首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Ji X  Li-Ling J  Sun Z 《FEBS letters》2003,542(1-3):125-131
In this work we have developed a new framework for microarray gene expression data analysis. This framework is based on hidden Markov models. We have benchmarked the performance of this probability model-based clustering algorithm on several gene expression datasets for which external evaluation criteria were available. The results showed that this approach could produce clusters of quality comparable to two prevalent clustering algorithms, but with the major advantage of determining the number of clusters. We have also applied this algorithm to analyze published data of yeast cell cycle gene expression and found it able to successfully dig out biologically meaningful gene groups. In addition, this algorithm can also find correlation between different functional groups and distinguish between function genes and regulation genes, which is helpful to construct a network describing particular biological associations. Currently, this method is limited to time series data. Supplementary materials are available at http://www.bioinfo.tsinghua.edu.cn/~rich/hmmgep_supp/.  相似文献   

2.
MOTIVATION: Cellular processes cause changes over time. Observing and measuring those changes over time allows insights into the how and why of regulation. The experimental platform for doing the appropriate large-scale experiments to obtain time-courses of expression levels is provided by microarray technology. However, the proper way of analyzing the resulting time course data is still very much an issue under investigation. The inherent time dependencies in the data suggest that clustering techniques which reflect those dependencies yield improved performance. RESULTS: We propose to use Hidden Markov Models (HMMs) to account for the horizontal dependencies along the time axis in time course data and to cope with the prevalent errors and missing values. The HMMs are used within a model-based clustering framework. We are given a number of clusters, each represented by one Hidden Markov Model from a finite collection encompassing typical qualitative behavior. Then, our method finds in an iterative procedure cluster models and an assignment of data points to these models that maximizes the joint likelihood of clustering and models. Partially supervised learning--adding groups of labeled data to the initial collection of clusters--is supported. A graphical user interface allows querying an expression profile dataset for time course similar to a prototype graphically defined as a sequence of levels and durations. We also propose a heuristic approach to automate determination of the number of clusters. We evaluate the method on published yeast cell cycle and fibroblasts serum response datasets, and compare them, with favorable results, to the autoregressive curves method.  相似文献   

3.
Surveillance data for communicable nosocomial pathogens usually consist of short time series of low-numbered counts of infected patients. These often show overdispersion and autocorrelation. To date, almost all analyses of such data have ignored the communicable nature of the organisms and have used methods appropriate only for independent outcomes. Inferences that depend on such analyses cannot be considered reliable when patient-to-patient transmission is important. We propose a new method for analysing these data based on a mechanistic model of the epidemic process. Since important nosocomial pathogens are often carried asymptomatically with overt infection developing in only a proportion of patients, the epidemic process is usually only partially observed by routine surveillance data. We therefore develop a 'structured' hidden Markov model where the underlying Markov chain is generated by a simple transmission model. We apply both structured and standard (unstructured) hidden Markov models to time series for three important pathogens. We find that both methods can offer marked improvements over currently used approaches when nosocomial spread is important. Compared to the standard hidden Markov model, the new approach is more parsimonious, is more biologically plausible, and allows key epidemiological parameters to be estimated.  相似文献   

4.
5.
Segmentation of yeast DNA using hidden Markov models   总被引:2,自引:0,他引:2  
  相似文献   

6.
MOTIVATION: Hidden Markov models (HMMs) calculate the probability that a sequence was generated by a given model. Log-odds scoring provides a context for evaluating this probability, by considering it in relation to a null hypothesis. We have found that using a reverse-sequence null model effectively removes biases owing to sequence length and composition and reduces the number of false positives in a database search. Any scoring system is an arbitrary measure of the quality of database matches. Significance estimates of scores are essential, because they eliminate model- and method-dependent scaling factors, and because they quantify the importance of each match. Accurate computation of the significance of reverse-sequence null model scores presents a problem, because the scores do not fit the extreme-value (Gumbel) distribution commonly used to estimate HMM scores' significance. RESULTS: To get a better estimate of the significance of reverse-sequence null model scores, we derive a theoretical distribution based on the assumption of a Gumbel distribution for raw HMM scores and compare estimates based on this and other distribution families. We derive estimation methods for the parameters of the distributions based on maximum likelihood and on moment matching (least-squares fit for Student's t-distribution). We evaluate the modeled distributions of scores, based on how well they fit the tail of the observed distribution for data not used in the fitting and on the effects of the improved E-values on our HMM-based fold-recognition methods. The theoretical distribution provides some improvement in fitting the tail and in providing fewer false positives in the fold-recognition test. An ad hoc distribution based on assuming a stretched exponential tail does an even better job. The use of Student's t to model the distribution fits well in the middle of the distribution, but provides too heavy a tail. The moment-matching methods fit the tails better than maximum-likelihood methods. AVAILABILITY: Information on obtaining the SAM program suite (free for academic use), as well as a server interface, is available at http://www.soe.ucsc.edu/research/compbio/sam.html and the open-source random sequence generator with varying compositional biases is available at http://www.soe.ucsc.edu/research/compbio/gen_sequence  相似文献   

