首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T5P gammaC-crystallin mutation is associated with Coppock-like cataract, one of the autosomal dominant congenital cataracts. It is not known why the abundant alpha-crystallin cannot prevent the mutation-related aggregation. Our previous studies indicate that the mutation changes conformation and reduces solubility and stability, but it is not known whether it is these events or the loss of interaction with other crystallins that causes the cataract. It is also not known whether the alpha-crystallin can protect T5P mutant as effectively from heat-induced aggregation as the wild-type (WT) gammaC-crystallin. To investigate the mechanism of interactions and chaperone function between alphaA- and gammaC-crystallin, human alphaA-crystallin and W9F mutant as well as WT gammaC-crystallin and T5P mutant were cloned. Interactions between alphaA- and gammaC-crystallin were studied with fluorescence resonance energy transfer (FRET), and chaperone activity was assessed by the suppression of heat-induced aggregation of substrate proteins. Conformational changes of substrate proteins were studied by spectroscopic measurements. The results indicate that the T5P mutant showed a slightly greater FRET than WT gammaC-crystallin with alphaA-crystallin, and alphaA-crystallin could effectively prevent both WT and T5P gammaC-crystallin from heat-induced aggregation. Spectroscopic measurements show that both alphaA-crystallin and gammaC-crystallin underwent only slight conformational change after chaperone binding. Together with previous results obtained with a two-hybrid system assay of interactions between alphaA- and gammaC-crystallin, the present FRET and chaperone results indicate that loss of interactions of T5P mutant with other crystallins may play a larger role than the protection afforded by chaperone-like activity in Coppock-like cataract.  相似文献   

2.
Zhang W  Cai HC  Li FF  Xi YB  Ma X  Yan YB 《PloS one》2011,6(5):e20564
γD-crystallin is one of the major structural proteins in human eye lens. The solubility and stability of γD-crystallin play a crucial role in maintaining the optical properties of the lens during the life span of an individual. Previous study has shown that the inherited mutation G61C results in autosomal dominant congenital cataract. In this research, we studied the effects of the G61C mutation on γD-crystallin structure, stability and aggregation via biophysical methods. CD, intrinsic and extrinsic fluorescence spectroscopy indicated that the G61C mutation did not affect the native structure of γD-crystallin. The stability of γD-crystallin against heat- or GdnHCl-induced denaturation was significantly decreased by the mutation, while no influence was observed on the acid-induced unfolding. The mutation mainly affected the transition from the native state to the intermediate but not that from the intermediate to the unfolded or aggregated states. At high temperatures, both proteins were able to form aggregates, and the aggregation of the mutant was much more serious than the wild type protein at the same temperature. At body temperature and acidic conditions, the mutant was more prone to form amyloid-like fibrils. The aggregation-prone property of the mutant was not altered by the addition of reductive reagent. These results suggested that the decrease in protein stability followed by aggregation-prone property might be the major cause in the hereditary cataract induced by the G61C mutation.  相似文献   

3.
Up to now, efforts to crystallize the cataract‐associated P23T mutant of human γD‐crystallin have not been successful. Therefore, insights into the light scattering mechanism of this mutant have been exclusively obtained from solution work. Here we present the first crystal structure of the P23T mutant at 2.5 Å resolution. The protein exhibits essentially the same overall structure as seen for the wild‐type protein. Based on our structural data, we confirm that no major conformational changes are caused by the mutation, and that solution phase properties of the mutant appear exclusively associated with cataract formation. Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The conformational stabilities of bovine lens gamma-crystallin fractions II, IIIA, IIIB, and IVA and those modified with glutathione were compared by studying the thermal and guanidine hydrochloride (Gdn-HCl) denaturation behavior. The conformational state was monitored by both far-UV CD and fluorescence measurements. All the gamma-crystallins studied showed a sigmoidal order-disorder transition with varied melting temperatures. The thermal denaturation of these proteins is reversible up to a temperature 3 or 4 degrees C above T 1/2; above this temperature, irreversible aggregation occurs. The validity of a two-state approximation of both thermal and Gdn-HCl denaturation was tested for all four crystallins, and the presence of one or more intermediates was evident in the unfolding of IVA. delta GDH2O values of these crystallins range from 4 to 9 kcal/mol. Upon glutathione treatment IVA showed the maximum decrease in T 1/2 by approximately 9 degrees C and in delta GDH2O value by 29%; the smallest decrease in T 1/2 was for IIIA by 2 degrees C and in delta GDH2O by 15%. We have demonstrated that the glutathione reaction can dramatically reduce the conformational stability of gamma-crystallins and, thus, that the thermodynamic quantities of the unreacted crystallins can be used to evaluate the stability of these proteins when modified during cataract formation.  相似文献   

