首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Synthesis of rat liver microsomal cytochrome b5 by free ribosomes   总被引:16,自引:9,他引:7       下载免费PDF全文
Free and membrane-bound polyribosomes were separated from liver homogenates and characterized by electron microscopy. Using the wheat germ cell-free translation system, total translation products of poly A+RNA extracted from free polyribosomes (poly A+RNAf) showed some correlation to total liver cytosol proteins. In contrast, translation products of poly A+RNA from membrane-bound polyribosomes (poly A+RNAmb) showed some similarity to rat serum. Antibody to purified rat serum albumin immunoprecipitated from only the translation products of poly A+RNAmb a single polypeptide of mol wt 68,000. i.e., 3,000 greater than secreted serum albumin. In contrast, antibody to detergent-extracted cytochrome b5 immunoprecipitated from only the translation products of poly A+RNAf a single polypeptide of mol wt 17,500, identical to that of microsomal cytochrome b5. A consideration of the known properties of cytochrome b5 is consistent with an exclusive site of synthesis on free ribosomes.  相似文献   

3.
The steady-state levels of aerobic and anaerobic reduction of cytochrome b5 by ascorbic acid and the initial rates of cytochrome b5 reduction in the presence of ascorbic acid and of anaerobic cytochrome P-450 reduction in the presence of NADH were used to calculate the rate constants for cytochrome b5 oxidation. The rate constant for cytochrome b5 autooxidation in the membrane is equal to that for isolated cytochrome b5, i. e., 5 X 10(-3) s-1 (37 degrees C). The rate constant for the second cytochrome b5 oxidation reaction in the membrane, i. e., electron transfer to cytochrome P-450, is equal to 140 X 10(-3) s-1 (37 degrees C).  相似文献   

4.
5.
6.
7.
1. Cytochrome b5 is released from rat liver microsomes by both proteolytic enzymes and by treatments that disrupt phospholipids. Cytochrome P-420 is only released to a marked extent by treatments that disrupt phospholipids. 2. Cytochrome b5 was isolated in a pure state from both the rough and smooth fractions of rat liver microsomes after treatment with trypsin, and was shown to contain two cytochrome components with identical spectral properties. 3. Amino acid analyses of the two components are presented, together with peptide `fingerprint' patterns of tryptic digests of the two components. 4. Studies based on the direct isolation of cytochrome b5 after administration of a single dose of radioactive amino acid to rats demonstrate that the cytochrome is synthesized initially in the rough fraction of microsomes and only subsequently appears in the smooth fraction. 5. Isolated rat liver microsomes are capable of incorporating radioactive amino acids into cytochrome b5 under standard conditions. 6. Under these conditions the amino acid is incorporated into peptide linkage in the cytochrome.  相似文献   

8.
Incubation of rat homogeneous detergent-solubilized cytochrome b5 with rat liver microsomes resulted in specific binding of the hemoprotein which was rapidly reduced by NADH. The NADH cytochrome c reductase activity in these preparations increased in proportion to the amount of cytochrome bound. However, the extra-bound detergent-solubilized cytochrome b5 did inhibit NADPH-dependent N-demethylations, the NADH synergism and NADPH cytochrome P-450 reductase activity. Manganese protoporphyrin-apocytochrome complex when bound to microsomes in amounts equivalent to detergent-solubilised cytochrome b5 showed no effect on N-demethylation activity. Furthermore, the binding of cytochrome b5 preparations reconstituted from heme and apocytochrome b5 had no effect on either the NADPH-dependent N-demethylation of aminopyrene or ethylmorphine or the NADH synergism observed with rat liver microsomes. In addition, homogeneous cytochrome b5 eluted from three additional Sephadex G-100 columns showed no inhibitory effects when bound to liver microsomes. Spectral analyses of the acid-acetone extract of the hemoprotein showed an absorption peak at 278 nm suggesting that the homogeneous b5 contains contaminating amounts of tightly bound detergent which is responsible for the observed inhibition of mixed function oxidase activity and which is removed during extraction of the heme from the apocytochrome and during further gel filtration applications.  相似文献   

