . This may be due to the loss of a ligand or to a change in symmetry of the FeMoco cluster on extraction.  相似文献   

6.
NifEN plays a key role in the biosynthesis of the iron–molybdenum cofactor (FeMoco) of nitrogenase. A scaffold protein that hosts the conversion of a FeMoco precursor to a mature cofactor, NifEN can assume three conformations during the process of FeMoco maturation. One, designated ΔnifB NifEN, contains only two permanent [Fe4S4]-like clusters. The second, designated NifENPrecursor, contains the permanent clusters and a precursor form of FeMoco. The third, designated NifEN“FeMoco”, contains the permanent [Fe4S4]-like clusters and a fully complemented, “FeMoco”-like structure. Here, we report a variable-temperature, variable-field magnetic circular dichroism spectroscopic investigation of the electronic structure of the metal clusters in the three forms of dithionite-reduced NifEN. Our data indicate that the permanent [Fe4S4]-like clusters are structurally and electronically conserved in all three NifEN species and exhibit spectral features of classic [Fe4S4]+ clusters; however, they are present in a mixed spin state with a small contribution from the S > ½ spin state. Our results also suggest that both the precursor and “FeMoco” have a conserved Fe/S electronic structure that is similar to the electronic structure of FeMoco in the MoFe protein, and that the “FeMoco” in NifEN“FeMoco” exists, predominantly, in an S = 3/2 spin state with spectral parameters identical to those of FeMoco in the MoFe protein. These observations provide strong support to the outcome of our previous EPR and X-ray absorption spectroscopy/extended X-ray absorption fine structure analysis of the three NifEN species while providing significant new insights into the unique electronic properties of the precursor and “FeMoco” in NifEN.  相似文献   

7.
During turnover at 10 degrees C at pH 7.4 in the presence of ethylene, the MoFe protein of Klebsiella pneumoniae nitrogenase (Kp 1) exhibited an electron-paramagnetic-resonance signal with g-values at 2.12, 1.998 and 1.987. 57Fe isotopic substitution demonstrated that this signal arose from the Kp 1 FeMo-cofactor in an S = 1/2 spin state.  相似文献   

8.
Fifty years after a role of vanadium in biological fixation was proposed, it was shown that in addition to their well-characterized molybdendum nitrogenases, Azotobacter chroococcum and Azotobacter vinelandii both have a genetically distinct nitrogenase system in which the conventional molybdoprotein is replaced by a vanadoprotein. Both Mo-nitrogenases and V-nitrogenases have similar requirements for activity: MgATP, a low potential reductant and the absence of oxygen. The genes encoding the V-nitrogenase are expressed only under conditions of Mo-deficiency. V-Nitrogenase of A.chroococcum is made up of a tetrameric VFe protein (Mr 210,000) with an alpha 2 beta 2 structure containing two V atoms, 23 Fe atoms and 20 acid-labile sulphide atoms per tetramer, and a dimeric Fe protein (Mr 64,000) with a gamma 2 structure containing four Fe atoms and four acid-labile sulphide atoms per dimer. Vanadium K-edge X-ray absorption spectroscopy indicates that V in the VFe protein, like Mo in MoFe protein, has S, Fe and possibly O as nearest neighbours. A vanadium- and iron-containing cofactor (FeVaco) can be extracted from the VFe protein and will restore C2H2 reductase, but no nitrogenase activity, to the inactive MoFe protein accumulated by mutants unable to synthesize the molybdenum- and iron-containing co-factor of Mo-nitrogenase. The products of C2H2 reduction by the hybrid protein (C2H6 as well as C2H4) are a characteristic of the VFe protein and provide evidence that FeVaco is, or forms part of the active site of V-nitrogenase.  相似文献   

9.
Two novel electron paramagnetic resonance (EPR) signals arising from the [1Mo-7Fe-9S-homocitrate] (FeMoco) centres of MoFe protein of Klebsiella pneumoniae nitrogenase (Kp1) were observed following turnover under MgATP-limited conditions. The combination of the nitrogenase Fe protein of Clostridium pasteurianum showed similar signals. The accumulation of MgADP under these conditions causes the normal EPR signal of dithionite-reduced Kp1 (with g=4.3, 3.6, 2.01) to be slowly converted to novel signals with g=4.74, 3.32, 2.00 and g=4.58, 3.50, 1.99. These signals do not form in incubation of protein mixtures containing only MgADP, thus they may be associated with trapped intermediates of the catalytic cycle.  相似文献   