5.
The T5P mutation in human gamma C-crystallin produces a lens cataract. Here, we have investigated the effects of the T5P mutation upon the aggregation of gamma C-crystallin in vitro and in transfected cells. By sedimentation assay and sucrose gradient centrifugation, the mutation significantly increased the aggregation of the protein and reduced dramatically its solubility in vitro. Similar effects were seen when T5P gamma C-crystallin was transfected into tissue culture cells, resulting in the formation of cytoplasmic aggregates of T5P gamma C-crystallin. Interestingly, the major lenticular protein chaperones, alpha A- and alpha B-crystallin, increased the solubility of the T5P gamma C-crystallin both in vitro and in transfected cells. More importantly, the size of the T5P gamma C-crystallin aggregates were also significantly reduced in the presence of the lenticular chaperones. These data therefore suggest a dual role for these chaperones in maintaining transparency in the lens. The first is that these protein chaperones increase the proportion of the soluble T5P gamma C-crystallin and the second is that they also reduce light scatter by reducing the aggregate size of T5P gamma C-crystallin. Both activities could modify the cataract phenotype and help explain the observed variability reported for identical gamma-crystallin mutations, which identify cataract as a polygenic disease.  相似文献   

6.
Li H  Li C  Lu Q  Su T  Ke T  Li DW  Yuan M  Liu J  Ren X  Zhang Z  Zeng S  Wang QK  Liu M 《Biochimica et biophysica acta》2008,1782(5):303-309
Cataract is a common cause of childhood blindness worldwide. alpha-crystallin, which is comprised of two homologous subunits, alphaA- and alphaB-crystallin, plays a key role in the maintenance of lens transparency. Recently, we have identified a missense mutation in alphaB-crystallin that changes the proline residue at codon 20 to a serine residue (P20S) in a large Chinese family with autosomal dominant posterior polar congenital cataract. To explore the molecular mechanism by which the P20S mutation causes cataract, we examined the quaternary structure, subunit exchange and chaperone activity of the reconstituted heteroaggregates of alpha-crystallins containing wild type (WT) alphaA in combination with either WT-alphaB- or mutant alphaB-crystallin, respectively. Compared with heteroaggregates of WT-alphaA and WT-alphaB, heteroaggregates containing WT-alphaA and mutant alphaB showed nearly the same molecular mass, but the subunit-exchange rate and chaperone activity were decreased markedly. In human lens epithelial cells, unlike WT-alphaB-crystallin, the P20S mutant protein showed abnormal nuclear localization, and unusual ability to trigger apoptosis. These results suggest that the changes in the structure and function of the alpha-crystallin complex and cytotoxicity are vital factors in the pathogenesis of congenital cataract linked to the P20S mutation in the alphaB-crystallin.  相似文献   

7.
Congenital cataract is a major cause of visual impairment and childhood blindness. The solubility and stability of crystallin proteins play critical roles in maintaining the optical transparency of the lens during the life span. Previous studies have shown that approximately 8.3%∼25% of congenital cataracts are inherited, and mutations in crystallins are the most common. In this study, we attempted to identify the genetic defect in a four-generation family affected with congenital cataracts. The congenital cataract phenotype of this four-generation family was identified as membranous cataract by slit-lamp photography. Mutation screening of the candidate genes detected a heterozygous c.465G→C change in the exon6 of the βB2-crystallin gene (CRYBB2) in all family members affected with cataracts, resulting in the substitution of a highly conserved Tryptophan to Cystine (p.W151C). The mutation was confirmed by restriction fragment length polymorphism (RFLP) analysis and found that the transition resulted in the absence of a BslI restriction site in the affected members of the pedigree. The outcome of PolyPhen-2 and SIFT analysis predicted that this W151C mutation would probably damage to the structure and function of βB2-crystallin. Wild type (wt) and W151C mutant βB2-crystallin were expressed in human lens epithelial cells (HLECs), and the fluorescence results showed that Wt-βB2-crystallin was evenly distributed throughout the cells, whereas approximately 34.7% of cells transfected with the W151C mutant βB2-crystallin formed intracellular aggregates. Taken together, these data suggest that the missense mutation in CRYBB2 gene leads to progressive congenital membranous cataract by impacting the solubility and function of βB2-crystallin.  相似文献   