7.
8.
MOTIVATION: Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to profile-profile alignment we call Comparison of Alignments by Constructing Hidden Markov Models (HMMs) (COACH). COACH aligns two multiple sequence alignments by constructing a profile HMM from one alignment and aligning the other to that HMM. RESULTS: We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen parameter settings. AVAILABILITY: COACH is freely available from www.drive5.com/lobster  相似文献   

9.
We present here the use of a new statistical segmentation method on the Bacillus subtilis chromosome sequence. Maximum likelihood parameter estimation of a hidden Markov model, based on the expectation-maximization algorithm, enables one to segment the DNA sequence according to its local composition. This approach is not based on sliding windows; it enables different compositional classes to be separated without prior knowledge of their content, size and localization. We compared these compositional classes, obtained from the sequence, with the annotated DNA physical map, sequence homologies and repeat regions. The first heterogeneity revealed discriminates between the two coding strands and the non-coding regions. Other main heterogeneities arise; some are related to horizontal gene transfer, some to t-enriched composition of hydrophobic protein coding strands, and others to the codon usage fitness of highly expressed genes. Concerning potential and established gene transfers, we found 9 of the 10 known prophages, plus 14 new regions of atypical composition. Some of them are surrounded by repeats, most of their genes have unknown function or possess homology to genes involved in secondary catabolism, metal and antibiotic resistance. Surprisingly, we notice that all of these detected regions are a + t-richer than the host genome, raising the question of their remote sources.  相似文献   

10.
MOTIVATION:Aligning multiple proteins based on sequence information alone is challenging if sequence identity is low or there is a significant degree of structural divergence. We present a novel algorithm (SATCHMO) that is designed to address this challenge. SATCHMO simultaneously constructs a tree and a set of multiple sequence alignments, one for each internal node of the tree. The alignment at a given node contains all sequences within its sub-tree, and predicts which positions in those sequences are alignable and which are not. Aligned regions therefore typically get shorter on a path from a leaf to the root as sequences diverge in structure. Current methods either regard all positions as alignable (e.g. ClustalW), or align only those positions believed to be homologous across all sequences (e.g. profile HMM methods); by contrast SATCHMO makes different predictions of alignable regions in different subgroups. SATCHMO generates profile hidden Markov models at each node; these are used to determine branching order, to align sequences and to predict structurally alignable regions. RESULTS: In experiments on the BAliBASE benchmark alignment database, SATCHMO is shown to perform comparably to ClustalW and the UCSC SAM HMM software. Results using SATCHMO to identify protein domains are demonstrated on potassium channels, with implications for the mechanism by which tumor necrosis factor alpha affects potassium current. AVAILABILITY: The software is available for download from http://www.drive5.com/lobster/index.htm  相似文献   

11.
François O  Ancelet S  Guillot G 《Genetics》2006,174(2):805-816
We introduce a new Bayesian clustering algorithm for studying population structure using individually geo-referenced multilocus data sets. The algorithm is based on the concept of hidden Markov random field, which models the spatial dependencies at the cluster membership level. We argue that (i) a Markov chain Monte Carlo procedure can implement the algorithm efficiently, (ii) it can detect significant geographical discontinuities in allele frequencies and regulate the number of clusters, (iii) it can check whether the clusters obtained without the use of spatial priors are robust to the hypothesis of discontinuous geographical variation in allele frequencies, and (iv) it can reduce the number of loci required to obtain accurate assignments. We illustrate and discuss the implementation issues with the Scandinavian brown bear and the human CEPH diversity panel data set.  相似文献   