10.
The kinetics of MgATP-induced electron transfer from the Fe protein (Ac2V) to the VFe protein (AclV) of the vanadium-containing nitrogenase from Azotobacter chroococcum were studied by stopped-flow spectrophotometry at 23 degrees C at pH 7.2. They are very similar to those of the molybdenum nitrogenase of Klebsiella pneumoniae [Thorneley (1975) Biochem. J. 145, 391-396]. Extrapolation of the dependence of kobs. on [MgATP] to infinite MgATP concentration gave k = 46 s-1 for the first-order electron-transfer reaction that occurs with the Ac2V MgATPAclV complex. MgATP binds with an apparent KD = 230 +/- 10 microM and MgADP acts as a competitive inhibitor with Ki = 30 +/- 5 microM. The Fe protein and VFe protein associate with k greater than or equal to 3 x 10(7) M-1.s-1. A comparison of the dependences of kobs. for electron transfer on protein concentrations for the vanadium nitrogenase from A. chroococcum with those for the molybdenum nitrogenase from K. pneumoniae [Lowe & Thorneley (1984) Biochem. J. 224, 895-901] indicates that the proteins of the vanadium nitrogenase system form a weaker electron-transfer complex.  相似文献   

11.
We have studied the molybdenum-iron protein (MoFe protein, also known as component I) from Azobacter vinelandi using M?ssbauer spectroscopy and electron paramagnetic resonance on samples enriched with 57Fe. These spectra can be interpreted in terms of two EPR active centers, each of which is reducible by one electron. A total of four different chemical environments of Fe can be discerned. One of them is a cluster of Fe atoms with a net electronic spin of 3/2, one of them is high-spin ferrous iron and the remaining two are iron in a reduced state (probably in clusters). The results are as follows: Chemical analysis yields 11.5 Fe atoms and 12.5 labile sulfur atoms per molybdenum atom; the molecule contains two Mo atoms per 300 000 daltons. The EPR spectrum of the MoFe protein exhibits g values at 4.32, 3.65 and 2.01, associated with the ground state doublet of a S = 3/2 spin system. The spin Hamiltonian H = D(S2/z minus 5/4 + lambda(S2/x minus S2/y)) + gbeta/o S-H fits the experimental data for go = 2.00 and lambda = 0.055. Quantitative analysis of the temperature dependence of the EPR spectrum yields D/k = 7.5 degrees K and 0.91 spins/molybdenum atom, which suggests that the MoFe protein has two EPR active centers. Quantitative evaluation of M?ssbauer spectra shows that approximately 8 iron atoms give rise to one quadrupole doublet; at lower temperatures magnetic spectra, associated with the groud electronic doublet, are observed; at least two magnetically inequivalent sites can be distinguished. Taken together the data suggest that each EPR center contains 4 iron atoms. The EPR and M?ssbauer data can only be reconciled if these iron atoms reside in a spin-coupled (S = 3/2) cluster. Under nitrogen fixing conditions the magnetic M?ssbauer spectra disappeared concurrently with the EPR signal and quadrupole doublets are obserced at all temperatures. The data suggest that each EPR active center is reduced by one electron. The M?ssbauer investigation reveals three other spectral components characteristic of iron nuclei in an environment of integer or zero electronic spin, i.e. they reside in complexes which are "EPR-silent". One of the components (3-4 iron atoms) has M?ssbauer parameters characteristic of the high-spin ferrous iron as in reduced ruberdoxin. However, measurements in strong fields indicate a diamagnetic environment. Another component, representing 9-11 iron atoms, seems to be diamagnetic also. It is suggested that these atoms are incorporated in spin-coupled clusters.  相似文献   