8.
Studies have established that congenital cataract is the major cause of blindness in children across the globe. The β-crystallin protein family is the richest and most soluble structural protein in the lens. Their solubility and stability are essential in maintaining lens transparency. In this study, we identified a novel βB2 mutation W151R in a rare progressive cortical congenital cataract family and explored its pathogenesis using purified protein and mutant related cataract-cell models. Due to its low solubility and poor structural stability, the βB2 W151R mutation was prone to aggregation. Moreover, the W151R mutation enhanced the exposure of the hydrophobic side chains in the fourth Greek Key motif, which were readily degraded by trypsin. However, upon the administration of lanosterol, the negative effect of the W151R mutation was reversed. Therefore, lanosterol is a potential therapeutic option for cataracts.  相似文献   

9.
Autosomal dominant cataract is a clinically and genetically heterogeneous lens disorder that usually presents as a sight-threatening trait in childhood. Here we have mapped dominant pulverulent cataract to the beta-crystallin gene cluster on chromosome 22q11.2. Suggestive evidence of linkage was detected at markers D22S1167 (LOD score [Z] 2.09 at recombination fraction [theta] 0) and D22S1154 (Z=1.39 at theta=0), which closely flank the genes for betaB1-crystallin (CRYBB1) and betaA4-crystallin (CRYBA4). Sequencing failed to detect any nucleotide changes in CRYBA4; however, a G-->T transversion in exon 6 of CRYBB1 was found to cosegregate with cataract in the family. This single-nucleotide change was predicted to introduce a translation stop codon at glycine 220 (G220X). Expression of recombinant human betaB1-crystallin in bacteria showed that the truncated G220X mutant was significantly less soluble than wild type. This study has identified the first CRYBB1 mutation associated with autosomal dominant cataract in humans.  相似文献   

10.
A new mouse mutant line, Clapper, identified from N-ethyl-N-nitrosurea (ENU)-mutagenized mice, develops a dominant lamellar cataract. The cataract blocks the image of retinal fundus and transmits a fuzzy fluorescein image of retinal vasculature during angiography. The cataractous lens opacity decreases as the mice age. The Clapper mutation has been identified to be a missense mutation of the gammaB-crystallin gene that replaces the 4th isoleucine residue with a phenylalanine (gammaB-I4F). Unlike wild type gammaB, the gammaB-I4F mutant protein binds to alpha-crystallin to form high molecular weight complexes in vivo and in vitro. Circular dichroism measurements indicate that gammaB-I4F protein is less stable than wild type gammaB at high temperature. Darkly stained aggregates, enlarged interfiber spaces, and disorganized and smaller inner mature fibers were found in the regions of the cataract in homozygous Clapper mutant lenses. Thus, the lamellar cataract is likely due to the light-scattering effects of the enlarged interfiber spaces and protein aggregates caused by gammaB-I4F mutant proteins interacting with alpha-crystallin in the lens.  相似文献   

11.
Andley UP  Hamilton PD  Ravi N 《Biochemistry》2008,47(36):9697-9706
AlphaA-crystallin is a small heat shock protein that functions as a molecular chaperone and a lens structural protein. The R49C single-point mutation in alphaA-crystallin causes hereditary human cataracts. We have previously investigated the in vivo properties of this mutant in a gene knock-in mouse model. Remarkably, homozygous mice carrying the alphaA-R49C mutant exhibit nearly complete lens opacity concurrent with small lenses and small eyes. Here we have investigated the 90 degrees light scattering, viscosity, refractive index, and bis-ANS fluorescence of lens proteins isolated from the alphaA-R49C mouse lenses and found that the concentration of total water-soluble proteins showed a pronounced decrease in alphaA-R49C homozygous lenses. Light scattering measurements on proteins separated by gel permeation chromatography showed a small amount of high-molecular mass aggregated material in the void volume which still remains soluble in alphaA-R49C homozygous lens homogenates. An increased level of binding of beta- and gamma-crystallin to the alpha-crystallin fraction was observed in alphaA-R49C heterozygous and homozygous lenses but not in wild-type lenses. Quantitative analysis with the hydrophobic fluorescence probe bis-ANS showed a pronounced increase in fluorescence yield upon binding to alpha-crystallin from mutant as compared with the wild-type lenses. These results suggest that the decrease in the solubility of the alphaA-R49C mutant protein was due to an increase in its hydrophobicity and supra-aggregation of alphaA-crystallin that leads to cataract formation. Our study further shows that analysis of mutant proteins from the mouse model is an effective way to understand the mechanism of protein insolubilization in hereditary cataracts.  相似文献   