9.
An antibody preparation elicited against purified, lysosomal-solubilized NADH-cytochrome b5 reductase from rat liver microsomes was shown to interact with methemoglobin reductase of human erythrocytes by inhibiting the rate of erythrocyte cytochrome b5 reduction by NADH. The ferricyanide reductase activity of the enzyme was not inhibited by the antibody, suggesting that the inhibition of methemoglobin reductase activity may be due to interference with the binding of cytochrorme b5 to the flavoprotein. Under conditions of limiting concentrations of flavoprotein, the antibody inhibited the rate of methemoglobin reduction in a reconstituted system consisting of homogeneous methemoglobin reductase and cytochrome b5 from human erythrocytes. This inhibition was due to the decreased level of reduced cytochrome b5 during the steady state of methemoglobin reduction while the rate of methemoglobin reduction per reduced cytochrome b5 stayed constant, suggesting that the enzyme was not concerned with an electron transport between the reduced cytochrome b5 and methemoglobin.An antibody to purified, trypsin-solubilized cytochrome b5 from rat liver microsomes was shown to inhibit erythrocyte cytochrome b5 reduction by methemoglobin reductase and NADH to a lesser extent than microsomal cytochrome b5 preparations from rat liver (trypsin solubilized or detergent solubilized) and pig liver (trypsin solubilized). The results presented establish that soluble methemoglobin reductase and cytochrome b5 of human erythrocytes are immunochemically similar to NADH-cytochrome b5 reductase and cytochrome b5 of liver microsomes, respectively.  相似文献   

10.
Two distinct forms of cytochrome b5 exist in the rat hepatocyte. One is associated with the membrane of the endoplasmic reticulum (microsomal, or Mc, cyt b5) while the other is associated with the outer membrane of liver mitochondria (OM cyt b5). Rat OM cyt b5, the only OM cyt b5 identified so far, has a significantly more negative reduction potential and is substantially more stable toward chemical and thermal denaturation than Mc cytochromes b5. In addition, hemin is kinetically trapped in rat OM cyt b5 but not in the Mc proteins. As a result, no transfer of hemin from rat OM cyt b5 to apomyoglobin is observed at pH values as low as 5.2, nor can the thermodyamically favored ratio of hemin orientational isomers be achieved under physiologically relevant conditions. These differences are striking given the similarity of the respective protein folds. A combined theoretical and experimental study has been conducted in order to probe the structural basis behind the remarkably different properties of rat OM and Mc cytochromes b5. Molecular dynamics (MD) simulations starting from the crystal structure of bovine Mc cyt b5 revealed a conformational change that exposes several internal residues to the aqueous environment. The new conformation is equivalent to the "cleft-opened" intermediate observed in a previously reported MD simulation of bovine Mc cyt b5 [Storch, E. M., and Daggett, V. (1995) Biochemistry 34, 9682-9693]. The rat OM protein does not adopt a comparable conformation in MD simulations, thus restricting access of water to the protein interior. Subsequent comparisons of the protein sequences and structures suggested that an extended hydrophobic network encompassing the side chains of Ala-18, Ile-32, Leu-36, and Leu-47 might contribute to the inability of rat OM cyt b5 to adopt the cleft-opened conformation and, hence, stabilize its fold relative to the Mc isoforms. A corresponding network is not present in bovine Mc cyt b5 because positions 18, 32, and 47, are occupied by Ser, Leu, and Arg, respectively. To probe the roles played by Ala-18, Ile-32, and Leu-47 in endowing rat OM cyt b5 with its unusual structural properties, we have replaced them with the corresponding residues in bovine Mc cyt b5. Hence, the I32L (single), A18S/L47R (double), and A18S/L47R/I32L (triple) mutants of rat OM cyt b5 were prepared. The stability of these proteins was found to decrease in the following order: WT rat OM > rat OM I32L > rat OM A18S/L47R > rat OM A18S/L47R/I32L > bovine Mc cyt b5. The decrease in stability of the rat OM protein correlates with the extent to which the hydrophobic cluster involving the side chains of residues 18, 32, 36, and 47 has been disrupted. Complete disruption of the hydrophobic network in the triple mutant is confirmed in a 2.0 A resolution crystal structure of the protein. Disruption of the hydrophobic network also facilitates hemin loss at pH 5.2 for the double and triple mutants, with the less stable triple mutant exhibiting the greater rate of hemin transfer to apomyoglobin. Finally, 1H NMR spectroscopy and side-by-side comparisons of the crystal structures of bovine Mc, rat OM, and rat OM A18S/L47R/I32L cyt b5 allowed us to conclude that the nature of residue 32 plays a key role in controlling the relative stability of hemin orientational isomers A and B in rat OM cyt b5. A similar analysis led to the conclusion that Leu-70 and Ser-71 play a pivotal role in stabilizing isomer A relative to isomer B in Mc cytochromes b5.  相似文献   