12.
Craft JL  Ludden PW  Brunold TC 《Biochemistry》2002,41(5):1681-1688
Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum utilizes three types of Fe-S clusters to catalyze the reversible oxidation of CO to CO(2): a novel [Ni4Fe5S] active site (C cluster) and two distinct [4Fe4S] electron-transfer sites (B and D clusters). While recent X-ray data show the geometric arrangement of the five metal centers at the C cluster, electronic structures of the various [Ni4Fe5S] oxidation states remain ambiguous. These studies report magnetic circular dichroism (MCD), variable temperature, variable field MCD (VTVH MCD), and resonance Raman (rR) spectroscopic properties of the Fe-S clusters contained in Ni-deficient CODH. Essentially homogeneous sample preparations aided in the resolution of the reduced [4Fe4S](1+) (S = (1)/(2)) B cluster and the reduced Ni-deficient C cluster (denoted C, S > (1)/(2)) by MCD. The three Fe atoms derived from the [Ni3Fe4S] cubane component appear to dominate the reduced C cluster MCD spectrum, while the presence of a fourth Fe center can be inferred from the ground state spin. The same underlying MCD features present in Ni-deficient CODH spectra are also observed for Ni-containing CODH, suggesting that both proteins contain the same C cluster Fe-S component. Overlooked in all spectroscopic studies to date, the D cluster was confirmed by rR to be a typical [4Fe4S] site with cysteinyl coordination. Together, MCD and rR data show that the D cluster remains in the oxidized [4Fe4S](2+) (S = 0) state at potentials > or = -530 mV (versus SHE), thus exhibiting an unusually low redox potential for a standard [4Fe4S](2+/1+) electron-transfer site.  相似文献   

13.
Room temperature circular dichroism (CD) and low temperature magnetic circular dichroism (MCD) spectra of air-oxidized and dithionite-reduced Azotobacter vinelandii ferredoxin I (FdI), a [( 4Fe-4S]2+/1+, [3Fe-4S]1+/0) protein, are reported. Unlike the CD of oxidized FdI, the CD of dithionite-reduced FdI exhibits significant pH dependence, consistent with protonation-deprotonation at or near the cluster reduced: the [3Fe-4S] cluster. The MCD of reduced FdI, which originates in the paramagnetic reduced [3Fe-4S]0 cluster, is also pH-dependent. Detailed studies of the field dependence and temperature dependence of the MCD of oxidized and reduced FdI, in the latter case at pH 6.0 and 8.3, are reported. The low-field temperature dependence of the MCD of oxidized FdI, which originates in the paramagnetic oxidized [3Fe-4S]1+ cluster, establishes the absence of a significant population of excited electronic states of this cluster up to 60 K. The low-field temperature dependence of the MCD of reduced FdI establishes that the ground-state manifold of the reduced [3Fe-4S]0 cluster possesses S greater than or equal to 2 at both pH 6.0 and 8.3. Analysis, assuming S = 2 and an axial zero-field splitting Hamiltonian, leads to D = -2.0 and -3.5 cm-1 at pH 6.0 and 8.3, respectively. The site of the (de)protonation affecting the spectroscopic properties of the [3Fe-4S] cluster remains unknown.  相似文献   

14.
The nitrogenase MoFe protein contains the active site metallocluster called FeMo-cofactor [7Fe-9S-Mo-homocitrate] that exhibits an S = 3/2 EPR signal in the resting state. No interaction with FeMo-cofactor is detected when either substrates or inhibitors are incubated with MoFe protein in the resting state. Rather, the detection of such interactions requires the incubation of the MoFe protein together with its obligate electron donor, called the Fe protein, and MgATP under turnover conditions. This indicates that a more reduced state of the MoFe protein is required to accommodate substrate or inhibitor interaction. In the present work, substitution of an arginine residue (alpha-96(Arg)) located next to the active site FeMo-cofactor in the MoFe protein by leucine, glutamine, alanine, or histidine is found to result in MoFe proteins that can interact with acetylene or cyanide in the as-isolated, resting state without the need for the Fe protein, or MgATP. The dithionite-reduced, resting states of the alpha-96(Leu)-, alpha-96(Gln)-, alpha-96(Ala)-, or alpha-96(His)-substituted MoFe proteins show an S = 3/2 EPR signal (g = 4.26, 3.67, 2.00) similar to that assigned to FeMo-cofactor in the wild-type MoFe protein. However, in contrast to the wild-type MoFe protein, the alpha-96-substituted MoFe proteins all exhibit changes in their EPR spectra upon incubation with acetylene or cyanide. The alpha-96(Leu)-substituted MoFe protein was representative of the other alpha-96-substituted MoFe proteins examined. The incubation of acetylene with the alpha-96(Leu) MoFe protein decreased the intensity of the normal FeMo-cofactor signal with the appearance of a new EPR signal having inflections at g = 4.50 and 3.50. Incubation of cyanide with the alpha-96(Leu) MoFe protein also decreased the FeMo-cofactor EPR signal with concomitant appearance of a new EPR signal having an inflection at g = 4.06. The acetylene- and cyanide-dependent EPR signals observed for the alpha-96(Leu)-substituted MoFe protein were found to follow Curie law 1/T dependence, consistent with a ground-state transition as observed for FeMo-cofactor. The microwave power dependence of the EPR signal intensity is shifted to higher power for the acetylene- and cyanide-dependent signals, consistent with a change in the relaxation properties of the spin system of FeMo-cofactor. Finally, the alpha-96(Leu)-substituted MoFe protein incubated with (13)C-labeled cyanide displays a (13)C ENDOR signal with an isotropic hyperfine coupling of 0.42 MHz in Q-band Mims pulsed ENDOR spectra. This indicates the existence of some spin density on the cyanide, and thus suggests that the new component of the cyanide-dependent EPR signals arise from the direct bonding of cyanide to the FeMo-cofactor. These data indicate that both acetylene and cyanide are able to interact with FeMo-cofactor contained within the alpha-96-substituted MoFe proteins in the resting state. These results support a model where effective interaction of substrates or inhibitors with FeMo-cofactor occurs as a consequence of both increased reactivity and accessibility of FeMo-cofactor under turnover conditions. We suggest that, for the wild-type MoFe protein, the alpha-96(Arg) side chain acts as a gatekeeper, moving during turnover in order to permit accessibility of acetylene or cyanide to a specific [4Fe-4S] face of FeMo-cofactor.  相似文献   