12.
13.
The P23T mutation in the human gammaD-crystallin gene has in recent years been associated with a number of well known cataract phenotypes. To understand the molecular mechanism of lens opacity caused by this mutation, we expressed human gammaD-crystallin (HGD), the P23T mutant, and other related mutant proteins in Escherichia coli and compared the structures and thermodynamic properties of these proteins in vitro. The results show that the cataract-causing mutation P23T does not exhibit any significant structural change relative to the native protein. However, in marked contrast to the native protein, the mutant shows a dramatically lowered solubility. The reduced solubility results from the association of the P23T mutant to form a new condensed phase that contains clusters of the mutant protein. The monomer-cluster equilibrium is represented by a solubility curve in the phase diagram. When the solubility limit is exceeded, the mutant protein forms the condensed phase after a nucleation time of 10-20 min. We found that the solubility of the P23T mutant exhibits an inverse dependence on temperature, i.e., the protein clusters are increasingly soluble as the temperature of the solution decreases. The solubility of P23T can be substantially altered by the introduction of specific mutations at or in the immediate vicinity of residue 23. We examined the mutants P23S, P23V, P23TInsP24, and P23TN24K and found that the latter two mutations can restore the solubility of the P23T mutant. These findings may help develop a strategy for the rational design of small molecule inhibitors of this type of condensed phase.  相似文献   

14.
We describe a new spontaneous mutation in BALB/c mice that causes abnormal phenotype, such as congenital cataract and microphthalmia. This abnormality was found to be inheritable because offspring with the same abnormality were produced by backcrossing the abnormal male to its normal female parent. Results of various crosses made to determine the mode of inheritance indicated that this abnormality is attributable to mutation of an autosomal recessive gene. Slit lamp examination of the mutant eyes revealed total lenticular opacity, disturbed typical iris pattern, and abnormal pupillary muscle development. Histologic changes in mutant eyes between gestation day 13 and postnatal day 1 indicated various eye and lens abnormalities, including microphthalmia; underdeveloped iris, optic stalk, cornea, and retina; degenerated lens fibers with lost fibrillar structure; and vacuoles of various sizes at the posterior border of the lens. Mild opacity of the lens was found to progress with age and became denser, resembling mature cataract, and occupying the lens completely at the age of six to eight weeks. We, therefore, temporarily designated this abnormality as dense cataract and microphthalmia, with the gene symbol dcm.  相似文献   

15.
A seven-generation family with 30 members affected by highly variable autosomal dominant zonular pulverulent cataracts has been previously described. We have localized the cataracts to a 19-cM interval on chromosome 2q33-q35 including the gamma-crystallin gene cluster. Maximum lod scores are 4.56 (theta=0.02) with D2S157, 3.66 (theta=0.12) with D2S72, and 3.57 (theta=0.052) with CRYG. Sequencing and allele-specific oligonucleotide analysis of the pseudo gammaE-crystallin promoter region from individuals in the pedigree suggest that activation of the gammaE-crystallin pseudo gene is unlikely to cause the cataracts in the family. In addition, base changes in the TATA box but not the Sp1-binding site have been found in unaffected controls and can be excluded as a sole cause of cataracts. In order to investigate the underlying genetic mechanism of cataracts in this family further, exons of the highly expressed gammaC- and gammaD-crystallin genes have been sequenced. The gammaD-crystallin gene shows no abnormalities, but a 5-bp duplication within exon 2 of the gammaC-crystallin gene has been found in one allele of each affected family member and is absent from both unaffected family members and unaffected controls. This mutation disrupts the reading frame of the gammaC-crystallin coding sequence and is predicted to result in the synthesis of an unstable gammaC-crystallin with 38 amino acids of the first "Greek key" motif followed by 52 random amino acids. This finding suggests that the appropriate association of mutant betagamma-crystallins into oligomers is not necessary to cause cataracts and may give us new insights into the genetic mechanism of cataract formation.  相似文献   