12.
It has been shown that electropherograms of DNA sequences can be modeled with hidden Markov models. Basecalling, the procedure that determines the sequence of bases from the given eletropherogram, can then be performed using the Viterbi algorithm. A training step is required prior to basecalling in order to estimate the HMM parameters. In this paper, we propose a Bayesian approach which employs the Markov chain Monte Carlo (MCMC) method to perform basecalling. Such an approach not only allows one to naturally encode the prior biological knowledge into the basecalling algorithm, it also exploits both the training data and the basecalling data in estimating the HMM parameters, leading to more accurate estimates. Using the recently sequenced genome of the organism Legionella pneumophila we show that the MCMC basecaller outperforms the state-of-the-art basecalling algorithm in terms of total errors while requiring much less training than other proposed statistical basecallers.  相似文献   

13.
This work presents a novel pairwise statistical alignment method based on an explicit evolutionary model of insertions and deletions (indels). Indel events of any length are possible according to a geometric distribution. The geometric distribution parameter, the indel rate, and the evolutionary time are all maximum likelihood estimated from the sequences being aligned. Probability calculations are done using a pair hidden Markov model (HMM) with transition probabilities calculated from the indel parameters. Equations for the transition probabilities make the pair HMM closely approximate the specified indel model. The method provides an optimal alignment, its likelihood, the likelihood of all possible alignments, and the reliability of individual alignment regions. Human alpha and beta-hemoglobin sequences are aligned, as an illustration of the potential utility of this pair HMM approach.  相似文献   

14.
Hidden Markov models have been used to restore recorded signals of single ion channels buried in background noise. Parameter estimation and signal restoration are usually carried out through likelihood maximization by using variants of the Baum-Welch forward-backward procedures. This paper presents an alternative approach for dealing with this inferential task. The inferences are made by using a combination of the framework provided by Bayesian statistics and numerical methods based on Markov chain Monte Carlo stochastic simulation. The reliability of this approach is tested by using synthetic signals of known characteristics. The expectations of the model parameters estimated here are close to those calculated using the Baum-Welch algorithm, but the present methods also yield estimates of their errors. Comparisons of the results of the Bayesian Markov Chain Monte Carlo approach with those obtained by filtering and thresholding demonstrate clearly the superiority of the new methods.  相似文献   

15.
16.
Qin LX  Self SG 《Biometrics》2006,62(2):526-533
Identification of differentially expressed genes and clustering of genes are two important and complementary objectives addressed with gene expression data. For the differential expression question, many "per-gene" analytic methods have been proposed. These methods can generally be characterized as using a regression function to independently model the observations for each gene; various adjustments for multiplicity are then used to interpret the statistical significance of these per-gene regression models over the collection of genes analyzed. Motivated by this common structure of per-gene models, we proposed a new model-based clustering method--the clustering of regression models method, which groups genes that share a similar relationship to the covariate(s). This method provides a unified approach for a family of clustering procedures and can be applied for data collected with various experimental designs. In addition, when combined with per-gene methods for assessing differential expression that employ the same regression modeling structure, an integrated framework for the analysis of microarray data is obtained. The proposed methodology was applied to two microarray data sets, one from a breast cancer study and the other from a yeast cell cycle study.  相似文献   

17.
18.
We consider hidden Markov models as a versatile class of models for weakly dependent random phenomena. The topic of the present paper is likelihood-ratio testing for hidden Markov models, and we show that, under appropriate conditions, the standard asymptotic theory of likelihood-ratio tests is valid. Such tests are crucial in the specification of multivariate Gaussian hidden Markov models, which we use to illustrate the applicability of our general results. Finally, the methodology is illustrated by means of a real data set.  相似文献   

19.
Validating clustering for gene expression data   总被引:24,自引:0,他引:24  
MOTIVATION: Many clustering algorithms have been proposed for the analysis of gene expression data, but little guidance is available to help choose among them. We provide a systematic framework for assessing the results of clustering algorithms. Clustering algorithms attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. Our methodology is to apply a clustering algorithm to the data from all but one experimental condition. The remaining condition is used to assess the predictive power of the resulting clusters-meaningful clusters should exhibit less variation in the remaining condition than clusters formed by chance. RESULTS: We successfully applied our methodology to compare six clustering algorithms on four gene expression data sets. We found our quantitative measures of cluster quality to be positively correlated with external standards of cluster quality.  相似文献   

20.
Gene-Ontology-based clustering of gene expression data   总被引:2,自引:0,他引:2  
The expected correlation between genetic co-regulation and affiliation to a common biological process is not necessarily the case when numerical cluster algorithms are applied to gene expression data. GO-Cluster uses the tree structure of the Gene Ontology database as a framework for numerical clustering, and thus allowing a simple visualization of gene expression data at various levels of the ontology tree. AVAILABILITY: The 32-bit Windows application is freely available at http://www.mpibpc.mpg.de/go-cluster/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号