15.
We have studied the Fe protein (Av2) of the Azotobacter vinelandii nitrogenase system with M?ssbauer and EPR spectroscopies and magnetic susceptometry. In the oxidized state the protein exhibits M?ssbauer spectra typical of diamagnetic [4Fe-4S]2+ clusters. Addition of Mg.ATP or Mg.ADP causes a pronounced decline in the quadrupole splitting of the M?ssbauer spectra of the oxidized protein. Our studies show that reduced Av2 in the native state is heterogeneous. Approximately half of the molecules contain a [4Fe-4S]1+ cluster with electronic spin S = 1/2 and half contain a [4Fe-4S]1+ cluster with spin S = 3/2. The former yields the characteristic g = 1.94 EPR signal whereas the latter exhibits signals around g = 5. The magnetization of reduced Av2 is dominated by the spin S = 3/2 form of its [4Fe-4S]1+ clusters. These results explain a long standing puzzle, namely why the integrated spin intensity of the g = 1.94 EPR signal is substantially less than 1 spin/4 Fe atoms. In 50% ethylene glycol, 90% of the clusters are in the spin S = 1/2 form whereas, in 0.4 M urea, 85% are in the S = 3/2 form. In 0.4 M urea, the EPR spectrum of reduced Av2 exhibits well defined resonances at g = 5.8 and 5.15, which we assign to the S = 3/2 system. The EPR and M?ssbauer studies yield a zero-field splitting of 2D approximately equal to -5 cm-1 for this S = 3/2 state.  相似文献   

16.
钼铁蛋白铁钼辅因子的有机组分对其功能的影响   总被引:3,自引:0,他引:3  
棕色固氮菌(Azotobacter vinelandii)固氮酶的钼铁蛋白经邻菲啰啉在厌氧或有氧环境中处理后,变为 P-cluster 单一缺失或 P-cluster 和 FeMoco 同时缺失的失活钼铁蛋白。含柠檬酸盐或高柠檬酸盐的重组液都使这两种失活蛋白能恢复固氮酶重组的 H~ 和 C_2H_2还原活性,活性恢复程度随反映钼铁蛋白中金属原子簇含量变化的圆二色和磁圆二色谱及金属含量的恢复程度的提高而提高,但它们固 N_2能力的恢复程度则不相同:P-cluster 单一缺失的蛋白用两种重组液重组后均可恢复其固 N_2能力,而 P-cluster 和 FeMoco 同时缺失的蛋白,只有用含高柠檬酸盐的重组液重组才恢复其固 N_2能力,表明含不同有机组分的重组液所组装的 P-cluster 均与天然状态相同,只有含高柠檬酸盐的重组液所组装的 FeMoco 才与天然状态相同,从而证明高柠檬酸盐是 FeMoco 的必需的有机组分。  相似文献   