16.
17.
Crystallins, the major structural proteins in the lens of the eye, are maintained with little turnover throughout the lifetime of the host. With time, lens crystallins undergo post-translational modifications that may play an important role in loss of vision during aging and cataract formation. Specific modifications include deamidation and truncation. Urea-induced denaturation was studied for recombinantly expressed wild-type betaB1 (WT), the deamidated mutant (Q204E), an N-terminally truncated mutant (betaB1(DeltaN41)), and other truncated versions of these proteins generated by calpain II digestion. Tryptophan fluorescence was used to monitor loss of global tertiary structure. Loss of secondary structure was followed by circular dichroism, and electron paramagnetic resonance site-directed spin labeling was used to monitor loss of tertiary structure selectively in the N-terminal domain. Our results indicated that the deamidated mutant was significantly destabilized relative to WT. Q204E showed a two-step denaturation curve with transitions at 4.1 and 7.2 M urea, whereas denaturation of WT occurred in a cooperative single step with a transition midpoint of 5.9 M urea. Unfolding of WT was completely reversible, whereas Q204E failed to fully refold. Prolonged incubation under denaturing conditions led to aggregation, which was also more pronounced for Q204E dimers than for WT. Truncation of 41 residues from the N-terminus or 47 and 5 residues from the N- and C-termini did not affect stability. These studies indicated that a single-site deamidation could significantly diminish the stability of lens betaB1-crystallin, supporting the idea that such modifications may play an important role in age-related cataract formation.  相似文献   

18.
Jack Favor 《Mutation research》1983,110(2):367-382
Mice were derived from parental males treated with 250 mg ethylnitrosourea per kg body weight. The mice were screened simultaneously for induced dominant cataract and recessive specific-locus mutations. In the spermatogonial treatment group, 16 dominant cataract, 1 dominant corneal opacity and 60 recessive specific-locus mutations were recovered and genetically confirmed in 9352 offspring observed. This lower yield of dominant cataract mutations, when compared with the yield of recessive specific-locus mutations, is similar to results observed by Kratochvilova in a series of experiments on dominant cataract mutations induced by radiation treatment. These results taken with reported results from other dominant mutation test systems, suggest a lower per-locus mutation rate to dominant than to recessive alleles. A corollary to the hypothesis that most dominantly expressed alleles code for an alteration in the function of the normal gene product is that a limited subset of mutations could normally lead to a dominantly expressed mutation. This may explain the lower per-locus mutation rate to dominant than to recessive alleles.

Genetic confirmation tests of recovered presumed dominant cataract mutations indicate that a certain category of phenotypic variants (bilateral, severe or unique lens opacity) is likely to be a true mutation but only represents 7 of the 19 mutations recovered. A second category of phenotypic variants (unilateral, neither severe nor unique lens opacity) has an extremely low probability of being a true mutation. Only 1 confirmed mutation in 181 phenotypic variants was obtained. The remaining category of phenotypic variants (either unilateral severe or unique, or bilateral neither severe nor unique lens opacity) represented the majority, 11, of the confirmed mutations obtained. However, 266 presumed mutations in this category were recovered. If a sub-class of phenotypic variants within this category could be identified that could be ignored owing to a very low probability of being a true mutation, the efficiency of recovery of confirmed dominant cataract mutations would be greatly increased with no sacrifice in the accuracy of the observed mutation rate.

Finally, the 17 confirmed dominant cataract mutations obtained included a class of 7 that produced significantly fewer than the Mendelian expectation of offspring exhibiting the mutant phenotype. This class probably represents both mutations with penetrance effects and mutations with viability effects.

The present experiments represent the first systematic comparison of induced genetically confirmed dominant and recessive mutations for a chemical mutagen in mice. Such results contribute to our limited understanding of the mutation process to dominant alleles.  相似文献   


19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号