11.
The effects of cytochrome b5 on the decay of the ferrous dioxygen complexes of P-450LM2 and P-450LM4 from rabbit liver microsomes were studied by stopped-flow spectrophotometry. The P-450 (FeIIO2) complexes accept an electron from reduced cytochrome b5 and, in a reaction not previously described, donate an electron to oxidized cytochrome b5 to give ferric P-450. A comparison with the electron-transferring properties of ferrous P-450 under anaerobic conditions allowed determination of the limiting steps of the two reactions involving the oxygenated complex. The rate of decay of the dioxygen complex was increased in all cases with b5 present; however, with oxidized b5 a large increase in the rate was observed with P-450 isozyme 4 but not with isozyme 2, whereas the opposite situation was found when reduced b5 was used. The reactions between b5 and ferrous dioxygen P-450 were not at thermodynamic equilibrium under the conditions employed. From the results obtained, a model is proposed in which the ferrous dioxygen complex decomposes rapidly into another species differing from ferric P-450 in its spectral properties and from the starting complex in its electron-transferring properties. A scheme is presented to indicate how competition among spontaneous decay, cytochrome b5 oxidation, and cytochrome b5 reduction by the ferrous O2 complex may influence substrate hydroxylation.  相似文献   

12.
13.
14.
15.
16.
Cytochrome b5 was purified from detergent solubilized sheep liver microsomes by using three successive DEAE-cellulose, and Sephadex G-100 column chromatographies. It was purified 54-fold and the yield was 23.5% with respect to microsomes. The apparent Mr of cytochrome b5 was estimated to be 16,200 +/- 500 by SDS-PAGE. Absolute absorption spectrum of the purified cytochrome b5 showed maximal absorption at 412 nm and dithionite-reduced cytochrome b5 gave peaks at 557, 526.5 and 423 nm. The ability of the purified sheep liver cytochrome b5 to transfer electrons from NADH-cytochrome b5 reductase to cytochrome c was investigated. The K(m) and Vmax values were calculated to be 0.088 microM cytochrome b5 and 315.8 microM cytochrome c reduced/min/mg enzyme, respectively. Also the reduction of cytochrome b5 by reductase was studied and K(m) and Vmax values were determined to be 5 microM cytochrome b5 and 5200 nmol cytochrome b5 reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating concentration of cytochrome b5 were found to be 0.0017 mM NADH and 6944 nmol cytochrome b5 reduced/min/mg enzyme, respectively. NADH-cytochrome b5 reductase was also partially purified from the same source, detergent solubilized sheep liver microsomes, by using two successive DEAE-cellulose, and 5'-ADP-agarose affinity column chromatographies. It was purified 144-fold and the yield was 7% with respect to microsomes. The apparent monomer Mr of reductase was estimated to be 34,000 by SDS-PAGE. When ferricyanide was used as an electron acceptor, reductase showed maximum activity between 6.8 and 7.5. The K(m) and Vmax values of the enzyme for ferricyanide were calculated as 0.024 mM ferricyanide and 673 mumol ferricyanide reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating amounts of ferricyanide were found to be 0.020 mM NADH and 699 mumol ferricyanide reduced/min/mg enzyme, respectively.  相似文献   

17.
Primary structure of rabbit liver cytochrome b5   总被引:3,自引:0,他引:3  
  相似文献   

18.
Crystallographic study of calf liver cytochrome b5   总被引:1,自引:0,他引:1  
  相似文献   

19.
Crystallographic study of rabbit liver cytochrome b5   总被引:1,自引:0,他引:1  
  相似文献   

20.
Hen liver microsomes contained 0.20 nmol of cytochromeb5 per mg of protein. Upon addition of NADH about 95% cytochrome b5 was reduced very fast with a rate constant of 206 s?1When ferricyanide was added to the reaction system the cytochrome stayed in the oxidized form until the ferricyanide reduction was almost completed. The reduced cytochrome b5 in microsomes was oxidized very rapidly by ferricyanide. The rate constant of 4.5 × 108m?1 s?1, calculated on the basis of assumption that ferricyanide reacts directly with the cytochrome, was found to be more than 100 times higher than that of the reaction between ferricyanide and soluble cytochrome b5. To explain the results, therefore, the reverse electron flow from cytochrome b5 to the flavin coenzyme in microsomes was assumed.By three independent methods the specific activity of the microsomes was measured at about 20 nmol of NADH oxidized per s per mg of protein and it was concluded that the reduction of the flavin coenzyme of cytochrome b5 reductase by NADH is rate-limiting in the NADH-cytochrome b5 and NADH-ferricyanide reductase reactions of hen liver microsomes. In the NADH-ferricyanide reductase reaction the apparent Michaelis constant for NADH was 2.8 μm and that for ferricyanide was too low to be measured. In the NADH-cytochrome c reductase reaction the maximum velocity was 2.86 nmol of cytochrome c reduced per s per mg of protein and the apparent Michaelis constant for cytochrome c was 3.8 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号