17.
18.
The His-tag MoFe protein expressed by the nifH deletion strain Azotobacter vinelandii DJ1165 (Delta(nifH) MoFe protein) was purified in large quantity. The alpha(2)beta(2) tetrameric Delta(nifH) MoFe protein is FeMoco-deficient based on metal analysis and the absence of the S = 3/2 EPR signal, which arises from the FeMo cofactor center in wild-type MoFe protein. The Delta(nifH) MoFe protein contains 18.6 mol Fe/mol and, upon reduction with dithionite, exhibits an unusually strong S = 1/2 EPR signal in the g approximately 2 region. The indigo disulfonate-oxidized Delta(nifH) MoFe protein does not show features of the P(2+) state of the P-cluster of the Delta(nifB) MoFe protein. The oxidized Delta(nifH) MoFe protein is able to form a specific complex with the Fe protein containing the [4Fe-4S](1+) cluster and facilitates the hydrolysis of MgATP within this complex. However, it is not able to accept electrons from the [4Fe-4S](1+) cluster of the Fe protein. Furthermore, the dithionite-reduced Delta(nifH) MoFe can be further reduced by Ti(III) citrate, which is quite unexpected. These unusual catalytic and spectroscopic properties might indicate the presence of a P-cluster precursor or a P-cluster trapped in an unusual conformation or oxidation state.  相似文献   

19.
Under anaerobic conditions the molybdenum-iron protein (MoFe protein) from Azotobacter vinelandii can be reversibly oxidized with thionine. Electron paramagnetic resonance studies reveal that the oxidation proceeds in two distinct phases: the MoFe protein can be oxidized by four electrons without loss of the EPR signal from the S = 3/2 cofactor centers. A second oxidation step, involving two electrons, leads to the disappearance of the cofactor EPR signal. In order to correlate the events during the thionine titration with redox reactions involving individual iron centers we have studied the MoFe proteins from A vinelandii and Clostridium pasteurianum with M?ssbauer spectroscopy. Spectra were taken in the temperature range from 1.5 K to 200 K in applied magnetic fields of up to 54 kG. Analysis of the M?ssbauer data allows us to draw three major conclusions: (1) the holoprotein contains 30 +/- 2 iron atoms. (2) Most probably, 12 iron atoms belong to two, apparently identical, iron clusters (labeled M) which we have shown previously to be structural components of the iron and molybdenum containing cofactor of nitrogenase. The M-centers can be stabilized in three distinct oxidation states, MOXe- in equilibrium MNe- in equilibrium MR. The diamagnetic (S = 0) state MOX is attained by oxidation of the native state MN with either thionine or oxygen. MR is observed under nitrogen fixing conditions. (3) The data strongly suggest that 16 iron atoms are associated with four iron centers which we propose to call P-clusters. Each P-cluster contains four spin-coupled iron atoms. In the native protein the P-clusters are in the diamagnetic state PN, yielding the M?ssbauer signature which we have labeled previously 'components D and Fe2+'. Three irons of the D-type and one iron of the Fe2+-type appear to comprise a P-cluster. A one-electron oxidation yields the paramagnetic state POX. Although the state POX is characterized by half-integral electronic spin a peculiar combination of zero-field splitting parameters and spin relaxation renders this state EPR-silent. Spectroscopically, the P-clusters are novel structures; there is, however, evidence that they are closely related to familiar 4Fe-4S centers.  相似文献   

20.
Both heterologous crosses of the Clostridium pasteurianum and Azotobacter vinelandii nitrogenase components are completely inactive, although the reasons for this incompatibility are not known. We have compared a number of properties of the MoFe proteins from these organisms (Cp1 and Av1, respectively) in an attempt to find differences that could explain this lack of functional activity. Optical and CD spectroscopic titrations are similar for both Av1 and Cp1, but EPR titrations are significantly different, suggesting different chemical reactivity patterns and/or magnetic interaction behavior. Similarly, reduction measurements on the six-electron-oxidized state of Cp1 and Av1 at controlled potentials indicate a difference in both the relative reduction sequence of the redox centers and the numerical values for their measured midpoint potentials. EPR measurements as a function of temperature also demonstrate that the relaxation behavior of the S = 3/2 MoFe centers associated with the proteins differ markedly. The Cp1 EPR signal only begins to undergo broadening above 65 K, whereas the Av1 signal is severely broadened above 25 K. These variations in the EPR properties for the two proteins are not likely to be due to differences in the stoichiometry and/or geometry of the MoFe cluster units themselves since similar EPR studies of the isolated cofactors showed them to be essentially identical. Thus, the different EPR behavior of the two proteins seems to arise either from protein constraints imposed on identical cofactors, and/or from magnetic interactions due to neighboring metal clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号